Preparation of 6-Monohalo-β-cyclodextrin Derivatives with Selectively Methylated Rims via Diazonium Salts
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37576619
PubMed Central
PMC10413458
DOI
10.1021/acsomega.3c01950
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A series of 6-monohalo (Cl, Br, and I) β-cyclodextrin derivatives with various types of methylations were synthesized via a diazotization/nucleophilic displacement reaction from the corresponding methylated cyclodextrin amines. All four starting compounds (6A-amino-6A-deoxy derivatives of native β-CD, per-6-O-methyl-, per-2,3-O-methyl-, and per-2,3,6-O-methyl-β-CD) were found to have different reactivities under the same reaction conditions. Unsubstituted and fully per-O-methylated cyclodextrin amines undergo fast transformation, giving lower yields of the monohalogenated product. The selectively methylated cyclodextrin amines react remarkably slower and provide almost complete conversion into the desired monohalogenated compound. A pure product was, in several cases, successfully isolated with simple purification techniques (extraction and precipitation), allowing large-scale preparations. This new method opens the way for preparing poorly investigated monofunctionalized selectively methylated cyclodextrins.
Zobrazit více v PubMed
Del Valle E. M. M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. 10.1016/S0032-9592(03)00258-9. DOI
Szente L. Highly Soluble Cyclodextrin Derivatives: Chemistry, Properties, and Trends in Development. Adv. Drug Delivery Rev. 1999, 36, 17–28. 10.1016/S0169-409X(98)00092-1. PubMed DOI
Kasal P.; Jindřich J. Mono-6-Substituted Cyclodextrins—Synthesis and Applications. Molecules 2021, 26, 5065.10.3390/molecules26165065. PubMed DOI PMC
Faiz J. A.; Spencer N.; Pikramenou Z. Acetylenic Cyclodextrins for Multireceptor Architectures: Cups with Sticky Ends for the Formation of Extension Wires and Junctions. Org. Biomol. Chem. 2005, 3, 4239.10.1039/b508607h. PubMed DOI
Muderawan I. W.; Ong T. T.; Lee T. C.; Young D. J.; Ching C. B.; Ng S. C. A Reliable Synthesis of 2- and 6-Amino-β-Cyclodextrin and Permethylated-β-Cyclodextrin. Tetrahedron Lett. 2005, 46, 7905–7907. 10.1016/j.tetlet.2005.09.099. DOI
Wenz G. Influence of Intramolecular Hydrogen Bonds on the Binding Potential of Methylated β-Cyclodextrin Derivatives. Beilstein J. Org. Chem. 2012, 8, 1890–1895. 10.3762/bjoc.8.218. PubMed DOI PMC
Breslow R. Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design. Acc. Chem. Res. 1995, 28, 146–153. 10.1021/ar00051a008. DOI
Ogoshi T.; Harada A. Chemical Sensors Based on Cyclodextrin Derivatives. Sensors 2008, 8, 4961–4982. 10.3390/s8084961. PubMed DOI PMC
Khan A. R.; Forgo P.; Stine K. J.; D’Souza V. T. Methods for Selective Modifications of Cyclodextrins. Chem. Rev. 1998, 98, 1977–1996. 10.1021/cr970012b. PubMed DOI
Řezanka M. Synthesis of Substituted Cyclodextrins. Environ. Chem. Lett. 2019, 17, 49–63. 10.1007/s10311-018-0779-7. DOI
