Association of lncRNA and transcriptome intersections with response to targeted therapy in metastatic renal cell carcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37559591
PubMed Central
PMC10407709
DOI
10.3892/ol.2023.13951
PII: OL-26-3-13951
Knihovny.cz E-zdroje
- Klíčová slova
- inhibitor, long non-coding RNA, metastatic, prognosis, renal cancer, response, sunitinib, therapy, transcriptome, tyrosine kinase,
- Publikační typ
- časopisecké články MeSH
Long non-coding RNAs (lncRNAs) serve an important role in cancer progression and may be used as efficient molecular biomarkers. The present study aimed to identify lncRNAs associated with the response to the receptor tyrosine kinase inhibitor sunitinib and transcriptome profile and clinical features of metastatic renal cell carcinoma (mRCC). The gene expression of 84 cancer-associated lncRNAs in tumor and non-malignant tissue samples of 38 patients with mRCC was evaluated using quantitative PCR. In addition, the coding transcriptome was estimated using RNA sequencing in a subgroup of 20 patients and mRNA-lncRNA intersections were identified. In total, 37 and 13 lncRNAs were down- and upregulated, respectively, in tumor compared with non-malignant adjacent tissue samples. A total of 10 and 4 lncRNAs were up- and downregulated, respectively, in good responders to sunitinib compared with poor responders. High expression of HNF1A-AS1 and IPW lncRNAs was associated with prolonged progression-free survival of patients and a high expression of the TUSC7 lncRNA was associated with poor response and worse survival. Significant associations of dysregulated MEG3 and SNHG16 lncRNAs with expression of protein-coding genes representing various pathways, were identified. Furthermore, a significantly higher expression of CLIP4 gene was observed in good responders. The present study revealed promising candidates for predictive and prognostic biomarkers with further therapeutic potential.
Zobrazit více v PubMed
Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F. International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol. 2015;67:519–530. doi: 10.1016/j.eururo.2014.10.002. PubMed DOI
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG. New Guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–216. doi: 10.1093/jnci/92.3.205. PubMed DOI
National Cancer Institure (NCI), corp-author https://www.cancer.gov/pediatric-adult-rare-tumor/rare-tumors/rare-kidney-tumors/clear-cell-renal-cell-carcinoma. [ February 1; 2023 ];Clear Cell Renal Cell Carcinoma-NCI.
Xue J, Chen W, Xu W, Xu Z, Li X, Qi F, Wang Z. Patterns of distant metastases in patients with clear cell renal cell carcinoma - - A population-based analysis. Cancer Med. 2020;10:173–187. doi: 10.1002/cam4.3596. PubMed DOI PMC
Dabestani S, Thorstenson A, Lindblad P, Harmenberg U, Ljungberg B, Lundstam S. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: A population-based study. World J Urol. 2016;34:1081–1086. doi: 10.1007/s00345-016-1773-y. PubMed DOI
Eggers H, Schünemann C, Grünwald V, Rudolph L, Tiemann ML, Reuter C, Anders-Meyn MF, Ganser A, Ivanyi P. Improving survival in metastatic renal cell carcinoma (MRCC) patients: Do elderly patients benefit from expanded targeted therapeutic options? World J Urol. 2022;40:2489–2497. doi: 10.1007/s00345-022-04110-3. PubMed DOI PMC
Sheng IY, Ornstein MC. Ipilimumab and nivolumab as first-line treatment of patients with renal cell carcinoma: The evidence to date. Cancer Manag Res. 2020;12:4871–4881. doi: 10.2147/CMAR.S202017. PubMed DOI PMC
Motzer RJ, Jonasch E, Agarwal N, Alva A, Baine M, Beckermann K, Carlo MI, Choueiri TK, Costello BA, Derweesh IH, et al. Kidney cancer, Version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20:71–90. doi: 10.6004/jnccn.2022.0001. PubMed DOI PMC
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long Non-Coding RNAs and Its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118. doi: 10.1038/s41580-021-00330-4. PubMed DOI PMC
Shao K, Shi T, Yang Y, Wang X, Xu D, Zhou P. Highly expressed LncRNA CRNDE promotes cell proliferation through Wnt/β-Catenin signaling in renal cell carcinoma. Tumour Biol. 2016 Oct 6; doi: 10.1007/s13277-016-5440-0. (Epub ahead of print) PubMed DOI
Wang L, Cai Y, Zhao X, Jia X, Zhang J, Liu J, Zhen H, Wang T, Tang X, Liu Y, Wang J. Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma. Neoplasma. 2015;62:412–418. doi: 10.4149/neo_2015_049. PubMed DOI
Wu Y, Liu J, Zheng Y, You L, Kuang D, Liu T. Suppressed expression of long Non-coding RNA HOTAIR inhibits proliferation and tumourigenicity of renal carcinoma cells. Tumour Biol. 2014;35:11887–11894. doi: 10.1007/s13277-014-2453-4. PubMed DOI
