Biased Quantification of Rat Liver Fibrosis-Meta-Analysis with Practical Recommendations and Clinical Implications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000787
Charles University
UNCE/MED/006
Charles University
PubMed
37568474
PubMed Central
PMC10420125
DOI
10.3390/jcm12155072
PII: jcm12155072
Knihovny.cz E-zdroje
- Klíčová slova
- biopsy, collagen proportionate area, connective tissue, fibrosis, liver, quantification, stereology,
- Publikační typ
- časopisecké články MeSH
For liver fibrosis assessment, the liver biopsy is usually stained with Masson's trichrome (MT) or picrosirius red (PSR) to quantify liver connective tissue (LCT) for fibrosis scoring. However, several concerns of such semiquantitative assessments have been raised, and when searching for data on the amount of LCT in healthy rats, the results vastly differ. Regarding the ongoing reproducibility crisis in science, it is necessary to inspect the results and methods, and to design an unbiased and reproducible method of LCT assessment. We searched the Medline database using search terms related to liver fibrosis, LCT and collagen, rat strains, and staining methods. Our search identified 74 eligible rat groups in 57 studies. We found up to 170-fold differences in the amount of LCT among healthy Wistar and Sprague-Dawley rats, with significant differences even within individual studies. Biased sampling and quantification probably caused the observed differences. In addition, we also found incorrect handling of liver fibrosis scoring. Assessment of LCT using stereological sampling methods (such as systematic uniform sampling) would provide us with unbiased data. Such data could eventually be used not only for the objective assessment of liver fibrosis but also for validation of noninvasive methods of the assessment of early stages of liver fibrosis.
Zobrazit více v PubMed
Khalifa A., Rockey D.C. The Utility of Liver Biopsy in 2020. Curr. Opin. Gastroenterol. 2020;36:184–191. doi: 10.1097/MOG.0000000000000621. PubMed DOI PMC
Baker M. 1500 Scientists Lift the Lid on Reproducibility. Nature. 2016;533:452–454. doi: 10.1038/533452a. PubMed DOI
Mannheimer E.G., Quintanilha L.F., Carvalho A.B., Paredes B.D., Gonçalves de Carvalho F., Takyia C.M., Resende C.M.C., Ferreira da Motta Rezende G., Carlos Campos de Carvalho A., Schanaider A., et al. Bone Marrow Cells Obtained from Cirrhotic Rats Do Not Improve Function or Reduce Fibrosis in a Chronic Liver Disease Model. Clin. Transplant. 2011;25:54–60. doi: 10.1111/j.1399-0012.2009.01191.x. PubMed DOI
Brusilovskaya K., Königshofer P., Lampach D., Szodl A., Supper P., Bauer D., Beer A., Stift J., Timelthaler G., Oberhuber G., et al. Soluble Guanylyl Cyclase Stimulation and Phosphodiesterase-5 Inhibition Improve Portal Hypertension and Reduce Liver Fibrosis in Bile Duct–ligated Rats. United Eur. Gastroenterol. J. 2020;8:1174–1185. doi: 10.1177/2050640620944140. PubMed DOI PMC
Denga T.M., Gunter S., Fourie S., le Roux R., Manilall A., Millen A.M.E., Mokotedi L. Interleukin-6 Blockers Improve Inflammation-Induced Lipid Metabolism Impairments but Induce Liver Fibrosis in Collagen-Induced Arthritis. Endocr. Metab. Immune Disord. Drug Targets. 2023;23:548–557. doi: 10.2174/1871530323666221017153157. PubMed DOI
Amin A., Mahmoud-Ghoneim D. Texture Analysis of Liver Fibrosis Microscopic Images: A Study on the Effect of Biomarkers. Acta Biochim. Biophys. Sin. 2011;43:193–203. doi: 10.1093/abbs/gmq129. PubMed DOI
French S.W., Miyamoto K., Wong K., Jui L., Briere L. Role of the Ito Cell in Liver Parenchymal Fibrosis in Rats Fed Alcohol and a High Fat-Low Protein Diet. Am. J. Pathol. 1988;132:73–85. PubMed PMC
Wilczynski E., Sasson E., Eliav U., Navon G., Nevo U. Quantitative Magnetization EXchange MRI Measurement of Liver Fibrosis Model in Rodents. J. Magn. Reson. Imaging. 2023;57:285. doi: 10.1002/jmri.28228. PubMed DOI PMC
