A Randomized Controlled Trial Comparing BioMime Sirolimus-Eluting Stent With Everolimus-Eluting Stent: Two-Year Outcomes of the meriT-V Trial
Status PubMed-not-MEDLINE Language English Country Canada Media print-electronic
Document type Journal Article
PubMed
37559713
PubMed Central
PMC10409544
DOI
10.14740/cr1498
Knihovny.cz E-resources
- Keywords
- Coronary artery disease, Drug-eluting stent, Everolimus, Major adverse cardiac events, Percutaneous coronary intervention, Sirolimus, Stent thrombosis,
- Publication type
- Journal Article MeSH
BACKGROUND: Drug-eluting stents (DESs) based on biodegradable polymers (BPs) have been introduced to reduce the risk for late and very late stent thrombosis (ST), which were frequently observed with earlier generations of DES designs based on durable polymers (DPs); however, randomized controlled trials on these DES designs are scarce. The meriT-V trial is a randomized, active-controlled, non-inferiority trial with a prospective, multicenter design that evaluated the 2-year efficacy of a novel third-generation, ultra-thin strut, BP-based BioMime sirolimus-eluting stent (SES) versus the DP-based XIENCE everolimus-eluting stent (EES) for the treatment of de novo lesions. METHODS: The meriT-V is a randomized trial that enrolled 256 patients at 15 centers across Europe and Brazil. Here, we report the outcomes of the extended follow-up period of 2 years. The randomization of enrolled patients was in a 2:1 ratio; the enrolled patients received either the BioMime SES (n = 170) or the XIENCE EES (n = 86). The three-point major adverse cardiac event (MACE), defined as a composite of cardiac death, myocardial infarction (MI), or ischemia-driven target vessel revascularization (ID-TVR), was considered as the composite safety and efficacy endpoint. Ischemia-driven target lesion revascularization (ID-TLR) was evaluated as well as the frequency of definite/probable ST, based on the first Academic Research Consortium definitions. RESULTS: The trial had a 2-year follow-up completion rate of 98.44% (n = 252/256 patients), and the clinical outcomes assessment showed a nonsignificant difference in the cumulative rate of three-point MACE between both arms (BioMime vs. XIENCE: 7.74% vs. 9.52%, P = 0.62). Even the MI incidences in the BioMime arm were insignificantly lower than those of the XIENCE arm (1.79% vs. 5.95%, P = 0.17). Late ST was observed in 1.19% cases of the XIENCE arm, while there were no such cases in the BioMime arm (P = 0.16). CONCLUSIONS: The objective comparisons between the novel BP-based BioMime SES and the well-established DP-based XIENCE EES in this randomized controlled trial show acceptable outcomes of both the devices in the cardiac deaths, MI, ID-TVR, and ST. Moreover, since there were no incidences of cardiac death in the entire study sample over the course of 2 years, we contend that the findings of the study are highly significant for both these DES designs. In this preliminary comparative trial, the device safety of BioMime SES can be affirmed to be acceptable, considering the lower three-point MACE rate and absence of late ST in the BioMime arm over the 2-year period.
Academy of Silesia Faculty of Medicine Katowice Poland
Albert Schweitzer Hospital Dordrecht The Netherlands
Catharina Cardiac Centre Eindhoven The Netherlands
Eurolatino Pesquisas Medicas Uberlandia Brazil
Heart Institute InCor University of Sao Paulo Sao Paulo Brazil
ICRC St Anne's University Hospital Brno the Czech Republic
Imelda Ziekenhuis Cardiology Bonheiden Belgium
Instituto Dante Pazzanese de Cardiologia Sao Paulo Brazil
Isala Hospital Zwolle The Netherlands
Latvian Research Institute of Cardiology Riga Latvia
Manchester Heart Centre Manchester UK
Meril Life Sciences Pvt Ltd Vapi India
Royal Bournemouth Hospital Bournemouth UK
University Clinic of Cardiology Skopje FYR of Macedonia
See more in PubMed
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM. et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93–e621. doi: 10.1161/CIR.0000000000001123. PubMed DOI
Foin N, Lee RD, Torii R, Guitierrez-Chico JL, Mattesini A, Nijjer S, Sen S. et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol. 2014;177(3):800–808. doi: 10.1016/j.ijcard.2014.09.143. PubMed DOI
Xu W, Sasaki M, Niidome T. Sirolimus release from biodegradable polymers for coronary stent application: a review. Pharmaceutics. 2022;14(3):492. doi: 10.3390/pharmaceutics14030492. PubMed DOI PMC
Otsuka F, Byrne RA, Yahagi K, Mori H, Ladich E, Fowler DR, Kutys R. et al. Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. Eur Heart J. 2015;36(32):2147–2159. doi: 10.1093/eurheartj/ehv205. PubMed DOI
Serruys PW, Farooq V, Kalesan B, de Vries T, Buszman P, Linke A, Ischinger T. et al. Improved safety and reduction in stent thrombosis associated with biodegradable polymer-based biolimus-eluting stents versus durable polymer-based sirolimus-eluting stents in patients with coronary artery disease: final 5-year report of the LEADERS (Limus Eluted From A Durable Versus ERodable Stent Coating) randomized, noninferiority trial. JACC Cardiovasc Interv. 2013;6(8):777–789. doi: 10.1016/j.jcin.2013.04.011. PubMed DOI
Yeh RW, Silber S, Chen L, Chen S, Hiremath S, Neumann FJ, Qiao S. et al. 5-year safety and efficacy of resolute zotarolimus-eluting stent: the RESOLUTE global clinical trial program. JACC Cardiovasc Interv. 2017;10(3):247–254. doi: 10.1016/j.jcin.2016.11.004. PubMed DOI
El-Hayek G, Bangalore S, Casso Dominguez A, Devireddy C, Jaber W, Kumar G, Mavromatis K. et al. Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents. JACC Cardiovasc Interv. 2017;10(5):462–473. doi: 10.1016/j.jcin.2016.12.002. PubMed DOI
Thakkar AS, Dave BA. Revolution of drug-eluting coronary stents: an analysis of market leaders. EMJ. 2016;1(4):114–125.
