Lysin (K)-specific demethylase 1 inhibition enhances proteasome inhibitor response and overcomes drug resistance in multiple myeloma
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
37563685
PubMed Central
PMC10413620
DOI
10.1186/s40164-023-00434-x
PII: 10.1186/s40164-023-00434-x
Knihovny.cz E-resources
- Keywords
- B-cell neoplasms, Drug resistance, LSD1, Multiple myeloma, Proteasome inhibitors, Synthetic lethality,
- Publication type
- Journal Article MeSH
BACKGROUND: Multiple myeloma (MM) is an incurable plasma cell malignancy, accounting for approximately 1% of all cancers. Despite recent advances in the treatment of MM, due to the introduction of proteasome inhibitors (PIs) such as bortezomib (BTZ) and carfilzomib (CFZ), relapses and disease progression remain common. Therefore, a major challenge is the development of novel therapeutic approaches to overcome drug resistance, improve patient outcomes, and broaden PIs applicability to other pathologies. METHODS: We performed genetic and drug screens to identify new synthetic lethal partners to PIs, and validated candidates in PI-sensitive and -resistant MM cells. We also tested best synthetic lethal interactions in other B-cell malignancies, such as mantle cell, Burkitt's and diffuse large B-cell lymphomas. We evaluated the toxicity of combination treatments in normal peripheral blood mononuclear cells (PBMCs) and bone marrow stromal cells (BMSCs). We confirmed the combo treatment' synergistic effects ex vivo in primary CD138+ cells from MM patients, and in different MM xenograft models. We exploited RNA-sequencing and Reverse-Phase Protein Arrays (RPPA) to investigate the molecular mechanisms of the synergy. RESULTS: We identified lysine (K)-specific demethylase 1 (LSD1) as a top candidate whose inhibition can synergize with CFZ treatment. LSD1 silencing enhanced CFZ sensitivity in both PI-resistant and -sensitive MM cells, resulting in increased tumor cell death. Several LSD1 inhibitors (SP2509, SP2577, and CC-90011) triggered synergistic cytotoxicity in combination with different PIs in MM and other B-cell neoplasms. CFZ/SP2509 treatment exhibited a favorable cytotoxicity profile toward PBMCs and BMSCs. We confirmed the clinical potential of LSD1-proteasome inhibition in primary CD138+ cells of MM patients, and in MM xenograft models, leading to the inhibition of tumor progression. DNA damage response (DDR) and proliferation machinery were the most affected pathways by CFZ/SP2509 combo treatment, responsible for the anti-tumoral effects. CONCLUSIONS: The present study preclinically demonstrated that LSD1 inhibition could provide a valuable strategy to enhance PI sensitivity and overcome drug resistance in MM patients and that this combination might be exploited for the treatment of other B-cell malignancies, thus extending the therapeutic impact of the project.
Città Della Salute e della Scienza Hospital Turin Italy
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Molecular Biotechnology and Health Sciences University of Turin Turin Italy
Department of Oncology and Hemato Oncology University of Milan Milan Italy
Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
Department of Physical Chemistry Rudjer Boskovic Insitute Zagreb Croatia
Hematology Fondazione Cà Granda IRCCS Policlinico Milan Italy
Laboratory of Translational Research Azienda USL IRCCS Reggio Emilia Reggio Emilia Italy
Scientific Directorate Azienda USL IRCCS di Reggio Emilia Reggio Emilia Italy
See more in PubMed
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. 10.3322/caac.21763. PubMed
Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327:464–77. 10.1001/JAMA.2022.0003. PubMed
Fricker LD. Proteasome inhibitor drugs. Annu Rev Pharmacol Toxicol. 2020;60:457–76. 10.1146/annurev-pharmtox-010919-023603. PubMed
Obeng EA, Carlson LM, Gutman DM, Harrington WJ, Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–16. 10.1182/blood-2005-08-3531. PubMed PMC
Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60. 10.1056/NEJMra1011442. PubMed
Kumar SK, Vincent RS. The multiple myelomas — current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018. 10.1038/s41571-018-0018-y. PubMed
Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71:170–97. 10.1124/pr.117.015370. PubMed PMC
Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14:417–33. 10.1038/nrclinonc.2016.206. PubMed PMC
Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJL, Cloos J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat. 2015;18:18–35. 10.1016/j.drup.2014.12.001. PubMed