Setyaningsih W.A.W., Sari D.C.R., Romi M.M., Arfian N. Liver Fibrosis Associated with Adipose Tissue and Liver Inflammation in an Obesity Model. Med. J. Malaysia. 2021;76:304–310. PubMed
Farrar C.T., DePeralta D.K., Day H., Rietz T.A., Wei L., Lauwers G.Y., Keil B., Subramaniam A., Sinskey A.J., Tanabe K.K., et al. 3D Molecular MR Imaging of Liver Fibrosis and Response to Rapamycin Therapy in a Bile Duct Ligation Rat Model. J. Hepatol. 2015;63:689–696. doi: 10.1016/j.jhep.2015.04.029. PubMed DOI PMC
Gu K., Zhao J.-D., Ren Z.-G., Ma N.-Y., Lai S.-T., Wang J., Liu J., Jiang G.-L. A Natural Process of Cirrhosis Resolution and Deceleration of Liver Regeneration after Thioacetamide Withdrawal in a Rat Model. Mol. Biol. Rep. 2011;38:1687–1696. doi: 10.1007/s11033-010-0281-1. PubMed DOI
Hernández-Ortega L.D., Alcántar-Díaz B.E., Ruiz-Corro L.A., Sandoval-Rodriguez A., Bueno-Topete M., Armendariz-Borunda J., Salazar-Montes A.M. Quercetin Improves Hepatic Fibrosis Reducing Hepatic Stellate Cells and Regulating Pro-Fibrogenic/Anti-Fibrogenic Molecules Balance. J. Gastroenterol. Hepatol. 2012;27:1865–1872. doi: 10.1111/j.1440-1746.2012.07262.x. PubMed DOI
Liu F., Zhang J., Qian J., Wu G., Ma Z. Emodin Alleviates CCl4-induced Liver Fibrosis by Suppressing Epithelial-mesenchymal Transition and Transforming Growth Factor-β1 in Rats. Mol. Med. Rep. 2018;18:3262–3270. doi: 10.3892/mmr.2018.9324. PubMed DOI PMC
Ma Z.-G., Lv X.-D., Zhan L.-L., Chen L., Zou Q.-Y., Xiang J.-Q., Qin J.-L., Zhang W.-W., Zeng Z.-J., Jin H., et al. Human Urokinase-Type Plasminogen Activator Gene-Modified Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Liver Fibrosis in Rats by down-Regulating the Wnt Signaling Pathway. World J. Gastroenterol. 2016;22:2092–2103. doi: 10.3748/wjg.v22.i6.2092. PubMed DOI PMC
Armitage P., Berry G., Matthews J.N.S. Statistical Methods in Medical Research. Wiley; Hoboken, NJ, USA: 2002.
Zhang C.-G., Zhang B., Deng W.-S., Duan M., Chen W., Wu Z.-Y. Role of Estrogen Receptor β Selective Agonist in Ameliorating Portal Hypertension in Rats with CCl4-Induced Liver Cirrhosis. World J. Gastroenterol. 2016;22:4484–4500. doi: 10.3748/wjg.v22.i18.4484. PubMed DOI PMC
Knorr A., Hirth-Dietrich C., Alonso-Alija C., Härter M., Hahn M., Keim Y., Wunder F., Stasch J.-P. Nitric Oxide-Independent Activation of Soluble Guanylate Cyclase by BAY 60-2770 in Experimental Liver Fibrosis. Arzneimittelforschung. 2008;58:71–80. doi: 10.1055/s-0031-1296471. PubMed DOI
Vassiliadis E., Vang Larsen D., Clausen R.E., Veidal S.S., Barascuk N., Larsen L., Simonsen H., Silvestre T.S., Hansen C., Overgaard T., et al. Measurement of CO3-610, a Potential Liver Biomarker Derived from Matrix Metalloproteinase-9 Degradation of Collagen Type III, in a Rat Model of Reversible Carbon-Tetrachloride-Induced Fibrosis. Biomark. Insights. 2011;6:BMI.S6347. doi: 10.4137/BMI.S6347. PubMed DOI PMC
Aboulmagd Y.M., El-Bahy A.A.Z., Menze E.T., Azab S.S., El-Demerdash E. Role of Linagliptin in Preventing the Pathological Progression of Hepatic Fibrosis in High Fat Diet and Streptozotocin-Induced Diabetic Obese Rats. Eur. J. Pharmacol. 2020;881:173224. doi: 10.1016/j.ejphar.2020.173224. PubMed DOI
Atta H., El-Rehany M., Hammam O., Abdel-Ghany H., Ramzy M., Roderfeld M., Roeb E., Al-Hendy A., Raheim S.A., Allam H., et al. Mutant MMP-9 and HGF Gene Transfer Enhance Resolution of CCl4-Induced Liver Fibrosis in Rats: Role of ASH1 and EZH2 Methyltransferases Repression. PLoS ONE. 2014;9:e112384. doi: 10.1371/journal.pone.0112384. PubMed DOI PMC
Luetkens J.A., Klein S., Träber F., Block W., Schmeel F.C., Sprinkart A.M., Kuetting D.L.R., Uschner F.E., Schierwagen R., Thomas D., et al. Quantification of Liver Fibrosis: Extracellular Volume Fraction Using an MRI Bolus-Only Technique in a Rat Animal Model. Eur. Radiol. Exp. 2019;3:22. doi: 10.1186/s41747-019-0100-y. PubMed DOI PMC
