Experimental Investigation into the Influence of the Process Parameters of Wire Electric Discharge Machining Using Nimonic-263 Superalloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37570145
PubMed Central
PMC10420068
DOI
10.3390/ma16155440
PII: ma16155440
Knihovny.cz E-zdroje
- Klíčová slova
- Taguchi—grey approach, WEDM, kerf width, material removal rate, superalloy, surface roughness,
- Publikační typ
- časopisecké články MeSH
Nimonic alloy is difficult to machine using traditional metal cutting techniques because of the high cutting forces required, poor surface integrity, and tool wear. Wire electrical discharge machining (WEDM) is used in a number of sectors to precisely machine complex forms of nickel-based alloy in order to attempt to overcome these challenges and provide high-quality products. The Taguchi-based design of experiments is utilized in this study to conduct the tests and analyses. The gap voltage (GV), pulse-on time (Ton), pulse-off time (Toff), and wire feed (WF), are considered as the variable process factors. GRA is used for the WEDM process optimization for the Nimonic-263 superalloy, which has multiple performance qualities including the material removal rate (MRR), surface roughness (SR), and kerf width (KW). ANOVA analysis was conducted to determine the factors' importance and influence on the output variables. Multi objective optimization techniques were employed for assessing the machining performances of WEDM using GRA. The ideal input parameter combinations were determined to be a gap voltage (GV) of 40 V, a pulse-on time (Ton) of 8 µs, a pulse-off time (Toff) of 16 µs, and a wire feed (WF) of 4 m/min. A material removal rate of 8.238 mm3/min, surface roughness of 2.83 µm, and kerf width of 0.343 mm were obtained. The validation experiments conducted also demonstrated that the predicted and experimental values could accurately forecast the responses.
Zobrazit více v PubMed
Amitesh G., Jatinder K. An investigation into the machining characteristics of nimonic 80A using CNC wire-EDM. Int. J. Adv. Eng. Technol. 2012;3:170–174.
Singh B., Misra J.P. A Critical Review of Wire Electric Discharge Machining. DAAAM International; Vienna, Austria: 2016. pp. 249–266. DOI
Ho K.H., Newman S.T., Rahimifard S., Allen R.D. State of the art in wire electrical discharge machining (WEDM) Int. J. Mach. Tools Manuf. 2004;44:1247–1259. doi: 10.1016/j.ijmachtools.2004.04.017. DOI
Gnanavelbabu A., Saravanan P., Rajkumar K., Karthikeyan S., Baskaran R. ScienceDirect Optimization of WEDM Process Parameters on Multiple Responses in Cutting of Ti-6Al-4V. Mater. Today Proc. 2018;5:27072–27080. doi: 10.1016/j.matpr.2018.09.012. DOI
Spedding T.A., Wang Z.Q. Parametric optimization and surface characterization of wire electrical discharge machining process. Precis. Eng. 1997;20:5–15. doi: 10.1016/S0141-6359(97)00003-2. DOI
Singh B., Misra J.P. Empirical Modelling of Wear Ratio during WEDM of Nimonic 263. Mater. Today Proc. 2018;5:23612–23618. doi: 10.1016/j.matpr.2018.10.150. DOI
Asgar M.E., Singholi A.K.S. Analysis of control factors and surface integrity during wire-EDM of Inconel 718 alloy using T-GRA approach. Emit. Int. J. Eng. Technol. 2021;9:294–312. doi: 10.24003/emitter.v9i2.633. DOI
Kumar S., Ghoshal S.K., Arora P.K. Multi-variable optimization in die-sinking EDM process of AISI420 stainless steel. Mater. Manuf. Process. 2021;36:572–582. doi: 10.1080/10426914.2020.1843678. DOI
Patel T., Khanna N., Yadav S., Shah P., Sarikaya M., Singh D. Machinability analysis of nickel-based superalloy Nimonic 90: A comparison between wet and LCO 2 as a cryogenic coolant. Int. J. Adv. Manuf. Technol. 2021;113:3613–3628. doi: 10.1007/s00170-021-06793-1. DOI
Thejasree P., Binoj J.S., Manikandan N., Krishnamachary P.C., Raju R., Palanisamy D. Multi objective optimization of wire electrical discharge machining on Inconel 718 using Taguchi grey relational analysis. Mater. Today Proc. 2021;39:230–235. doi: 10.1016/j.matpr.2020.06.517. DOI