Zhang M, Lu W, Huang Y, Shi J, Wu X, Zhang X, Jiang R, Cai Z, Wu S. Downregulation of the long noncoding RNA TUG1 inhibits the proliferation, migration, invasion and promotes apoptosis of renal cell carcinoma. J Mol Histol. 2016;47:421–428. doi: 10.1007/s10735-016-9683-2. PubMed DOI
Wang M, Huang T, Luo G, Huang C, Xiao XY, Wang L, Jiang GS, Zeng FQ. Long Non-Coding RNA MEG3 induces renal cell carcinoma cells apoptosis by activating the mitochondrial pathway. J Huazhong Univ Sci Technolog Med Sci. 2015;35:541–545. doi: 10.1007/s11596-015-1467-5. PubMed DOI
Qiao HP, Gao WS, Huo JX, Yang ZS. Long Non-Coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev. 2013;14:1077–1082. doi: 10.7314/APJCP.2013.14.2.1077. PubMed DOI
Li M, Wang Y, Cheng L, Niu W, Zhao G, Raju JK, Huo J, Wu B, Yin B, Song Y, Bu R. Long Non-Coding RNAs in renal cell carcinoma: A systematic review and clinical implications. Oncotarget. 2017;8:48424–48435. doi: 10.18632/oncotarget.17053. PubMed DOI PMC
Zhang H, Yang F, Chen SJ, Che J, Zheng J. Upregulation of Long Non-Coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. 2015;36:2947–2955. doi: 10.1007/s13277-014-2925-6. PubMed DOI
Posa I, Carvalho S, Tavares J, Grosso AR. A Pan-cancer analysis of MYC-PVT1 Reveals CNV-Unmediated deregulation and poor prognosis in renal carcinoma. Oncotarget. 2016;7:47033–47041. doi: 10.18632/oncotarget.9487. PubMed DOI PMC
Wang Y, Liu J, Bai H, Dang Y, Lv P, Wu S. Long Intergenic Non-Coding RNA 00152 promotes renal cell carcinoma progression by epigenetically suppressing P16 and negatively regulates MiR-205. Am J Cancer Res. 2017;7:312–322. PubMed PMC
Xiao H, Bao L, Xiao W, Ruan H, Song Z, Qu Y, Chen K, Zhang X, Yang H. Long Non-Coding RNA Lucat1 is a poor prognostic factor and demonstrates malignant biological behavior in clear cell renal cell carcinoma. Oncotarget. 2017;8:113622–113634. doi: 10.18632/oncotarget.21185. PubMed DOI PMC
Song EL, Xing L, Wang L, Song WT, Li DB, Wang Y, Gu YW, Liu MM, Ni WJ, Zhang P, et al. LncRNA ADAMTS9-AS2 inhibits cell proliferation and decreases chemoresistance in clear cell renal cell carcinoma via the MiR-27a-3p/FOXO1 axis. Aging (Albany NY) 2019;11:5705–5725. doi: 10.18632/aging.102154. PubMed DOI PMC
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al. Exosome-Transmitted LncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29:653–668. doi: 10.1016/j.ccell.2016.03.004. PubMed DOI
Zhai W, Sun Y, Guo C, Hu G, Wang M, Zheng J, Lin W, Huang Q, Li G, Zheng J, Chang C. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/MiRNA-143-3p signals. Cell Death Differ. 2017;24:1502–1517. doi: 10.1038/cdd.2017.74. PubMed DOI PMC
Saad OA, Li WT, Krishnan AR, Nguyen GC, Lopez JP, McKay RR, Wang-Rodriguez J, Ongkeko WM. The Renal clear cell carcinoma immune landscape. Neoplasia. 2022;24:145–154. doi: 10.1016/j.neo.2021.12.007. PubMed DOI PMC
Roldán FL, Izquierdo L, Ingelmo-Torres M, Lozano JJ, Carrasco R, Cuñado A, Reig O, Mengual L, Alcaraz A. Prognostic gene expression-based signature in clear-cell renal cell carcinoma. Cancers (Basel) 2022;14:3754. doi: 10.3390/cancers14153754. PubMed DOI PMC
Flaifel A, Xie W, Braun DA, Ficial M, Bakouny Z, Nassar AH, Jennings RB, Escudier B, George DJ, Motzer RJ, et al. PD-L1 expression and clinical outcomes to cabozantinib, everolimus and sunitinib in patients with metastatic renal cell carcinoma: Analysis of the randomized clinical trials METEOR and CABOSUN. Clin Cancer Res. 2019;25:6080–6088. doi: 10.1158/1078-0432.CCR-19-1135. PubMed DOI PMC
Qu Y, Lin Z, Qi Y, Qi Y, Chen Y, Zhou Q, Zeng H, Liu Z, Wang Z, Wang J, et al. PAK1 expression determines poor prognosis and immune evasion in metastatic renal cell carcinoma patients. Urol Oncol. 2020;38:293–304. doi: 10.1016/j.urolonc.2019.10.010. PubMed DOI
Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-Alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol. 2002;20:289–296. doi: 10.1200/JCO.2002.20.1.289. PubMed DOI
Fiala O, Finek J, Poprach A, Melichar B, Kopecký J, Zemanova M, Kopeckova K, Mlcoch T, Dolezal T, Capkova L, Buchler T. Outcomes according to MSKCC risk score with focus on the Intermediate-Risk Group in metastatic renal cell carcinoma patients treated with first-line sunitinib: A Retrospective analysis of 2390 Patients. Cancers (Basel) 2020;12:808. doi: 10.3390/cancers12040808. PubMed DOI PMC
European Medicines Agency (EMA), corp-author Sutent. European Medicines Agency; Amsterdam: 2021. [ May 23; 2023 ].