Nithyananthan S., Thirunavukkarasu C. Arsenic Trioxide, a Cancer Chemo Drug Hampers Fibrotic Liver Regeneration by Interrupting Oxidative Stress Rekindling and Stellate Cell Rejuvenation. J. Cell. Physiol. 2020;235:1222–1234. doi: 10.1002/jcp.29037. PubMed DOI
Wang Q., Wen R., Lin Q., Wang N., Lu P., Zhu X. Wogonoside Shows Antifibrotic Effects in an Experimental Regression Model of Hepatic Fibrosis. Dig. Dis. Sci. 2015;60:3329–3339. doi: 10.1007/s10620-015-3751-4. PubMed DOI
Yin K., Li X., Luo X., Sha Y., Gong P., Gu J., Tan R. Hepatoprotective Effect and Potential Mechanism of Aqueous Extract from Phyllanthus Emblica on Carbon-Tetrachloride-Induced Liver Fibrosis in Rats. Evid. Based Complement. Alternat. Med. 2021;2021:e5345821. doi: 10.1155/2021/5345821. PubMed DOI PMC
Mazhari S., Gitiara A., Baghaei K., Hatami B., Rad R.E., Asadirad A., Joharchi K., Tokhanbigli S., Hashemi S.M., Łos M.J., et al. Therapeutic Potential of Bone Marrow-Derived Mesenchymal Stem Cells and Imatinib in a Rat Model of Liver Fibrosis. Eur. J. Pharmacol. 2020;882:173263. doi: 10.1016/j.ejphar.2020.173263. PubMed DOI
Shaker M.E., Eisa N.H., Elgaml A., El-Mesery A., El-Shafey M., El-Dosoky M., El-Mowafy M., El-Mesery M. Ingestion of Mannose Ameliorates Thioacetamide-Induced Intrahepatic Oxidative Stress, Inflammation and Fibrosis in Rats. Life Sci. 2021;286:120040. doi: 10.1016/j.lfs.2021.120040. PubMed DOI
Aljobaily N., Viereckl M.J., Hydock D.S., Aljobaily H., Wu T.-Y., Busekrus R., Jones B., Alberson J., Han Y. Creatine Alleviates Doxorubicin-Induced Liver Damage by Inhibiting Liver Fibrosis, Inflammation, Oxidative Stress, and Cellular Senescence. Nutrients. 2021;13:41. doi: 10.3390/nu13010041. PubMed DOI PMC
Beaussier M., Wendum D., Schiffer E., Dumont S., Rey C., Lienhart A., Housset C. Prominent Contribution of Portal Mesenchymal Cells to Liver Fibrosis in Ischemic and Obstructive Cholestatic Injuries. Lab. Investig. 2007;87:292–303. doi: 10.1038/labinvest.3700513. PubMed DOI
Eissa L.A., Kenawy H.I., El-Karef A., Elsherbiny N.M., El-Mihi K.A. Antioxidant and Anti-Inflammatory Activities of Berberine Attenuate Hepatic Fibrosis Induced by Thioacetamide Injection in Rats. Chem. Biol. Interact. 2018;294:91–100. doi: 10.1016/j.cbi.2018.08.016. PubMed DOI
El-Mihi K.A., Kenawy H.I., El-Karef A., Elsherbiny N.M., Eissa L.A. Naringin Attenuates Thioacetamide-Induced Liver Fibrosis in Rats through Modulation of the PI3K/Akt Pathway. Life Sci. 2017;187:50–57. doi: 10.1016/j.lfs.2017.08.019. PubMed DOI
Escobedo G., Arjona-Román J.L., Meléndez-Pérez R., Suárez-Álvarez K., Guzmán C., Aguirre-García J., Gutiérrez-Reyes G., Vivas O., Varela-Fascinetto G., Rodríguez-Romero A., et al. Liver Exhibits Thermal Variations According to the Stage of Fibrosis Progression: A Novel Use of Modulated-Differential Scanning Calorimetry for Research in Hepatology. Hepatol. Res. 2013;43:785–794. doi: 10.1111/hepr.12026. PubMed DOI
Farrar C.T., Gale E.M., Kennan R., Ramsay I., Masia R., Arora G., Looby K., Wei L., Kalpathy-Cramer J., Bunzel M.M., et al. CM-101: Type I Collagen–targeted MR Imaging Probe for Detection of Liver Fibrosis. Radiology. 2018;287:581–589. doi: 10.1148/radiol.2017170595. PubMed DOI PMC
Feng S., Tong H., Gao J.-H., Tang S.-H., Yang W.-J., Wang G.-M., Zhou H.-Y., Wen S.-L. Anti-inflammation Treatment for Protection of Hepatocytes and Amelioration of Hepatic Fibrosis in Rats. Exp. Ther. Med. 2021;22:1213. doi: 10.3892/etm.2021.10647. PubMed DOI PMC
Guo X.-L., Liang B., Wang X.-W., Fan F.-G., Jin J., Lan R., Yang J.-H., Wang X.-C., Jin L., Cao Q. Glycyrrhizic Acid Attenuates CCl4-Induced Hepatocyte Apoptosis in Rats via a P53-Mediated Pathway. World J. Gastroenterol. 2013;19:3781–3791. doi: 10.3748/wjg.v19.i24.3781. PubMed DOI PMC
