Preparation of 6-Monohalo-β-cyclodextrin Derivatives with Selectively Methylated Rims via Diazonium Salts

. 2023 Aug 08 ; 8 (31) : 28268-28276. [epub] 20230727

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37576619

A series of 6-monohalo (Cl, Br, and I) β-cyclodextrin derivatives with various types of methylations were synthesized via a diazotization/nucleophilic displacement reaction from the corresponding methylated cyclodextrin amines. All four starting compounds (6A-amino-6A-deoxy derivatives of native β-CD, per-6-O-methyl-, per-2,3-O-methyl-, and per-2,3,6-O-methyl-β-CD) were found to have different reactivities under the same reaction conditions. Unsubstituted and fully per-O-methylated cyclodextrin amines undergo fast transformation, giving lower yields of the monohalogenated product. The selectively methylated cyclodextrin amines react remarkably slower and provide almost complete conversion into the desired monohalogenated compound. A pure product was, in several cases, successfully isolated with simple purification techniques (extraction and precipitation), allowing large-scale preparations. This new method opens the way for preparing poorly investigated monofunctionalized selectively methylated cyclodextrins.

Zobrazit více v PubMed

Del Valle E. M. M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. 10.1016/S0032-9592(03)00258-9. DOI

Szente L. Highly Soluble Cyclodextrin Derivatives: Chemistry, Properties, and Trends in Development. Adv. Drug Delivery Rev. 1999, 36, 17–28. 10.1016/S0169-409X(98)00092-1. PubMed DOI

Kasal P.; Jindřich J. Mono-6-Substituted Cyclodextrins—Synthesis and Applications. Molecules 2021, 26, 5065.10.3390/molecules26165065. PubMed DOI PMC

Faiz J. A.; Spencer N.; Pikramenou Z. Acetylenic Cyclodextrins for Multireceptor Architectures: Cups with Sticky Ends for the Formation of Extension Wires and Junctions. Org. Biomol. Chem. 2005, 3, 4239.10.1039/b508607h. PubMed DOI

Muderawan I. W.; Ong T. T.; Lee T. C.; Young D. J.; Ching C. B.; Ng S. C. A Reliable Synthesis of 2- and 6-Amino-β-Cyclodextrin and Permethylated-β-Cyclodextrin. Tetrahedron Lett. 2005, 46, 7905–7907. 10.1016/j.tetlet.2005.09.099. DOI

Wenz G. Influence of Intramolecular Hydrogen Bonds on the Binding Potential of Methylated β-Cyclodextrin Derivatives. Beilstein J. Org. Chem. 2012, 8, 1890–1895. 10.3762/bjoc.8.218. PubMed DOI PMC

Breslow R. Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design. Acc. Chem. Res. 1995, 28, 146–153. 10.1021/ar00051a008. DOI

Ogoshi T.; Harada A. Chemical Sensors Based on Cyclodextrin Derivatives. Sensors 2008, 8, 4961–4982. 10.3390/s8084961. PubMed DOI PMC

Khan A. R.; Forgo P.; Stine K. J.; D’Souza V. T. Methods for Selective Modifications of Cyclodextrins. Chem. Rev. 1998, 98, 1977–1996. 10.1021/cr970012b. PubMed DOI

Řezanka M. Synthesis of Substituted Cyclodextrins. Environ. Chem. Lett. 2019, 17, 49–63. 10.1007/s10311-018-0779-7. DOI

Varga E.; Benkovics G.; Darcsi A.; Várnai B.; Sohajda T.; Malanga M.; Béni S. Comparative Analysis of the Full Set of Methylated β-Cyclodextrins as Chiral Selectors in Capillary Electrophoresis. Electrophoresis 2019, 40, 2789–2798. 10.1002/elps.201900134. PubMed DOI

Chen Z.; Bradshaw J. S.; Lee M. L. A Convenient Synthesis of Mono-6-Hydroxy Permethylated β-Cyclodextrin via Tert-Butyldimethylsilylation. Tetrahedron Lett. 1996, 37, 6831–6834. 10.1016/0040-4039(96)01545-6. DOI

Lupescu N.; Ho C. K. Y.; Jia G.; Krepinsky J. J. Communication: A Convenient Synthesis of Per-O-Methylated 6-O-Monosubstituted ß-Cyclodextrins. J. Carbohydr. Chem. 1999, 18, 99–104. 10.1080/07328309908543982. DOI

Tanaka M.; Kawaguchi Y.; Niinae T.; Shono T. Preparation and Retention Behaviour of Chemically Bonded Methylated-Cyclodextrin Stationary Phases for Liquid Chromatography. J. Chromatogr. A 1984, 314, 193–200. 10.1016/S0021-9673(01)97733-7. DOI

Watanabe K.; Kitagishi H.; Kano K. Supramolecular Iron Porphyrin/Cyclodextrin Dimer Complex That Mimics the Functions of Hemoglobin and Methemoglobin. Angew. Chem., Int. Ed. 2013, 52, 6894–6897. 10.1002/anie.201302470. PubMed DOI

du Roizel B.; Baltaze J.-P.; Sinaÿ P. Diisobutylaluminum-Promoted Secondary Rim Selective de-O-Methylation of Permethylated Cyclodextrins. Tetrahedron Lett. 2002, 43, 2371–2373. 10.1016/S0040-4039(02)00274-5. DOI

Carofiglio T.; Cordioli M.; Fornasier R.; Jicsinszky L.; Tonellato U. Synthesis of 6I-Amino-6I-Deoxy-2I–VII,3I–VII-Tetradeca-O-Methyl-Cyclomaltoheptaose. Carbohydr. Res. 2004, 339, 1361–1366. 10.1016/j.carres.2004.03.007. PubMed DOI

Kaneda T.; Fujimoto T.; Goto J.; Asano K.; Yasufuku Y.; Jung J. H.; Hosono C.; Sakata Y. New Large-Scale Preparations of Versatile 6-O-Monotosyl and 6-Monohydroxy Permethylated α-, β-, and γ-Cyclodextrins. Chem. Lett. 2002, 31, 514–515. 10.1246/cl.2002.514. DOI

Lebedinskiy K.; Lobaz V.; Jindřich J. Preparation of β-Cyclodextrin-Based Dimers with Selectively Methylated Rims and Their Use for Solubilization of Tetracene. Beilstein J. Org. Chem. 2022, 18, 1596–1606. 10.3762/bjoc.18.170. PubMed DOI PMC

Mourer M.; Hapiot F.; Monflier E.; Menuel S. Click Chemistry as an Efficient Tool to Access β-Cyclodextrin Dimers. Tetrahedron 2008, 64, 7159–7163. 10.1016/j.tet.2008.05.095. DOI

Menuel S.; Porwanski S.; Marsura A. New Synthetic Approach to Per-O-Acetyl-Isocyanates, Isothiocyanates and Thioureas in the Disaccharide and Cyclodextrin Series. New J. Chem. 2006, 30, 603.10.1039/b600023a. DOI

Mo F.; Dong G.; Zhang Y.; Wang J. Recent Applications of Arene Diazonium Salts in Organic Synthesis. Org. Biomol. Chem. 2013, 11, 1582.10.1039/c3ob27366k. PubMed DOI

Filimonov V. D.; Trusova M.; Postnikov P.; Krasnokutskaya E. A.; Lee Y. M.; Hwang H. Y.; Kim H.; Chi K.-W. Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability. Org. Lett. 2008, 10, 3961–3964. 10.1021/ol8013528. PubMed DOI

Cygler M.; Przybylska M.; Elofson R. M. The Crystal Structure of Benzenediazonium Tetrafluoroborate, C 6 H 5 N 2+ •BF 4–1. Can. J. Chem. 1982, 60, 2852–2855. 10.1139/v82-407. DOI

Norman R. O. C.Principles of Organic Synthesis ,3rd Edition; Routledge: 2017.