Dutta AK, Alberge JB, Sklavenitis-Pistofidis R, Lightbody ED, Getz G, Ghobrial IM. Single-cell profiling of tumour evolution in multiple myeloma — opportunities for precision medicine. Nat Rev Clin Oncol. 2022;19:223–36. 10.1038/s41571-021-00593-y. PubMed
Kropivsek K, Kachel P, Goetze S, Wegmann R, Festl Y, Severin Y, et al. Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. Nat Cancer. 2023;2023:1–20. 10.1038/s43018-023-00544-9. PubMed PMC
Paiva B, Puig N, Cedena MT, De Jong BG, Ruiz Y, Rapado I, et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia. 2017;31:382–92. 10.1038/leu.2016.211. PubMed PMC
Amodio N, D’Aquila P, Passarino G, Tassone P, Bellizzi D. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opin Ther Targets. 2017;21:91–101. 10.1080/14728222.2016.1266339. PubMed
Ismail NH, Mussa A, Zakaria NA, Al-Khreisat MJ, Zahidin MA, Ramli NN, et al. The role of epigenetics in the development and progression of multiple myeloma. Biomedicines. 2022;10:2767. 10.3390/biomedicines10112767. PubMed PMC
Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80. 10.1016/j.cell.2010.02.027. PubMed PMC
Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, Morinishi LS, et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun. 2016;7:1–8. 10.1038/ncomms10690. PubMed PMC
Shen S, Vagner S, Robert C. Persistent cancer cells: the deadly survivors. Cell. 2020;183:860–74. 10.1016/j.cell.2020.10.027. PubMed
Ge M, Qiao Z, Kong Y, Liang H, Sun Y, Lu H, et al. Modulating proteasome inhibitor tolerance in multiple myeloma: an alternative strategy to reverse inevitable resistance. Br J Cancer. 2021;124:770–6. 10.1038/s41416-020-01191-y. PubMed PMC
Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020;19:39–56. 10.1038/s41573-019-0044-1. PubMed
Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46:364–70. 10.1038/ng.2913. PubMed PMC
Bergaggio E, Riganti C, Garaffo G, Vitale N, Mereu E, Bandini C, et al. IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies. Blood. 2019;133:156–67. 10.1182/blood-2018-05-850826. PubMed
Tierney C, Bazou D, Majumder MM, Anttila P, Silvennoinen R, Heckman CA, et al. Next generation proteomics with drug sensitivity screening identifies sub-clones informing therapeutic and drug development strategies for multiple myeloma patients. Sci Rep. 2021;11:1–15. 10.1038/s41598-021-90149-y. PubMed PMC
Paradzik T, Bandini C, Mereu E, Labrador M, Taiana E, Amodio N, et al. The landscape of signaling pathways and proteasome inhibitors combinations in multiple myeloma. Cancers. 2021. 10.3390/cancers13061235. PubMed PMC
Thompson JM, Nguyen QH, Singh M, Razorenova OV. Focus: a multifaceted battle against cancer: approaches to identifying synthetic lethal interactions in cancer. Yale J Biol Med. 2015;88(2):145. PubMed PMC
Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast. Nat Rev Genet. 2007;8:437–49. 10.1038/nrg2085. PubMed
Niepel M, Hafner M, Duan Q, Wang Z, Paull EO, Chung M, et al. Common and cell-type specific responses to anti-cancer drugs revealed by high throughput transcript profiling. Nat Commun. 2017. 10.1038/s41467-017-01383-w. PubMed PMC
Mimura N, Hideshima T, Shimomura T, Suzuki R, Ohguchi H, Rizq O, et al. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res. 2014;74:4458–69. 10.1158/0008-5472.CAN-13-3652. PubMed PMC
Rizq O, Mimura N, Oshima M, Saraya A, Koide S, Kato Y, et al. Dual inhibition of EZH2 and EZH1 sensitizes PRC2-dependent tumors to proteasome inhibition HHS public access. Clin Cancer Res. 2017;23:4817–30. 10.1158/1078-0432.CCR-16-2735. PubMed PMC
Zhang X, Wang X, Wu T, Yin W, Yan J, Sun Y, et al. Therapeutic potential of targeting LSD1/ KDM1A in cancers. Pharmacol Res. 2022;175:105958. 10.1016/j.phrs.2021.105958. PubMed
Spaccarotella E, Pellegrino E, Ferracin M, Ferreri C, Cuccuru G, Liu C, et al. STAT3-mediated activation of microRNA cluster 17–92 promotes proliferation and survival of ALK-positive anaplastic large cell lymphoma. Haematologica. 2014;99:116–24. 10.3324/haematol.2013.088286. PubMed PMC
Piva R, Agnelli L, Pellegrino E, Todoerti K, Grosso V, Tamagno I, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28:1583–90. 10.1200/JCO.2008.20.9759. PubMed
Maiques-Diaz A, Spencer GJ, Lynch JT, Ciceri F, Williams EL, Amaral FMR, et al. enhancer activation by pharmacologic displacement of LSD1 from GFI1 induces differentiation in acute myeloid leukemia. Cell Rep. 2018;22:3641–59. 10.1016/j.celrep.2018.03.012. PubMed PMC
Reed DR, Mascarenhas L, Meyers PA, Chawla SP, Harrison DJ, Setty B, et al. A phase I/II clinical trial of the reversible LSD1 inhibitor, seclidemstat, in patients with relapsed/refractory Ewing sarcoma. J Clin Oncol. 2020;38:TPS11567. 10.1200/JCO.2020.38.15_suppl.TPS11567.
Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia. 2008;23:10–24. 10.1038/leu.2008.259. PubMed PMC
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53. 10.1016/j.cell.2004.12.012. PubMed
Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AHFM, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005;437:436–9. 10.1038/nature04020. PubMed
Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 2006;66:11341–7. 10.1158/0008-5472.CAN-06-1570. PubMed
Huang Y, Greene E, Stewart TM, Goodwin AC, Baylin SB, Woster PM, et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci U S A. 2007;104:8023–8. 10.1073/pnas.0700720104. PubMed PMC
Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T, et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer. 2011;128:574–86. 10.1002/ijc.25349. PubMed
Dong J, Pervaiz W, Tayyab B, Li D, Kang L, Zhang H, et al. A comprehensive comparative study on LSD1 in different cancers and tumor specific LSD1 inhibitors. Eur J Med Chem. 2022;240:114564. 10.1016/j.ejmech.2022.114564. PubMed
Yang C, Li D, Zang S, Zhang L, Zhong Z, Zhou Y. Mechanisms of carcinogenic activity triggered by lysine-specific demethylase 1A. Front Pharmacol. 2022;13:1–11. 10.3389/fphar.2022.955218. PubMed PMC
Ambrosio S, Saccà CD, Majello B. Epigenetic regulation of epithelial to mesenchymal transition by the Lysine-specific demethylase LSD1/KDM1A. Biochim Biophys Acta Gene Regul Mech. 2017;1860:905–10. 10.1016/J.BBAGRM.2017.07.001. PubMed
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: focus on multi-target agents and compounds in clinical trials. Front Pharmacol. 2023;14:1–17. 10.3389/fphar.2023.1120911. PubMed PMC
Su S-T, Ying H-Y, Chiu Y-K, Lin F-R, Chen M-Y, Lin K-I. Involvement of histone demethylase LSD1 in blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol. 2009;29:1421–31. 10.1128/mcb.01158-08. PubMed PMC
Haines RR, Barwick BG, Scharer CD, Majumder P, Randall TD, Boss JM. The histone demethylase LSD1 regulates B cell proliferation and plasmablast differentiation. J Immunol. 2018;201:2799–811. 10.4049/jimmunol.1800952. PubMed PMC
Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, et al. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival – Supplementary Information. Nat Commun. 2016;7:1–15. 10.1038/ncomms10258. PubMed PMC
Scoumanne A, Chen X. The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem. 2007;282:15471–5. 10.1074/jbc.M701023200. PubMed
Escoubet-Lozach L, Lin I-LL, Jensen-Pergakes K, Brady HA, Gandhi AK, Schafer PH, et al. Pomalidomide and lenalidomide induce p21WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res. 2009;69:7347–56. 10.1158/0008-5472.CAN-08-4898. PubMed
Vangala JR, Potluri A, Radhakrishnan SK. Bet inhibitors synergize with carfilzomib to induce cell death in cancer cells via impairing nrf1 transcriptional activity and exacerbating the unfolded protein response. Biomolecules. 2020;10:1–15. 10.3390/biom10040501. PubMed PMC
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, et al. The epigenome in multiple myeloma: Impact on tumor cell plasticity and drug response. Front Oncol. 2018;8:1–18. 10.3389/fonc.2018.00566. PubMed PMC
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol. 2019;12:1–14. 10.1186/s13045-019-0811-9. PubMed PMC
Sorna V, Theisen ER, Stephens B, Warner SL, Bearss DJ, Vankayalapati H, et al. High-throughput virtual screening identifies novel N ′-(1- phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. J Med Chem. 2013;56:9496–508. 10.1021/jm400870h. PubMed
Soldi R, Halder TG, Weston A, Thode T, Drenner K, Lewis R, et al. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/ Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS ONE. 2020;15:1–21. 10.1371/journal.pone.0235705. PubMed PMC