Huang G.-R., Wei S.-J., Huang Y.-Q., Xing W., Wang L.-Y., Liang L.-L. Mechanism of Combined Use of Vitamin D and Puerarin in Anti-Hepatic Fibrosis by Regulating the Wnt/β-Catenin Signalling Pathway. World J. Gastroenterol. 2018;24:4178–4185. doi: 10.3748/wjg.v24.i36.4178. PubMed DOI PMC
Kim J.K., Lee J.I., Paik Y.-H., Yun C.-O., Chang H.Y., Lee S.Y., Lee K.S. A Single Adenovirus-Mediated Relaxin Delivery Attenuates Established Liver Fibrosis in Rats. J. Gene Med. 2016;18:16–26. doi: 10.1002/jgm.2872. PubMed DOI
Li C.-H., Pan L.-H., Yang Z.-W., Li C.-Y., Xu W.-X. Preventive Effect of Qianggan-Rongxian Decoction on Rat Liver Fibrosis. World J. Gastroenterol. 2008;14:3569–3573. doi: 10.3748/wjg.14.3569. PubMed DOI PMC
Li L., Li H., Zhang Z., Zheng J., Shi Y., Liu J., Cao Y., Yuan X., Chu Y. Recombinant Truncated TGF-β Receptor II Attenuates Carbon Tetrachloride-induced Epithelial-mesenchymal Transition and Liver Fibrosis in Rats. Mol. Med. Rep. 2018;17:315–321. doi: 10.3892/mmr.2017.7845. PubMed DOI
Luetkens J.A., Klein S., Träber F., Schmeel F.C., Sprinkart A.M., Kuetting D.L.R., Block W., Uschner F.E., Schierwagen R., Hittatiya K., et al. Quantification of Liver Fibrosis at T1 and T2 Mapping with Extracellular Volume Fraction MRI: Preclinical Results. Radiology. 2018;288:748–754. doi: 10.1148/radiol.2018180051. PubMed DOI
Lv X.-H., Zhou L.-P., Liu D.-P., Wang Y., Wang B.-Y., Fu B.-Y., Song M., Liu C.-R. Traditional Chinese Medicine Kang Xian Fu Fang I Is Effective for Prophylaxis and Treatment of Alcoholic Liver Disease in Rats. Hepatobiliary Pancreat. Dis. Int. 2007;6:182–187. PubMed
Nakagami H., Shimamura M., Miyake T., Shimosato T., Minobe N., Moritani T., Kiomy Osako M., Nakagami F., Koriyama H., Kyutoku M., et al. Nifedipine Prevents Hepatic Fibrosis in a Non-Alcoholic Steatohepatitis Model Induced by an L-Methionine-and Choline-Deficient Diet. Mol. Med. Rep. 2012;5:37–40. doi: 10.3892/mmr.2011.594. PubMed DOI
Okada Y., Yamaguchi K., Nakajima T., Nishikawa T., Jo M., Mitsumoto Y., Kimura H., Nishimura T., Tochiki N., Yasui K., et al. Rosuvastatin Ameliorates High-Fat and High-Cholesterol Diet-Induced Nonalcoholic Steatohepatitis in Rats. Liver Int. 2013;33:301–311. doi: 10.1111/liv.12033. PubMed DOI
Paish H.L., Reed L.H., Brown H., Bryan M.C., Govaere O., Leslie J., Barksby B.S., Garcia Macia M., Watson A., Xu X., et al. A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision-Cut Liver Slices. Hepatology. 2019;70:1377–1391. doi: 10.1002/hep.30651. PubMed DOI PMC
Rengasamy M., Singh G., Fakharuzi N.A., Balasubramanian S., Swamynathan P., Thej C., Sasidharan G., Gupta P.K., Das A.K., Rahman A.Z.A., et al. Transplantation of Human Bone Marrow Mesenchymal Stromal Cells Reduces Liver Fibrosis More Effectively than Wharton’s Jelly Mesenchymal Stromal Cells. Stem Cell Res. Ther. 2017;8:143. doi: 10.1186/s13287-017-0595-1. PubMed DOI PMC
Romualdo G.R., Grassi T.F., Goto R.L., Tablas M.B., Bidinotto L.T., Fernandes A.A.H., Cogliati B., Barbisan L.F. An Integrative Analysis of Chemically-Induced Cirrhosis-Associated Hepatocarcinogenesis: Histological, Biochemical and Molecular Features. Toxicol. Lett. 2017;281:84–94. doi: 10.1016/j.toxlet.2017.09.015. PubMed DOI
Schwabl P., Hambruch E., Budas G.R., Supper P., Burnet M., Liles J.T., Birkel M., Brusilovskaya K., Königshofer P., Peck-Radosavljevic M., et al. The Non-Steroidal FXR Agonist Cilofexor Improves Portal Hypertension and Reduces Hepatic Fibrosis in a Rat NASH Model. Biomedicines. 2021;9:60. doi: 10.3390/biomedicines9010060. PubMed DOI PMC
Shaker M.E., Zalata K.R., Mehal W.Z., Shiha G.E., Ibrahim T.M. Comparison of Imatinib, Nilotinib and Silymarin in the Treatment of Carbon Tetrachloride-Induced Hepatic Oxidative Stress, Injury and Fibrosis. Toxicol. Appl. Pharmacol. 2011;252:165–175. doi: 10.1016/j.taap.2011.02.004. PubMed DOI PMC