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (Version 1.1) Eur J Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026. PubMed DOI
Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3. doi: 10.1186/1471-2199-7-3. PubMed DOI PMC
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: Minimum information for publication of quantitative real-Time PCR Experiments. Clin Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Babraham Bioinformatics, corp-author. FastQC: A Quality Control Tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [ November 2; 2021 ];
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Royal Statistical Soc Series B (Methodological) 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Ensembl, corp-author. Human (GRCh38.p13) http://www.ensembl.org/Homo_sapiens/Info/Index. [ May 25; 2023 ];
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-Seq quantification. Nat Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–4297. doi: 10.1093/nar/gks042. PubMed DOI PMC
Bonferroni CE. Studi in onore del Professore Salvatore Ortu Carboni; 1935. Il Calcolo Delle Assicurazioni Su Gruppi Di Teste.
Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, Griss J, Sevilla C, Matthews L, Gong C, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–D692. doi: 10.1093/nar/gkab1028. PubMed DOI PMC
GTEx Portal. TUSC7. https://www.gtexportal.org/home/gene/TUSC7. [ October 12; 2022 ];
Ren W, Chen S, Liu G, Wang X, Ye H, Xi Y. TUSC7 acts as a tumor suppressor in colorectal cancer. Am J Transl Res. 2017;9:4026–4035. PubMed PMC
Cong M, Li J, Jing R, Li Z. Long Non-Coding RNA tumor suppressor candidate 7 functions as a tumor suppressor and inhibits proliferation in osteosarcoma. Tumour Biol. 2016;37:9441–9450. doi: 10.1007/s13277-015-4414-y. PubMed DOI
Zheng BH, He ZX, Zhang J, Ma JJ, Zhang HW, Zhu W, Shao ZM, Ni XJ. The biological function of TUSC7/MiR-1224-3p axis in triple-negative breast cancer. Cancer Manag Res. 2021;13:5763–5774. doi: 10.2147/CMAR.S305865. PubMed DOI PMC
Darb-Esfahani S, Denkert C, Stenzinger A, Salat C, Sinn B, Schem C, Endris V, Klare P, Schmitt W, Blohmer JU, et al. Role of TP53 mutations in triple negative and HER2-Positive breast cancer treated with neoadjuvant Anthracycline/Taxane-Based chemotherapy. Oncotarget. 2016;7:67686–67698. doi: 10.18632/oncotarget.11891. PubMed DOI PMC
GTEx Portal. HNF1A-AS1. https://www.gtexportal.org/home/gene/HNF1A-AS1. [ February 1; 2023 ];
Liu Y, Zhao F, Tan F, Tang L, Du Z, Mou J, Zhou G, Yuan C. HNF1A-AS1: A Tumor-associated long non-coding RNA. Curr Pharm Des. 2022;28:1720–1729. doi: 10.2174/1381612828666220520113846. PubMed DOI
Zhang G, An X, Zhao H, Zhang Q, Zhao H. Long non-coding RNA HNF1A-AS1 promotes cell proliferation and invasion via regulating MiR-17-5p in Non-Small cell lung cancer. Biomed Pharmacother. 2018;98:594–599. doi: 10.1016/j.biopha.2017.12.080. PubMed DOI
Liu L, Chen Y, Li Q, Duan P. LncRNA HNF1A-AS1 modulates non-small cell lung cancer progression by targeting MiR-149-5p/Cdk6. J Cell Biochem. 2019;120:18736–18750. doi: 10.1002/jcb.29186. PubMed DOI
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Regulatory mechanisms and potential medical applications of HNF1A-AS1 in cancers. Am J Transl Res. 2022;14:4154–4168. PubMed PMC