Rao M.S., Venkaiah N. Multi-response optimisation for MRR and Ra in WEDM process of nimonic-263 super alloy. Int. J. Mater. Prod. Technol. 2018;56:187–206. doi: 10.1504/IJMPT.2018.090813. DOI
Singh H., Kumar V., Kapoor J. Optimization of WEDM process parameters in machining Nimonic 75 alloy using brass wire. Multidiscip. Model. Mater. Struct. 2020;16:1189–1202. doi: 10.1108/MMMS-10-2019-0178. DOI
Senkathir, Samson R.M., Nirmal R., Ranjith R. Parametric optimization of wire-EDM machining of nimonic 80a using response surface methodology. IOP Conf. Ser. Mater. Sci. Eng. 2021;1130:012078. doi: 10.1088/1757-899X/1130/1/012078. DOI
Singh B., Misra J. Process Regulations and Mechanism of WEDM of Combustor Material. SAE Int. J. Aerosp. 2019;12:77–96. doi: 10.4271/01-12-01-0004. DOI
Sharma P., Chakradhar D., Narendranath S. Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application. Mater. Des. 2015;88:558–566. doi: 10.1016/j.matdes.2015.09.036. DOI
Singh B., Misra J.P. Modelling of surface characteristics of wire-electro discharge machined combustor material specimens. Mater. Res. Express. 2019;6:056549. doi: 10.1088/2053-1591/ab065e. DOI
Thirumalai R., Senthilkumaar J.S. Multi-criteria decision making in the selection of machining parameters for Inconel 718. J. Mech. Sci. Technol. 2013;27:1109–1116. doi: 10.1007/s12206-013-0215-7. DOI
Singh H., Kumar V., Kapoor J. Modeling of WEDM parameters and surface integrity characteristics in the machining of Nimonic75 alloy. Mater. Today Proc. 2020;28:1363–1371. doi: 10.1016/j.matpr.2020.04.801. DOI
Mouralova K., Benes L., Bednar J., Zahradnicek R., Prokes T., Fiala Z., Fries J. Precision machining of nimonic C 263 super alloyusing WEDM. Coatings. 2020;10:590. doi: 10.3390/coatings10060590. DOI
Singh B., Misra J.P. Empirical Modeling of Average Cutting Speed during WEDM of Gas Turbine Alloy. EDP Sci. 2018;221:01002. doi: 10.1051/matecconf/201822101002. DOI
Singh B., Misra J.P. Empirical modeling of cutting speed during WEDM of nimonic 263. J. Phys. Conf. Ser. 2019;1240:012035. doi: 10.1088/1742-6596/1240/1/012035. DOI
Vikasa, Roy A.K., Kumarb K. Effect and optimization of various machine process parameters on the MRR, over-cut and surface roughness in EDM for an EN41 material using grey-taguchi approach. Int. J. Appl. Eng. Res. 2014;9:8963–8966. doi: 10.1016/j.mspro.2014.07.049. DOI
Alias A., Abdullah B., Abbas N.M. WEDM: Influence of machine feed rate in machining Titanium Ti-6Al-4V using brass wire and constant current (4A) Procedia Eng. 2012;41:1812–1817. doi: 10.1016/j.proeng.2012.07.388. DOI
Bisaria H., Shandilya P. Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 superalloy. Mater. Manuf. Process. 2019;34:83–92. doi: 10.1080/10426914.2018.1532589. DOI
Mandal A., Dixit A.R., Chattopadhyaya S., Paramanik A., Hloch S., Królczyk G. Improvement of surface integrity of Nimonic C 263 super alloy produced by WEDM through various post-processing techniques. Int. J. Adv. Manuf. Technol. 2017;93:433–443. doi: 10.1007/s00170-017-9993-x. DOI
Patra D.R., Rout I.S., Sahoo M. Optimization of WEDM parameters using Taguchi method for higher material removal rate on EN31 steel. Int. J. Eng. Res. Appl. 2015;5:57–62.
Divya M., Sateesh N., Nookaraju B.C., Lakshmi A.A., Ram S. Multi performance optimisation of wire-cut EDM process parameters of Incoloy 800 alloy using grey relational analysis. Mater. Today Proc. 2021;44:2416–2420. doi: 10.1016/j.matpr.2020.12.464. DOI
Sheth M., Gajjar K., Jain A., Shah V., Patel H., Chaudhari R., Vora J. Advances in Mechanical Engineering: Select Proceedings of ICAME 2020. Springer; Singapore: 2021. Multi-objective optimization of inconel 718 using Combined approach of taguchi—Grey relational analysis; pp. 229–235.