Shin S.K., Kwon O.S., Lee J.J., Park Y.H., Choi C.S., Jeong S.H., Choi D.J., Kim Y.S., Kim J.H. Effect of Rifaximin on Hepatic Fibrosis in Bile Duct-Ligated Rat Model. Korean J. Gastroenterol. 2017;70:239–246. doi: 10.4166/kjg.2017.70.5.239. PubMed DOI
Shin G.-M., Koppula S., Chae Y.-J., Kim H.-S., Lee J.-D., Kim M.-K., Song M. Anti-Hepatofibrosis Effect of Allium Senescens in Activated Hepatic Stellate Cells and Thioacetamide-Induced Fibrosis Rat Model. Pharm. Biol. 2018;56:632–642. doi: 10.1080/13880209.2018.1529801. PubMed DOI PMC
Syed A.A., Reza M.I., Shafiq M., Kumariya S., Singh P., Husain A., Hanif K., Gayen J.R. Naringin Ameliorates Type 2 Diabetes Mellitus-Induced Steatohepatitis by Inhibiting RAGE/NF-ΚB Mediated Mitochondrial Apoptosis. Life Sci. 2020;257:118118. doi: 10.1016/j.lfs.2020.118118. PubMed DOI
Tian H., Liu L., Li Z., Liu W., Sun Z., Xu Y., Wang S., Liang C., Hai Y., Feng Q., et al. Chinese Medicine CGA Formula Ameliorates Liver Fibrosis Induced by Carbon Tetrachloride Involving Inhibition of Hepatic Apoptosis in Rats. J. Ethnopharmacol. 2019;232:227–235. doi: 10.1016/j.jep.2018.11.027. PubMed DOI
Trebicka J., Hennenberg M., Odenthal M., Shir K., Klein S., Granzow M., Vogt A., Dienes H.-P., Lammert F., Reichen J., et al. Atorvastatin Attenuates Hepatic Fibrosis in Rats after Bile Duct Ligation via Decreased Turnover of Hepatic Stellate Cells. J. Hepatol. 2010;53:702–712. doi: 10.1016/j.jhep.2010.04.025. PubMed DOI
Xiao J., Ho C.T., Liong E.C., Nanji A.A., Leung T.M., Lau T.Y.H., Fung M.L., Tipoe G.L. Epigallocatechin Gallate Attenuates Fibrosis, Oxidative Stress, and Inflammation in Non-Alcoholic Fatty Liver Disease Rat Model through TGF/SMAD, PI3 K/Akt/FoxO1, and NF-Kappa B Pathways. Eur. J. Nutr. 2014;53:187–199. doi: 10.1007/s00394-013-0516-8. PubMed DOI
Xie Y., Song T., Huo M., Zhang Y., Zhang Y.-Y., Ma Z.-H., Wang N., Zhang J.-P., Chu L. Fasudil Alleviates Hepatic Fibrosis in Type 1 Diabetic Rats: Involvement of the Inflammation and RhoA/ROCK Pathway. Eur. Rev. Med. Pharmacol. Sci. 2018;22:5665–5677. doi: 10.26355/eurrev_201809_15834. PubMed DOI
Yu J., Hao G., Wang D., Liu J., Dong X., Sun Y., Pan Q., Li Y., Shi X., Li L., et al. Therapeutic Effect and Location of GFP-Labeled Placental Mesenchymal Stem Cells on Hepatic Fibrosis in Rats. Stem Cells Int. 2017;2017:e1798260. doi: 10.1155/2017/1798260. PubMed DOI PMC
Zhang Y., Liu P., Gao X., Qian W., Xu K. RAAV2-TGF-Β3 Decreases Collagen Synthesis and Deposition in the Liver of Experimental Hepatic Fibrosis Rat. Dig. Dis. Sci. 2010;55:2821–2830. doi: 10.1007/s10620-009-1119-3. PubMed DOI
Wang Y., Zhao L., Jiao F.-Z., Zhang W.-B., Chen Q., Gong Z.-J. Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Liver Fibrosis by Suppressing the Transforming Growth Factor-Β1 Signal Pathway. Hepatobiliary Pancreat. Dis. Int. 2018;17:423–429. doi: 10.1016/j.hbpd.2018.09.013. PubMed DOI
Chen X.-F., Ji S. Sorafenib Attenuates Fibrotic Hepatic Injury Through Mediating Lysine Crotonylation. Drug Des. Devel. Ther. 2022;16:2133–2144. doi: 10.2147/DDDT.S368306. PubMed DOI PMC
El-Mancy E.M., Elsherbini D.M.A., Al-Serwi R.H., El-Sherbiny M., Ahmed Shaker G., Abdel-Moneim A.-M.H., Enan E.T., Elsherbiny N.M. α-Lipoic Acid Protects against Cyclosporine A-Induced Hepatic Toxicity in Rats: Effect on Oxidative Stress, Inflammation, and Apoptosis. Toxics. 2022;10:442. doi: 10.3390/toxics10080442. PubMed DOI PMC
Jones A.K., Chen H., Ng K.J., Villalona J., McHugh M., Zeveleva S., Wilks J., Brilisauer K., Bretschneider T., Qian H.S., et al. Soluble Guanylyl Cyclase Activator BI 685509 Reduces Portal Hypertension and Portosystemic Shunting in a Rat Thioacetamide-Induced Cirrhosis Model. J. Pharmacol. Exp. Ther. 2023;386:70–79. doi: 10.1124/jpet.122.001532. PubMed DOI
Ogaly H.A., Aldulmani S.A.A., Al-Zahrani F.A.M., Abd-Elsalam R.M. D-Carvone Attenuates CCl4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-ß 1/SMAD3 Signaling Pathway. Biology. 2022;11:739. doi: 10.3390/biology11050739. PubMed DOI PMC