Zhou X, Fan YH, Wang Y, Liu Y. Prognostic and clinical significance of long non-coding RNA HNF1A-AS1 in solid cancers: A systematic review and meta-analysis. Medicine (Baltimore) 2019;98:e18264. doi: 10.1097/MD.0000000000018264. PubMed DOI PMC
Shi Y, Zhang Q, Xie M, Feng Y, Ma S, Yi C, Wang Z, Li Y, Liu X, Liu H, et al. Aberrant Methylation-mediated decrease of LncRNA HNF1A-AS1 contributes to malignant progression of laryngeal squamous cell carcinoma via EMT. Oncol Rep. 2020;44:2503–2516. doi: 10.3892/or.2020.7823. PubMed DOI PMC
Ding CH, Yin C, Chen SJ, Wen LZ, Ding K, Lei SJ, Liu JP, Wang J, Chen KX, Jiang HL, et al. The HNF1α-Regulated LncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1. Mol Cancer. 2018;17:63. doi: 10.1186/s12943-018-0813-1. PubMed DOI PMC
Dang Y, Lan F, Ouyang X, Wang K, Lin Y, Yu Y, Wang L, Wang Y, Huang Q. Expression and clinical significance of long Non-Coding RNA HNF1A-AS1 in human gastric cancer. World J Surg Oncol. 2015;13:302. doi: 10.1186/s12957-015-0706-3. PubMed DOI PMC
Kanduri C. Long Noncoding RNAs: Lessons from genomic imprinting. Biochim Biophys Acta. 2016;1859:102–111. doi: 10.1016/j.bbagrm.2015.05.006. PubMed DOI
BioGPS, corp-author. IPW (Imprinted in Prader-Willi Syndrome) http://biogps.org/#goto=genereport&id=3653. [ October 12; 2022 ];
Ma B, Li Y, Ren Y. Identification of a 6-lncRNA prognostic signature based on microarray Re-annotation in gastric cancer. Cancer Med. 2019;9:335–349. doi: 10.1002/cam4.2621. PubMed DOI PMC
Tang SJ, You GR, Chang JT, Cheng AJ. Systematic analysis and identification of dysregulated panel LncRNAs contributing to poor prognosis in Head-neck cancer. Front Oncol. 2021;11:731752. doi: 10.3389/fonc.2021.731752. PubMed DOI PMC
GeneCards - The Human Gene Database. https://www.genecards.org/cgi-bin/carddisp.pl?gene=CLIP4&keywords=CLIP4. [ February 2; 2023 ];CLIP4.
Park JS, Pierorazio PM, Lee JH, Lee HJ, Lim YS, Jang WS, Kim J, Lee SH, Rha KH, Cho NH, Ham WS. Gene expression analysis of aggressive clinical T1 stage clear cell renal cell carcinoma for identifying potential diagnostic and prognostic biomarkers. Cancers (Basel) 2020;12:E222. doi: 10.3390/cancers12010222. PubMed DOI PMC
Ahn J, Han KS, Heo JH, Bang D, Kang YH, Jin HA, Hong SJ, Lee JH, Ham WS. FOXC2 and CLIP4: A potential biomarker for synchronous metastasis of ≤7-Cm clear cell renal cell carcinomas. Oncotarget. 2016;7:51423–51434. doi: 10.18632/oncotarget.9842. PubMed DOI PMC
Gong A, Zhao X, Pan Y, Qi Y, Li S, Huang Y, Guo Y, Qi X, Zheng W, Jia L. The LncRNA MEG3 mediates renal cell cancer progression by regulating ST3Gal1 transcription and EGFR sialylation. J Cell Sci. 2020;133:jcs244020. doi: 10.1242/jcs.244020. PubMed DOI
He H, Dai J, Zhuo R, Zhao J, Wang H, Sun F, Zhu Y, Xu D. Study on the mechanism behind LncRNA MEG3 affecting clear cell renal cell carcinoma by regulating MiR-7/RASL11B signaling. J Cell Physiol. 2018;233:9503–9515. doi: 10.1002/jcp.26849. PubMed DOI
Cheng T, Shuang W, Ye D, Zhang W, Yang Z, Fang W, Xu H, Gu M, Xu W, Guan C. SNHG16 promotes cell proliferation and inhibits cell apoptosis via regulation of the MiR-1303-p/STARD9 Axis in clear cell renal cell carcinoma. Cell Signal. 2021;84:110013. doi: 10.1016/j.cellsig.2021.110013. PubMed DOI