Dani S, Costa RA, Joshi H, Shah J, Pandya R, Virmani R, Sheiban I. et al. First-in-human evaluation of the novel BioMime sirolimus-eluting coronary stent with bioabsorbable polymer for the treatment of single de novo lesions located in native coronary vessels - results from the meriT-1 trial. EuroIntervention. 2013;9(4):493–500. doi: 10.4244/EIJV9I4A79. PubMed DOI
Leone A, Simonetti F, Avvedimento M, Angellotti D, Immobile Molaro M, Franzone A, Esposito G. et al. Ultrathin Struts Drug-Eluting Stents: A State-of-the-Art Review. J Pers Med. 2022;12(9):1378. doi: 10.3390/jpm12091378. PubMed DOI PMC
Kumar AS, Hariram V. Indigenous stents: examining the clinical data on new technologies. Interventional Cardiology. 2014;6(3):319–333. doi: 10.2217/ICA.14.27. DOI
Kaul U, Bhatt S, Vasani P. Evolving coronary stent designs. Journey from substance to sublime. Minerva Cardioangiol. 2013;61(1):81–88. doi: 10.15420/ecr.2018:8:2. PubMed DOI
Seth A, Costa RA, Kaul U, Wander GS, Mullasari A, Nanjappa CM, Heggunje-Shetty P. et al. Late angiographic and clinical outcomes of the novel BioMime™ sirolimus-eluting coronary stent with ultra-thin cobalt-chromium platform and biodegradable polymer for the treatment of diseased coronary vessels: results from the prospective, multicentre meriT-2 clinical trial. Asia Intervention. 2016;2:19–27. doi: 10.4244/AsiaInterv_V2I1A7. DOI
Jain RK, Chakravarthi P, Shetty R, Ramchandra P, Polavarapu RS, Wander GS, Mohan B. et al. One-year outcomes of a BioMime Sirolimus-Eluting Coronary Stent System with a biodegradable polymer in all-comers coronary artery disease patients: The meriT-3 study. Indian Heart J. 2016;68(5):599–603. doi: 10.1016/j.ihj.2016.09.007. PubMed DOI PMC
Abizaid A, Kedev S, Kedhi E, Talwar S, Erglis A, Hlinomaz O, Masotti M. et al. Randomised comparison of a biodegradable polymer ultra-thin sirolimus-eluting stent versus a durable polymer everolimus-eluting stent in patients with de novo native coronary artery lesions: the meriT-V trial. EuroIntervention. 2018;14(11):e1207–e1214. doi: 10.4244/EIJ-D-18-00762. PubMed DOI
Natsuaki M, Morimoto T, Furukawa Y, Nakagawa Y, Kadota K, Yamaji K, Ando K. et al. Late adverse events after implantation of sirolimus-eluting stent and bare-metal stent: long-term (5-7 years) follow-up of the Coronary Revascularization Demonstrating Outcome study-Kyoto registry Cohort-2. Circ Cardiovasc Interv. 2014;7(2):168–179. doi: 10.1161/CIRCINTERVENTIONS.113.000987. PubMed DOI
Thygesen K, Alpert JS, White HD, Joint ESCAAHAWHFTFftRoMI. Universal definition of myocardial infarction. Eur Heart J. 2007;28(20):2525–2538. doi: 10.1093/eurheartj/ehm355. PubMed DOI
Lansky AJ, Stone GW. Periprocedural myocardial infarction: prevalence, prognosis, and prevention. Circ Cardiovasc Interv. 2010;3(6):602–610. doi: 10.1161/CIRCINTERVENTIONS.110.959080. PubMed DOI
Mythili S, Malathi N. Diagnostic markers of acute myocardial infarction. Biomed Rep. 2015;3(6):743–748. doi: 10.3892/br.2015.500. PubMed DOI PMC
Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es GA, Steg PG. et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–2351. doi: 10.1161/CIRCULATIONAHA.106.685313. PubMed DOI
Gada H, Kirtane AJ, Newman W, Sanz M, Hermiller JB, Mahaffey KW, Cutlip DE. et al. 5-year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents: final results from the SPIRIT III trial (clinical evaluation of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions) JACC Cardiovasc Interv. 2013;6(12):1263–1266. doi: 10.1016/j.jcin.2013.07.009. PubMed DOI