Qin L., Wang Y., Liang Y., Li Q., Xie X., Zhang H. Astragaloside IV Alleviates Atorvastatin-Induced Hepatotoxicity via AMPK/SIRT1 Pathway. Pharmacology. 2023;108:74–82. doi: 10.1159/000527231. PubMed DOI
Zaghloul R.A., Zaghloul A.M., El-Kashef D.H. Hepatoprotective Effect of Baicalin against Thioacetamide-Induced Cirrhosis in Rats: Targeting NOX4/NF-ΚB/NLRP3 Inflammasome Signaling Pathways. Life Sci. 2022;295:120410. doi: 10.1016/j.lfs.2022.120410. PubMed DOI
Zhang B., Wu F., Li P., Li H. ARRDC3 Inhibits Liver Fibrosis and Epithelial-to-Mesenchymal Transition via the ITGB4/PI3K/Akt Signaling Pathway. Immunopharmacol. Immunotoxicol. 2023;45:160–171. doi: 10.1080/08923973.2022.2128369. PubMed DOI
Asgharzadeh F., Bargi R., Beheshti F., Hosseini M., Farzadnia M., Khazaei M. Thymoquinone Restores Liver Fibrosis and Improves Oxidative Stress Status in a Lipopolysaccharide-Induced Inflammation Model in Rats. Avicenna J. Phytomed. 2017;7:502–510. PubMed PMC
Marcos R., Monteiro R.A., Rocha E. The Use of Design-Based Stereology to Evaluate Volumes and Numbers in the Liver: A Review with Practical Guidelines. J. Anat. 2012;220:303–317. doi: 10.1111/j.1469-7580.2012.01475.x. PubMed DOI PMC
Hung K.-S., Lee T.-H., Chou W.-Y., Wu C.-L., Cho C.-L., Lu C.-N., Jawan B., Wang C.-H. Interleukin-10 Gene Therapy Reverses Thioacetamide-Induced Liver Fibrosis in Mice. Biochem. Biophys. Res. Commun. 2005;336:324–331. doi: 10.1016/j.bbrc.2005.08.085. PubMed DOI
Erstad D.J., Farrar C.T., Ghoshal S., Masia R., Ferreira D.S., Chen Y.-C.I., Choi J.-K., Wei L., Waghorn P.A., Rotile N.J., et al. Molecular Magnetic Resonance Imaging Accurately Measures the Antifibrotic Effect of EDP-305, a Novel Farnesoid X Receptor Agonist. Hepatol. Commun. 2018;2:821–835. doi: 10.1002/hep4.1193. PubMed DOI PMC
Zhao H., Li H., Feng Y., Zhang Y., Yuan F., Zhang J., Ren H., Jia L. Mycelium Polysaccharides from Termitomyces Albuminosus Attenuate CCl4-Induced Chronic Liver Injury Via Inhibiting TGFβ1/Smad3 and NF-ΚB Signal Pathways. Int. J. Mol. Sci. 2019;20:4872. doi: 10.3390/ijms20194872. PubMed DOI PMC
Huang P., Zhou M., Cheng S., Hu Y., Gao M., Ma Y., Limpanont Y., Zhou H., Dekumyoy P., Cheng Y., et al. Myricetin Possesses Anthelmintic Activity and Attenuates Hepatic Fibrosis via Modulating TGFβ1 and Akt Signaling and Shifting Th1/Th2 Balance in Schistosoma Japonicum-Infected Mice. Front. Immunol. 2020;11:593. doi: 10.3389/fimmu.2020.00593. PubMed DOI PMC
Masubuchi S., Takai S., Jin D., Tashiro K., Komeda K., Li Z.-L., Otsuki Y., Okamura H., Hayashi M., Uchiyama K. Chymase Inhibitor Ameliorates Hepatic Steatosis and Fibrosis on Established Non-Alcoholic Steatohepatitis in Hamsters Fed a Methionine- and Choline-Deficient Diet. Hepatol. Res. 2013;43:970–978. doi: 10.1111/hepr.12042. PubMed DOI
Serna-Salas S.A., Navarro-González Y.D., Martínez-Hernández S.L., Barba-Gallardo L.F., Sánchez-Alemán E., Aldaba-Muruato L.R., Macías-Pérez J.R., Ventura-Juárez J., Muñoz-Ortega M.H. Doxazosin and Carvedilol Treatment Improves Hepatic Regeneration in a Hamster Model of Cirrhosis. BioMed Res. Int. 2018;2018:4706976. doi: 10.1155/2018/4706976. PubMed DOI PMC
Zou W.-L., Yang Z., Zang Y.-J., Li D.-J., Liang Z.-P., Shen Z.-Y. Inhibitory Effects of Prostaglandin E1 on Activation of Hepatic Stellate Cells in Rabbits with Schistosomiasis. Hepatobiliary Pancreat. Dis. Int. HBPD INT. 2007;6:176–181. PubMed
Wang W., Zhao C., Zhou J., Zhen Z., Wang Y., Shen C. Simvastatin Ameliorates Liver Fibrosis via Mediating Nitric Oxide Synthase in Rats with Non-Alcoholic Steatohepatitis-Related Liver Fibrosis. PLoS ONE. 2013;8:e76538. doi: 10.1371/journal.pone.0076538. PubMed DOI PMC
Yarpuzlu B., Ayyildiz M., Tok O.E., Aktas R.G., Basdogan C. Correlation between the Mechanical and Histological Properties of Liver Tissue. J. Mech. Behav. Biomed. Mater. 2014;29:403–416. doi: 10.1016/j.jmbbm.2013.09.016. PubMed DOI