Khawaja H., Moatamedi M. Selection of high performance alloy for gas turbine blade using multiphysics analysis. Int. J. Multiphys. 2014;8:91–100. doi: 10.1260/1750-9548.8.1.91. DOI
Smith S.A., West G.D., Chi K., Gamble W., Thomson R.C. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, October 22–25, 2013 Waikoloa, Hawaii, USA. ASM International; Novelty, OH, USA: 2010. pp. 110–126.
Shivade A.S., Shinde V.D. Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis. J. Ind. Eng. Int. 2014;10:149–162. doi: 10.1007/s40092-014-0081-7. DOI
Mouralova K., Polzer A., Benes L., Bednar J., Zahradnicek R., Prokes T., Fiala Z., Fries J. Machining of B1914 nickel-based superalloy using wire electrical discharge machining. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021;235:2141–2153. doi: 10.1177/09544089211031746. DOI
Saif M., Tiwari S. Investigation towards surface roughness & material removal rate in Wire-EDM of aluminium alloy 6061 and 5083 using Taguchi method. Mater. Today Proc. 2021;47:1040–1047.
Soota T., Rajput S.K. Optimization and measurement of kerf width and surface roughness of AISI 316L. Forces Mech. 2022;6:100071.
Ali M.Y., Banu A., Al Hazza M.H. Analysis of kerf accuracy in dry micro-wire EDM. Int. J. Adv. Manuf. Technol. 2020;111:597–608. doi: 10.1007/s00170-020-06095-y. DOI
Chaudhari R., Vora J., López de Lacalle L.N., Khanna S., Patel V.K., Ayesta I. Parametric optimization and effect of nano-graphene mixed dielectric fluid on performance of wire electrical discharge machining process of Ni55. 8Ti shape memory alloy. Materials. 2021;14:2533. doi: 10.3390/ma14102533. PubMed DOI PMC
Shastri R.K., Mohanty C.P. Sustainable Electrical Discharge Machining of Nimonic C263 Superalloy. Arab. J. Sci. Eng. 2021;46:7273–7293. doi: 10.1007/s13369-020-05211-0. DOI
Shastri R.K., Mohanty C.P. Machinability investigation on Nimonic C263 alloy in electric discharge machine. Mater. Today Proc. 2020;26:529–533. doi: 10.1016/j.matpr.2019.12.133. DOI
Mouralova K., Kovar J., Klakurkova L., Bednar J., Benes L., Zahradnicek R. Analysis of surface morphology and topography of pure aluminium machined using WEDM. Meas. J. Int. Meas. Confed. 2018;114:169–176. doi: 10.1016/j.measurement.2017.09.040. DOI
Nayak S.K., Patro J.K., Dewangan S., Gangopadhyay S. Multi-objective Optimization of Machining Parameters During Dry Turning of AISI 304 Austenitic Stainless Steel Using Grey Relational Analysis. Procedia Mater. Sci. 2014;6:701–708. doi: 10.1016/j.mspro.2014.07.086. DOI
Zhang D., Chen M., Wu S., Liu J., Amirkhanian S. Analysis of the relationships between waste cooking oil qualities and rejuvenated asphalt properties. Materials. 2017;10:508. doi: 10.3390/ma10050508. PubMed DOI PMC
Santosh S., Srivatsan S., Pandian R.V. Unravelling the effect of CO2 laser machining parameters on the surface and shape memory characteristics of CuAlFeMn quaternary shape memory alloy. Opt. Laser Technol. 2023;163:109306. doi: 10.1016/j.optlastec.2023.109306. DOI
Sivaprakasam P., Hariharan P. Optimization of process parameters of micro-WEDM process on inconel super alloy through response surface methodology. Int. J. Mech. Prod. Eng. Res. Dev. 2018;8:1001–1012.
Mandal K., Sarkar S., Mitra S., Bose D. Parametric analysis and GRA approach in WEDM of Al 7075 alloy. Mater. Today Proc. 2020;26:660–664. doi: 10.1016/j.matpr.2019.12.361. DOI
Xess P.A., Biswas S., Masanta M. Optimization of the EDM parameters on machining TI-6AL-4V alloy with multiple quality characteristics. Appl. Mech. Mater. 2014;619:89–93. doi: 10.4028/www.scientific.net/AMM.619.89. DOI
Singh M., Singh S. Multiple response optimization of ultrasonic assisted electric discharge Machining of Nimonic 75: A Taguchi-Grey relational analysis approach. Mater. Today Proc. 2021;45:4731–4736. doi: 10.1016/j.matpr.2021.01.173. DOI