Pilgrim T, Muller O, Heg D, Roffi M, Kurz DJ, Moarof I, Weilenmann D. et al. Biodegradable- versus durable-polymer drug-eluting stents for STEMI: final 2-year outcomes of the BIOSTEMI trial. JACC Cardiovasc Interv. 2021;14(6):639–648. doi: 10.1016/j.jcin.2020.12.011. PubMed DOI
Kandzari DE, Koolen JJ, Doros G, Garcia-Garcia HM, Bennett J, Roguin A, Gharib EG. et al. Ultrathin bioresorbable-polymer sirolimus-eluting stents versus thin durable-polymer everolimus-eluting stents for coronary revascularization: 3-year outcomes from the randomized BIOFLOW V trial. JACC Cardiovasc Interv. 2020;13(11):1343–1353. doi: 10.1016/j.jcin.2020.02.019. PubMed DOI
Zbinden R, Piccolo R, Heg D, Roffi M, Kurz DJ, Muller O, Vuilliomenet A. et al. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable-polymer everolimus-eluting stent for percutaneous coronary revascularization: 2-year results of the BIOSCIENCE trial. J Am Heart Assoc. 2016;5(3):e003255. doi: 10.1161/JAHA.116.003255. PubMed DOI PMC
Katagiri Y, Onuma Y, Lurz P, Buszman P, Piek JJ, Wykrzykowska JJ, Asano T. et al. Clinical outcomes of bioabsorbable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents: two-year follow-up of the DESSOLVE III trial. EuroIntervention. 2020;15(15):e1366–e1374. doi: 10.4244/EIJ-D-18-00944. PubMed DOI
Lefevre T, Haude M, Neumann FJ, Stangl K, Skurk C, Slagboom T, Sabate M. et al. Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: 5-year outcomes of the randomized BIOFLOW-II trial. JACC Cardiovasc Interv. 2018;11(10):995–1002. doi: 10.1016/j.jcin.2018.04.014. PubMed DOI
Buiten RA, Ploumen EH, Zocca P, Doggen CJM, van der Heijden LC, Kok MM, Danse PW. et al. Outcomes in patients treated with thin-strut, very thin-strut, or ultrathin-strut drug-eluting stents in small coronary vessels: a prespecified analysis of the randomized BIO-RESORT trial. JAMA Cardiol. 2019;4(7):659–669. doi: 10.1001/jamacardio.2019.1776. PubMed DOI PMC
Buccheri S, Sarno G, Erlinge D, Renlund H, Lagerqvist B, Grimfjard P, Witt N. et al. Clinical outcomes with unselected use of an ultrathin-strut sirolimus-eluting stent: a report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR) EuroIntervention. 2021;16(17):1413–1421. doi: 10.4244/EIJ-D-20-00429. PubMed DOI PMC
Bangalore S, Toklu B, Patel N, Feit F, Stone GW. Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation. 2018;138(20):2216–2226. doi: 10.1161/CIRCULATIONAHA.118.034456. PubMed DOI
Kandzari DE, Mauri L, Koolen JJ, Massaro JM, Doros G, Garcia-Garcia HM, Bennett J. et al. Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial. Lancet. 2017;390(10105):1843–1852. doi: 10.1016/S0140-6736(17)32249-3. PubMed DOI
Kandzari DE, Koolen JJ, Doros G, Garcia-Garcia HM, Bennett J, Roguin A, Gharib EG. et al. Ultrathin Bioresorbable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents: BIOFLOW V final 5-year outcomes. JACC Cardiovasc Interv. 2022;15(18):1852–1860. doi: 10.1016/j.jcin.2022.07.027. PubMed DOI
Bhatt S, Gujarathi S, De Benedictis M. Innovative DES technologies from Meril. Minerva Cardioangiol. 2015;63(5):441–448. PubMed
Ribas ED, Guindo J, Santos RC, Otaegui I, Gomez JA, Suarez XC, Juan S. et al. Clinical follow-up of long nontapered sirolimus-eluting coronary stent in real-world patients with de novo lesions. The Billar registry. REC Interv Cardiol. 2022;4(1):27–32. doi: 10.24875/RECICE.M21000251. DOI