Atmaca H.T., Gazyagci A.N., Terzi O.S., Sumer T. Role of Stellate Cells in Hepatic Echinococcosis in Cattle. J. Parasit. Dis. Off. Org. Indian Soc. Parasitol. 2019;43:576–582. doi: 10.1007/s12639-019-01129-z. PubMed DOI PMC
Clapper J.R., Hendricks M.D., Gu G., Wittmer C., Dolman C.S., Herich J., Athanacio J., Villescaz C., Ghosh S.S., Heilig J.S., et al. Diet-Induced Mouse Model of Fatty Liver Disease and Nonalcoholic Steatohepatitis Reflecting Clinical Disease Progression and Methods of Assessment. Am. J. Physiol.-Gastrointest. Liver Physiol. 2013;305:G483–G495. doi: 10.1152/ajpgi.00079.2013. PubMed DOI
Fallowfield J.A., Hayden A.L., Snowdon V.K., Aucott R.L., Stutchfield B.M., Mole D.J., Pellicoro A., Gordon-Walker T.T., Henke A., Schrader J., et al. Relaxin Modulates Human and Rat Hepatic Myofibroblast Function and Ameliorates Portal Hypertension in Vivo. Hepatology. 2014;59:1492–1504. doi: 10.1002/hep.26627. PubMed DOI
Marcos R., Correia-Gomes C. Liver and Gender: Are There Differences in Fibrous Tissue before the Onset of Fibrosis? Hepatology. 2015;61:1093–1094. doi: 10.1002/hep.27336. PubMed DOI
Marcos R., Bragança B., Fontes-Sousa A.P. Image Analysis or Stereology. J. Histochem. Cytochem. 2015;63:734–736. doi: 10.1369/0022155415592180. PubMed DOI PMC
Hoy A.M., McDonald N., Lennen R.J., Milanesi M., Herlihy A.H., Kendall T.J., Mungall W., Gyngell M., Banerjee R., Janiczek R.L., et al. Non-Invasive Assessment of Liver Disease in Rats Using Multiparametric Magnetic Resonance Imaging: A Feasibility Study. Biol. Open. 2018;7:bio033910. doi: 10.1242/bio.033910. PubMed DOI PMC
Mik P., Tonar Z., Malečková A., Eberlová L., Liška V., Pálek R., Rosendorf J., Jiřík M., Mírka H., Králíčková M., et al. Distribution of Connective Tissue in the Male and Female Porcine Liver: Histological Mapping and Recommendations for Sampling. J. Comp. Pathol. 2018;162:1–13. doi: 10.1016/j.jcpa.2018.05.004. PubMed DOI
Bravo A.A., Sheth S.G., Chopra S. Liver Biopsy. N. Engl. J. Med. 2001;344:495–500. doi: 10.1056/NEJM200102153440706. PubMed DOI
Goldstein N.S., Hastah F., Galan M.V., Gordon S.C. Fibrosis Heterogeneity in Nonalcoholic Steatohepatitis and Hepatitis C Virus Needle Core Biopsy Specimens. Am. J. Clin. Pathol. 2005;123:382–387. doi: 10.1309/EY72-F1EN-9XCB-1KXX. PubMed DOI
Guido M., Rugge M. Liver Biopsy Sampling in Chronic Viral Hepatitis. Semin. Liver Dis. 2004;24:89–97. doi: 10.1055/s-2004-823103. PubMed DOI
Bedossa P., Dargère D., Paradis V. Sampling Variability of Liver Fibrosis in Chronic Hepatitis C. Hepatology. 2003;38:1449–1457. doi: 10.1016/j.hep.2003.09.022. PubMed DOI
Merriman R.B., Ferrell L.D., Patti M.G., Weston S.R., Pabst M.S., Aouizerat B.E., Bass N.M. Correlation of Paired Liver Biopsies in Morbidly Obese Patients with Suspected Nonalcoholic Fatty Liver Disease. Hepatology. 2006;44:874–880. doi: 10.1002/hep.21346. PubMed DOI
Ratziu V., Charlotte F., Heurtier A., Gombert S., Giral P., Bruckert E., Grimaldi A., Capron F., Poynard T. Sampling Variability of Liver Biopsy in Nonalcoholic Fatty Liver Disease. Gastroenterology. 2005;128:1898–1906. doi: 10.1053/j.gastro.2005.03.084. PubMed DOI
Regev A., Berho M., Jeffers L.J., Milikowski C., Molina E.G., Pyrsopoulos N.T., Feng Z.-Z., Reddy K.R., Schiff E.R. Sampling Error and Intraobserver Variation in Liver Biopsy in Patients with Chronic HCV Infection. Am. J. Gastroenterol. 2002;97:2614–2618. doi: 10.1111/j.1572-0241.2002.06038.x. PubMed DOI
Brunt E.M. Liver Biopsy Reliability in Clinical Trials: Thoughts from a Liver Pathologist. J. Hepatol. 2020;73:1310–1312. doi: 10.1016/j.jhep.2020.08.014. PubMed DOI
Forlano R., Mullish B.H., Maurice J.B., Thursz M.R., Goldin R.D., Manousou P. NAFLD: Time to Apply Quantitation in Liver Biopsies as Endpoints in Clinical Trials. J. Hepatol. 2021;74:241–242. doi: 10.1016/j.jhep.2020.08.025. PubMed DOI