Mohammad HPP, Smitheman KNN, Kamat CDD, Soong D, Federowicz KEE, Van Aller GS, et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell. 2015;28:57–69. 10.1016/j.ccell.2015.06.002. PubMed
Dai XJ, Liu Y, Xue LP, Xiong XP, Zhou Y, Zheng YC, et al. Reversible lysine specific demethylase 1 (LSD1) inhibitors: a promising wrench to impair LSD1. J Med Chem. 2021;64:2466–88. 10.1021/acs.jmedchem.0c02176. PubMed
Kanouni T, Severin C, Cho RW, Yuen NYY, Xu J, Shi L, et al. Discovery of CC-90011: a potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1). J Med Chem. 2020;63:14522–9. 10.1021/acs.jmedchem.0c00978. PubMed
Majello B, Gorini F, Saccà CD, Amente S. Expanding the role of the histone lysine-specific demethylase lsd1 in cancer. Cancers. 2019;11:1–15. 10.3390/cancers11030324. PubMed PMC
Perillo B, Tramontano A, Pezone A, Migliaccio A. LSD1: more than demethylation of histone lysine residues. Exp Mol Med. 2020;52:1936–47. 10.1038/s12276-020-00542-2. PubMed PMC
Jacquemont C, Taniguchi T. Proteasome function is required for DNA damage response and Fanconi anemia pathway activation. Cancer Res. 2007. 10.1158/0008-5472.CAN-07-1015. PubMed
Cron KR, Zhu K, Kushwaha DS, Hsieh G, Merzon D. Proteasome inhibitors block DNA repair and radiosensitize non-small cell lung cancer. PLoS ONE. 2013;8:73710. 10.1371/journal.pone.0073710. PubMed PMC
Palanca A, Casafont I, Berciano MT, Lafarga M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci. 2014;71:1961–75. 10.1007/s00018-013-1474-2. PubMed PMC
Sin C, Din RU, Jiao A, Yuen K. Abstract 6199: proteasome inhibitors induce DNA damage and mitotic catastrophe in acute lymphoblastic leukemia via autophagy-mediated degradation of WEE1. Cancer Res. 2023;83:6199–6199. 10.1158/1538-7445.AM2023-6199.
Mosammaparast N, Kim H, Laurent B, Zhao Y, Lim HJ, Majid MC, et al. The histone demethylase LSD1/KDM1A promotes the DNA damage response. J Cell Biol. 2013;203:457–70. 10.1083/jcb.201302092. PubMed PMC
Gu F, Lin Y, Wang Z, Wu X, Ye Z, Wang Y, et al. Biological roles of LSD1 beyond its demethylase activity. Cell Mol Life Sci. 2020;77:3341–50. 10.1007/S00018-020-03489-9. PubMed PMC
Wang Y, Huang Y, Cheng E, Liu X, Zhang Y, Yang J, et al. LSD1 is required for euchromatic origin firing and replication timing. Signal Transduct Target Ther. 2022. 10.1038/s41392-022-00927-x. PubMed PMC
Lv S, Bu W, Jiao H, Liu B, Zhu L, Zhao H, et al. LSD1 is required for chromosome segregation during mitosis. Eur J Cell Biol. 2010;89:557–63. 10.1016/j.ejcb.2010.01.004. PubMed
Dalvi PS, MacHeleidt IF, Lim SY, Meemboor S, Müller M, Eischeid-Scholz H, et al. LSD1 inhibition attenuates tumor growth by disrupting PLK1 mitotic pathway. Mol Cancer Res. 2019;17:1326–37. 10.1158/1541-7786.MCR-18-0971. PubMed
Joukov V, De Nicolo A, Asteriti IA, De Mattia F, Guarguaglini G, Murga-Zamalloa C, et al. The role of aurora A and polo-like kinases in high-risk lymphomas. Cell Biosci. 2018;7:1–7. 10.1126/scisignal.aar4195.
Asteriti IA, De Mattia F, Guarguaglini G. Cross-talk between AURKA and Plk1 in mitotic entry and spindle assembly. Front Oncol. 2015;5:1–9. 10.3389/fonc.2015.00283. PubMed PMC
de Smedt E, Devin J, Muylaert C, Robert N, Requirand G, Vlummens P, et al. G9a/GLP targeting in MM promotes autophagy-associated apoptosis and boosts proteasome inhibitor-mediated cell death. Blood Adv. 2021;5:2325–38. 10.1182/BLOODADVANCES.2020003217. PubMed PMC
Mereu E, Abbo D, Paradzik T, Cumerlato M, Bandini C, Labrador M, et al. Euchromatic histone lysine methyltransferase 2 inhibition enhances carfilzomib sensitivity and overcomes drug resistance in multiple myeloma cell lines. Cancers (Basel). 2023;15:2199. 10.3390/CANCERS15082199/S1. PubMed PMC