Varga E.; Benkovics G.; Darcsi A.; Várnai B.; Sohajda T.; Malanga M.; Béni S. Comparative Analysis of the Full Set of Methylated β-Cyclodextrins as Chiral Selectors in Capillary Electrophoresis. Electrophoresis 2019, 40, 2789–2798. 10.1002/elps.201900134. PubMed DOI
Chen Z.; Bradshaw J. S.; Lee M. L. A Convenient Synthesis of Mono-6-Hydroxy Permethylated β-Cyclodextrin via Tert-Butyldimethylsilylation. Tetrahedron Lett. 1996, 37, 6831–6834. 10.1016/0040-4039(96)01545-6. DOI
Lupescu N.; Ho C. K. Y.; Jia G.; Krepinsky J. J. Communication: A Convenient Synthesis of Per-O-Methylated 6-O-Monosubstituted ß-Cyclodextrins. J. Carbohydr. Chem. 1999, 18, 99–104. 10.1080/07328309908543982. DOI
Tanaka M.; Kawaguchi Y.; Niinae T.; Shono T. Preparation and Retention Behaviour of Chemically Bonded Methylated-Cyclodextrin Stationary Phases for Liquid Chromatography. J. Chromatogr. A 1984, 314, 193–200. 10.1016/S0021-9673(01)97733-7. DOI
Watanabe K.; Kitagishi H.; Kano K. Supramolecular Iron Porphyrin/Cyclodextrin Dimer Complex That Mimics the Functions of Hemoglobin and Methemoglobin. Angew. Chem., Int. Ed. 2013, 52, 6894–6897. 10.1002/anie.201302470. PubMed DOI
du Roizel B.; Baltaze J.-P.; Sinaÿ P. Diisobutylaluminum-Promoted Secondary Rim Selective de-O-Methylation of Permethylated Cyclodextrins. Tetrahedron Lett. 2002, 43, 2371–2373. 10.1016/S0040-4039(02)00274-5. DOI
Carofiglio T.; Cordioli M.; Fornasier R.; Jicsinszky L.; Tonellato U. Synthesis of 6I-Amino-6I-Deoxy-2I–VII,3I–VII-Tetradeca-O-Methyl-Cyclomaltoheptaose. Carbohydr. Res. 2004, 339, 1361–1366. 10.1016/j.carres.2004.03.007. PubMed DOI
Kaneda T.; Fujimoto T.; Goto J.; Asano K.; Yasufuku Y.; Jung J. H.; Hosono C.; Sakata Y. New Large-Scale Preparations of Versatile 6-O-Monotosyl and 6-Monohydroxy Permethylated α-, β-, and γ-Cyclodextrins. Chem. Lett. 2002, 31, 514–515. 10.1246/cl.2002.514. DOI
Lebedinskiy K.; Lobaz V.; Jindřich J. Preparation of β-Cyclodextrin-Based Dimers with Selectively Methylated Rims and Their Use for Solubilization of Tetracene. Beilstein J. Org. Chem. 2022, 18, 1596–1606. 10.3762/bjoc.18.170. PubMed DOI PMC
Mourer M.; Hapiot F.; Monflier E.; Menuel S. Click Chemistry as an Efficient Tool to Access β-Cyclodextrin Dimers. Tetrahedron 2008, 64, 7159–7163. 10.1016/j.tet.2008.05.095. DOI
Menuel S.; Porwanski S.; Marsura A. New Synthetic Approach to Per-O-Acetyl-Isocyanates, Isothiocyanates and Thioureas in the Disaccharide and Cyclodextrin Series. New J. Chem. 2006, 30, 603.10.1039/b600023a. DOI
Mo F.; Dong G.; Zhang Y.; Wang J. Recent Applications of Arene Diazonium Salts in Organic Synthesis. Org. Biomol. Chem. 2013, 11, 1582.10.1039/c3ob27366k. PubMed DOI
Filimonov V. D.; Trusova M.; Postnikov P.; Krasnokutskaya E. A.; Lee Y. M.; Hwang H. Y.; Kim H.; Chi K.-W. Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability. Org. Lett. 2008, 10, 3961–3964. 10.1021/ol8013528. PubMed DOI
Cygler M.; Przybylska M.; Elofson R. M. The Crystal Structure of Benzenediazonium Tetrafluoroborate, C 6 H 5 N 2+ •BF 4–1. Can. J. Chem. 1982, 60, 2852–2855. 10.1139/v82-407. DOI
Norman R. O. C.Principles of Organic Synthesis ,3rd Edition; Routledge: 2017.
Kirmse W. Nitrogen as Leaving Group: Aliphatic Diazonium Ions. Angew. Chem., Int. Ed. Engl. 1976, 15, 251–261. 10.1002/anie.197602511. DOI
Reynard G.; Lebel H. Alkylation of 5-Substituted 1 H -Tetrazoles via the Diazotization of Aliphatic Amines. J. Org. Chem. 2021, 86, 12452–12459. 10.1021/acs.joc.1c01585. PubMed DOI
Friedman L.; Bayless J. H. Aprotic Diazotization of Aliphatic Amines. Hydrocarbon Products and Reaction Parameters. J. Am. Chem. Soc. 1969, 91, 1790–1794. 10.1021/ja01035a031. DOI
Audubert C.; Gamboa Marin O. J.; Lebel H. Batch and Continuous-Flow One-Pot Processes Using Amine Diazotization to Produce Silylated Diazo Reagents. Am. Ethnol. 2017, 56, 6294–6297. 10.1002/anie.201612235. PubMed DOI
Geng Y.; Kumar A.; Faidallah H. M.; Albar H. A.; Mhkalid I. A.; Schmidt R. R. C-(α-d-Glucopyranosyl)-Phenyldiazomethanes—Irreversible Inhibitors of α-Glucosidase. Bioorg. Med. Chem. 2013, 21, 4793–4802. 10.1016/j.bmc.2013.05.055. PubMed DOI
Dietrich H.; Schmidt R. R. α-D-Glucopyranosyl-Phenyldiazomethane, a Mechanism Based α-Glucosidase Inhibitor. Bioorg. Med. Chem. Lett. 1994, 4, 599–604. 10.1016/S0960-894X(01)80162-1. DOI
Sarabia-García F.; Jorge López-Herrera F.; Pino González M. S. Unstabilized Diazo Derivatives from Carbohydrates. Application to the Synthesis of 2-Deamino-Tunicamine and Products Related to C-Disaccharides. Tetrahedron 1995, 51, 5491–5500. 10.1016/0040-4020(95)00210-Y. DOI
Mukaiyama T.; Shiina I.; Iwadare H.; Saitoh M.; Nishimura T.; Ohkawa N.; Sakoh H.; Nishimura K.; Tani Y.; Hasegawa M.; Yamada K.; Saitoh K. Asymmetric Total Synthesis of Taxol\R. Chem. – Eur. J. 1999, 5, 121–161. 10.1002/(SICI)1521-3765(19990104)5:1<121::AID-CHEM121>3.0.CO;2-O. DOI
Tang W.; Ng S.-C. Facile Synthesis of Mono-6-Amino-6-Deoxy-α-, β-, γ-Cyclodextrin Hydrochlorides for Molecular Recognition, Chiral Separation and Drug Delivery. Nat. Protoc. 2008, 3, 691–697. 10.1038/nprot.2008.37. PubMed DOI
Hocquelet C.; Jankowski C. K.; Pelletier A. L.; Tabet J.-C.; Lamouroux C.; Berthault P. Synthesis and Inclusion Properties Study of Some Mono 6-Amino β-Cyclodextrin Dimers Bridged by N,N-Succinyldiamide Linkers. J. Inclusion Phenom. Macrocyclic Chem. 2011, 69, 75–84. 10.1007/s10847-010-9816-2. DOI
Xing B.; Ni C.; Hu J. Hypervalent Iodine(III)-Catalyzed Balz-Schiemann Fluorination under Mild Conditions. Angew. Chem., Int. Ed. 2018, 57, 9896–9900. 10.1002/anie.201802466. PubMed DOI
Yang C.; Wong Y. T.; Li Z.; Krepinsky J. J.; Jia G. Synthesis of β-Cyclodextrin-Functionalized (2S,4S)-(−)-4-(Diphenylphosphino)-2-(Diphenylphosphinomethyl)Pyrrolidine Ligands and Their Rhodium and Platinum Complexes. Organometallics 2001, 20, 5220–5224. 10.1021/om010359b. DOI
6A-O-p-TOLUENESULFONYL-β-CYCLODEXTRIN. Org. Synth. 2000, 77, 220.10.15227/orgsyn.077.0220 DOI
Parrot-Lopez H.; Galons H.; Coleman A. W.; Djedaïni F.; Keller N.; Perly B. Intramolecular Host-Guest Complexes of D- and L-Mono-6-Phenylalanyl-Amino-6-Deoxy Cyclomalto-Heptaoses. Tetrahedron: Asymmetry 1990, 1, 367–370. 10.1016/0957-4166(90)90035-9. DOI
Shipilov D. A.; Kurochkina G. I.; Levina I. I.; Malenkovskaya M. A.; Grachev M. K. Synthesis of Monocationic β-Cyclodextrin Derivatives. Russ. J. Org. Chem. 2017, 53, 290–295. 10.1134/S1070428017020257. DOI