Lubel J.S., Herath C.B., Tchongue J., Grace J., Jia Z., Spencer K., Casley D., Crowley P., Sievert W., Burrell L.M., et al. Angiotensin-(1–7), an Alternative Metabolite of the Renin–angiotensin System, Is up-Regulated in Human Liver Disease and Has Antifibrotic Activity in the Bile-Duct-Ligated Rat. Clin. Sci. 2009;117:375–386. doi: 10.1042/CS20080647. PubMed DOI
Calvaruso V., Di Marco V., Bavetta M.G., Cabibi D., Conte E., Bronte F., Simone F., Burroughs A.K., Craxì A. Quantification of Fibrosis by Collagen Proportionate Area Predicts Hepatic Decompensation in Hepatitis C Cirrhosis. Aliment. Pharmacol. Ther. 2015;41:477–486. doi: 10.1111/apt.13051. PubMed DOI
Forlano R., Mullish B.H., Giannakeas N., Maurice J.B., Angkathunyakul N., Lloyd J., Tzallas A.T., Tsipouras M., Yee M., Thursz M.R., et al. High-Throughput, Machine Learning-Based Quantification of Steatosis, Inflammation, Ballooning, and Fibrosis in Biopsies From Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2019;18:2081–2090.e9. doi: 10.1016/j.cgh.2019.12.025. PubMed DOI PMC
Jung K.H., Shin H.P., Lee S., Lim Y.J., Hwang S.H., Han H., Park H.K., Chung J.-H., Yim S.-V. Effect of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Cirrhotic Rat Model. Liver Int. 2009;29:898–909. doi: 10.1111/j.1478-3231.2009.02031.x. PubMed DOI
Tschanz S., Schneider J.P., Knudsen L. Design-Based Stereology: Planning, Volumetry and Sampling Are Crucial Steps for a Successful Study. Ann. Anat. Anat. Anz. 2014;196:3–11. doi: 10.1016/j.aanat.2013.04.011. PubMed DOI
Junatas K.L., Tonar Z., Kubíková T., Liška V., Pálek R., Mik P., Králíčková M., Witter K. Stereological Analysis of Size and Density of Hepatocytes in the Porcine Liver. J. Anat. 2017;230:575–588. doi: 10.1111/joa.12585. PubMed DOI PMC
Gundersen H.J.G., Jensen E.B.V., Kiêu K., Nielsen J. The Efficiency of Systematic Sampling in Stereology—Reconsidered. J. Microsc. 1999;193:199–211. doi: 10.1046/j.1365-2818.1999.00457.x. PubMed DOI
Ahn C., Heo M., Zhang S. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical Research. CRC Press; Boca Raton, FL, USA: 2014.
Vittinghoff E., Glidden D.V., Shiboski S.C., McCulloch C.E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Debnath T., Mallarpu C.S., Chelluri L.K. Development of Bioengineered Organ Using Biological Acellular Rat Liver Scaffold and Hepatocytes. Organogenesis. 2020;16:61–72. doi: 10.1080/15476278.2020.1742534. PubMed DOI PMC
Rojkind M., Giambrone M.-A., Biempica L. Collagen Types in Normal and Cirrhotic Liver. Gastroenterology. 1979;76:710–719. doi: 10.1016/S0016-5085(79)80170-5. PubMed DOI
Knodell R.G., Ishak K.G., Black W.C., Chen T.S., Craig R., Kaplowitz N., Kiernan T.W., Wollman J. Formulation and Application of a Numerical Scoring System for Assessing Histological Activity in Asymptomatic Chronic Active Hepatitis. Hepatology. 1981;1:431–435. doi: 10.1002/hep.1840010511. PubMed DOI
Scheuer P.J. Classification of Chronic Viral Hepatitis: A Need for Reassessment. J. Hepatol. 1991;13:372–374. doi: 10.1016/0168-8278(91)90084-O. PubMed DOI
Batts K.P., Ludwig J. Chronic Hepatitis. An Update on Terminology and Reporting. Am. J. Surg. Pathol. 1995;19:1409–1417. doi: 10.1097/00000478-199512000-00007. PubMed DOI
Ishak K., Baptista A., Bianchi L., Callea F., De Groote J., Gudat F., Denk H., Desmet V., Korb G., MacSween R.N. Histological Grading and Staging of Chronic Hepatitis. J. Hepatol. 1995;22:696–699. doi: 10.1016/0168-8278(95)80226-6. PubMed DOI
Bedossa P., Poynard T. An Algorithm for the Grading of Activity in Chronic Hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996;24:289–293. doi: 10.1002/hep.510240201. PubMed DOI
Kleiner D.E., Brunt E.M., Natta M.V., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.-C., Torbenson M.S., Unalp-Arida A., et al. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI