Electronic Structures of Nickel(II)-Bis(indanyloxazoline)-dihalide Catalysts: Understanding Ligand Field Contributions That Promote C(sp2)-C(sp3) Cross-Coupling

. 2023 Aug 28 ; 62 (34) : 14010-14027. [epub] 20230816

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37584501

Grantová podpora
R35 GM118191 NIGMS NIH HHS - United States
R35 GM142595 NIGMS NIH HHS - United States

NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.

Zobrazit více v PubMed

Semmelhack MF; Helquist PM; Jones LD Synthesis with Zerovalent Nickel. Coupling of Aryl Halides with Bis(1,5-Cyclooctadiene)Nickel(0). J. Am. Chem. Soc. 1971, 93 (22), 5908–5910. 10.1021/ja00751a062. DOI

Poremba KE; Dibrell SE; Reisman SE Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions. ACS Catal. 2020, 10 (15), 8237–8246. 10.1021/acscatal.0c01842. PubMed DOI PMC

Durandetti M; Nédélec J-Y; Périchon J Nickel-Catalyzed Direct Electrochemical Cross-Coupling between Aryl Halides and Activated Alkyl Halides. J. Org. Chem. 1996, 61 (5), 1748–1755. 10.1021/jo9518314. PubMed DOI

Durandetti M; Gosmini C; Périchon J Ni-Catalyzed Activation of α-Chloroesters: A Simple Method for the Synthesis of α-Arylesters and β-Hydroxyesters. Tetrahedron 2007, 63 (5), 1146–1153. 10.1016/j.tet.2006.11.055. DOI

Cherney AH; Kadunce NT; Reisman SE Catalytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis of Enantioenriched Acyclic α,α-Disubstituted Ketones. J. Am. Chem. Soc. 2013, 135 (20), 7442–7445. 10.1021/ja402922w. PubMed DOI

Hofstra JL; Cherney AH; Ordner CM; Reisman SE Synthesis of Enantioenriched Allylic Silanes via Nickel-Catalyzed Reductive Cross-Coupling. J. Am. Chem. Soc. 2018, 140 (1), 139–142. 10.1021/jacs.7b11707. PubMed DOI PMC

Cherney AH; Reisman SE Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between Vinyl and Benzyl Electrophiles. J. Am. Chem. Soc. 2014, 136 (41), 14365–14368. 10.1021/ja508067c. PubMed DOI PMC

DeLano TJ; Reisman SE Enantioselective Electroreductive Coupling of Alkenyl and Benzyl Halides via Nickel Catalysis. ACS Catal. 2019, 9 (8), 6751–6754. 10.1021/acscatal.9b01785. PubMed DOI PMC

Cagan DA; Bím D; Silva B; Kazmierczak NP; McNicholas BJ; Hadt RG Elucidating the Mechanism of Excited-State Bond Homolysis in Nickel–Bipyridine Photoredox Catalysts. J. Am. Chem. Soc. 2022, 144 (14), 6516–6531. 10.1021/jacs.2c01356. PubMed DOI PMC

Cagan DA; Bîm D; McNicholas BJ; Kazmierczak NP; Oyala PH; Hadt RG Photogenerated Ni(I)–Bipyridine Halide Complexes: Structure-Function Relationships for Competitive C(sp2)–Cl Oxidative Addition and Dimerization Reactivity Pathways. Inorg. Chem. 2023, 62, 9538–9551. PubMed PMC

Gao Y; Hill DE; Hao W; McNicholas BJ; Vantourout JC; Hadt RG; Reisman SE; Blackmond DG; Baran PS Electrochemical Nozaki–Hiyama–Kishi Coupling: Scope, Applications, and Mechanism. J. Am. Chem. Soc. 2021, 143 (25), 9478–9488. 10.1021/jacs.1c03007. PubMed DOI PMC

Daifuku SL; Al-Afyouni MH; Snyder BER; Kneebone JL; Neidig ML A Combined Mössbauer, Magnetic Circular Dichroism, and Density Functional Theory Approach for Iron Cross-Coupling Catalysis: Electronic Structure, In Situ Formation, and Reactivity of Iron-Mesityl-Bisphosphines. J. Am. Chem. Soc. 2014, 136 (25), 9132–9143. 10.1021/ja503596m. PubMed DOI

Day CS; Somerville RJ; Martin R Deciphering the Dichotomy Exerted by Zn(Ii) in the Catalytic sp2 C–O Bond Functionalization of Aryl Esters at the Molecular Level. Nature Catalysis 2021, 4 (2), 124–133. 10.1038/s41929-020-00560-3. DOI

Jensen AE; Knochel P Nickel-Catalyzed Cross-Coupling between Functionalized Primary or Secondary Alkylzinc Halides and Primary Alkyl Halides. J. Org. Chem. 2002, 67 (1), 79–85. 10.1021/jo0105787. PubMed DOI

Dorval C; Gosmini C Low-Valent Cobalt Complexes in C–X Coupling and Related Reactions. In Cobalt Catalysis in Organic Synthesis; 2020; pp 163–205. 10.1002/9783527814855.ch5. DOI

Cahiez G; Marquais S Highly Chemo- and Stereoselective Fe-Catalyzed Alkenylation of Organomanganese Reagents. Tetrahedron Letters 1996, 37 (11), 1773–1776. 10.1016/0040-4039(96)00116-5. DOI

Cahiez G; Marquais S Copper-Catalyzed Alkylation of Organomanganese Chloride Reagents. Synlett 2002, 1993 (01), 45–47.

Cahiez G; Avedissian H Cobalt-Catalyzed Alkenylation of Organomagnesium Reagents. Tetrahedron Letters 1998, 39 (34), 6159–6162. 10.1016/S0040-4039(98)01266-0. DOI

Yanagi T; Somerville RJ; Nogi K; Martin R; Yorimitsu H Ni-Catalyzed Carboxylation of C(Sp2)–S Bonds with CO2: Evidence for the Multifaceted Role of Zn. ACS Catal. 2020, 10 (3), 2117–2123. 10.1021/acscatal.9b05141. DOI

Ju L; Lin Q; LiBretto NJ; Wagner CL; Hu CT; Miller JT; Diao T Reactivity of (Bi-Oxazoline)Organonickel Complexes and Revision of a Catalytic Mechanism. J. Am. Chem. Soc. 2021, 143 (36), 14458–14463. 10.1021/jacs.1c07139. PubMed DOI PMC

Xu J; Li Z; Xu Y; Shu X; Huo H Stereodivergent Synthesis of Both Z- and E-Alkenes by Photoinduced, Ni-Catalyzed Enantioselective C(sp3)–H Alkenylation. ACS Catal. 2021, 11 (21), 13567–13574. 10.1021/acscatal.1c04314. DOI

Lu Q; Guan H; Wang Y-E; Xiong D; Lin T; Xue F; Mao J Nickel/Photoredox-Catalyzed Enantioselective Reductive Cross-Coupling between Vinyl Bromides and Benzyl Chlorides. J. Org. Chem. 2022, 87 (12), 8048–8058. 10.1021/acs.joc.2c00707. PubMed DOI

Liu J; Gong H; Zhu S Nickel-Catalyzed, Regio- and Enantioselective Benzylic Alkenylation of Olefins with Alkenyl Bromide. Angewandte Chemie International Edition 2021, 60 (8), 4060–4064. 10.1002/anie.202012614. PubMed DOI

Zhu Z; Lin L; Xiao J; Shi Z Nickel-Catalyzed Stereo- and Enantioselective Cross-Coupling of Gem-Difluoroalkenes with Carbon Electrophiles by C−F Bond Activation. Angewandte Chemie International Edition 2022, 61 (6), e202113209. 10.1002/anie.202113209. PubMed DOI

Hu X; Cheng-Sánchez I; Cuesta-Galisteo S; Nevado C Nickel-Catalyzed Enantioselective Electrochemical Reductive Cross-Coupling of Aryl Aziridines with Alkenyl Bromides. J. Am. Chem. Soc. 2023. 10.1021/jacs.2c12869. PubMed DOI PMC