Kirmse W. Nitrogen as Leaving Group: Aliphatic Diazonium Ions. Angew. Chem., Int. Ed. Engl. 1976, 15, 251–261. 10.1002/anie.197602511. DOI

Reynard G.; Lebel H. Alkylation of 5-Substituted 1 H -Tetrazoles via the Diazotization of Aliphatic Amines. J. Org. Chem. 2021, 86, 12452–12459. 10.1021/acs.joc.1c01585. PubMed DOI

Friedman L.; Bayless J. H. Aprotic Diazotization of Aliphatic Amines. Hydrocarbon Products and Reaction Parameters. J. Am. Chem. Soc. 1969, 91, 1790–1794. 10.1021/ja01035a031. DOI

Audubert C.; Gamboa Marin O. J.; Lebel H. Batch and Continuous-Flow One-Pot Processes Using Amine Diazotization to Produce Silylated Diazo Reagents. Am. Ethnol. 2017, 56, 6294–6297. 10.1002/anie.201612235. PubMed DOI

Geng Y.; Kumar A.; Faidallah H. M.; Albar H. A.; Mhkalid I. A.; Schmidt R. R. C-(α-d-Glucopyranosyl)-Phenyldiazomethanes—Irreversible Inhibitors of α-Glucosidase. Bioorg. Med. Chem. 2013, 21, 4793–4802. 10.1016/j.bmc.2013.05.055. PubMed DOI

Dietrich H.; Schmidt R. R. α-D-Glucopyranosyl-Phenyldiazomethane, a Mechanism Based α-Glucosidase Inhibitor. Bioorg. Med. Chem. Lett. 1994, 4, 599–604. 10.1016/S0960-894X(01)80162-1. DOI

Sarabia-García F.; Jorge López-Herrera F.; Pino González M. S. Unstabilized Diazo Derivatives from Carbohydrates. Application to the Synthesis of 2-Deamino-Tunicamine and Products Related to C-Disaccharides. Tetrahedron 1995, 51, 5491–5500. 10.1016/0040-4020(95)00210-Y. DOI

Mukaiyama T.; Shiina I.; Iwadare H.; Saitoh M.; Nishimura T.; Ohkawa N.; Sakoh H.; Nishimura K.; Tani Y.; Hasegawa M.; Yamada K.; Saitoh K. Asymmetric Total Synthesis of Taxol\R. Chem. – Eur. J. 1999, 5, 121–161. 10.1002/(SICI)1521-3765(19990104)5:1<121::AID-CHEM121>3.0.CO;2-O. DOI

Tang W.; Ng S.-C. Facile Synthesis of Mono-6-Amino-6-Deoxy-α-, β-, γ-Cyclodextrin Hydrochlorides for Molecular Recognition, Chiral Separation and Drug Delivery. Nat. Protoc. 2008, 3, 691–697. 10.1038/nprot.2008.37. PubMed DOI

Hocquelet C.; Jankowski C. K.; Pelletier A. L.; Tabet J.-C.; Lamouroux C.; Berthault P. Synthesis and Inclusion Properties Study of Some Mono 6-Amino β-Cyclodextrin Dimers Bridged by N,N-Succinyldiamide Linkers. J. Inclusion Phenom. Macrocyclic Chem. 2011, 69, 75–84. 10.1007/s10847-010-9816-2. DOI

Xing B.; Ni C.; Hu J. Hypervalent Iodine(III)-Catalyzed Balz-Schiemann Fluorination under Mild Conditions. Angew. Chem., Int. Ed. 2018, 57, 9896–9900. 10.1002/anie.201802466. PubMed DOI

Yang C.; Wong Y. T.; Li Z.; Krepinsky J. J.; Jia G. Synthesis of β-Cyclodextrin-Functionalized (2S,4S)-(−)-4-(Diphenylphosphino)-2-(Diphenylphosphinomethyl)Pyrrolidine Ligands and Their Rhodium and Platinum Complexes. Organometallics 2001, 20, 5220–5224. 10.1021/om010359b. DOI

6A-O-p-TOLUENESULFONYL-β-CYCLODEXTRIN. Org. Synth. 2000, 77, 220.10.15227/orgsyn.077.0220 DOI

Parrot-Lopez H.; Galons H.; Coleman A. W.; Djedaïni F.; Keller N.; Perly B. Intramolecular Host-Guest Complexes of D- and L-Mono-6-Phenylalanyl-Amino-6-Deoxy Cyclomalto-Heptaoses. Tetrahedron: Asymmetry 1990, 1, 367–370. 10.1016/0957-4166(90)90035-9. DOI

Shipilov D. A.; Kurochkina G. I.; Levina I. I.; Malenkovskaya M. A.; Grachev M. K. Synthesis of Monocationic β-Cyclodextrin Derivatives. Russ. J. Org. Chem. 2017, 53, 290–295. 10.1134/S1070428017020257. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...