Jiang Y; Yang K; Wei Y; Wang Q; Li S-J; Lan Y; Koh MJ Catalytic Multicomponent Synthesis of C-Acyl Glycosides by Consecutive Cross-Electrophile Couplings. Angewandte Chemie International Edition 2022, 61 (46), e202211043. 10.1002/anie.202211043. PubMed DOI

Geng J; Sun D; Song Y; Tong W; Wu F Ni-Catalyzed Asymmetric Reductive Alkenylation of α-Chlorosulfones with Vinyl Bromides. Org. Lett. 2022, 24 (9), 1807–1811. 10.1021/acs.orglett.2c00217. PubMed DOI

Duan M; Wang Y; Zhu S Nickel-Catalyzed Asymmetric 1,2-Alkynylboration of Vinylarenes. Tetrahedron Letters 2023, 114, 154247. 10.1016/j.tetlet.2022.154247. DOI

Sun D; Ma G; Zhao X; Lei C; Gong H Nickel-Catalyzed Asymmetric Reductive Arylation of α-Chlorosulfones with Aryl Halides. Chem. Sci. 2021, 12 (14), 5253–5258. 10.1039/D1SC00283J. PubMed DOI PMC

Ye Y; Liu J; Xu B; Jiang S; Bai R; Li S; Xie T; Ye X-Y Nickel-Catalyzed Enantioselective 1,2-Vinylboration of Styrenes. Chem. Sci. 2021, 12 (39), 13209–13215. 10.1039/D1SC04071E. PubMed DOI PMC

Lin Q; Spielvogel EH; Diao T Carbon-Centered Radical Capture at Nickel(II) Complexes: Spectroscopic Evidence, Rates, and Selectivity. Chem 2023, 9 (5), 1295–1308. 10.1016/j.chempr.2023.02.010. DOI

Laurence C; Gal JF Lewis Basicity and Affinity Scales: Data and Measurements; Wiley, New York, 2010.

Classification of Solvents. In Solvents and Solvent Effects in Organic Chemistry; 2010; pp 65–106. 10.1002/9783527632220.ch3. DOI

Best SP; Clark RJH The Identification of an Electronic Raman Transition for the Hexa-Aquavanadium(III) Ion. A Direct Spectroscopic Determination of the Trigonal Field Splitting of the 3T1g Ground Term. Chemical Physics Letters 1985, 122 (4), 401–405. 10.1016/0009-2614(85)80245-1. DOI

Pescitelli G; Lüdeke S; Chamayou A-C; Marolt M; Justus V; Górecki M; Arrico L; Di Bari L; Islam MA; Gruber I; Enamullah M; Janiak C Broad-Range Spectral Analysis for Chiral Metal Coordination Compounds: (Chiro)Optical Superspectrum of Cobalt(II) Complexes. Inorg. Chem. 2018, 57 (21), 13397–13408. 10.1021/acs.inorgchem.8b01932. PubMed DOI

Lu R; Yang T; Chen X; Fan W; Chen P; Lin Z; Liu G Enantioselective Copper-Catalyzed Radical Cyanation of Propargylic C–H Bonds: Easy Access to Chiral Allenyl Nitriles. J. Am. Chem. Soc. 2021, 143 (36), 14451–14457. 10.1021/jacs.1c07190. PubMed DOI

Hofstra JL Development and Mechanistic Studies of Ni-Catalyzed Asymmetric Reductive Cross-Coupling Reactions, California Institute of Technology, 2019. https://resolver.caltech.edu/CaltechTHESIS:06012019-034543690.

Kazmierczak NP; Chew JA; Vander Griend DA Bootstrap Methods for Quantifying the Uncertainty of Binding Constants in the Hard Modeling of Spectrophotometric Titration Data. Analytica Chimica Acta 2022, 1227, 339834. 10.1016/j.aca.2022.339834. PubMed DOI

Vander Griend DA; Bediako DK; DeVries MJ; DeJong NA; Heeringa LP Detailed Spectroscopic, Thermodynamic, and Kinetic Characterization of Nickel(II) Complexes with 2,2’-Bipyridine and 1,10-Phenanthroline Attained via Equilibrium-Restricted Factor Analysis. Inorg. Chem. 2008, 47 (2), 656–662. 10.1021/ic700553d. PubMed DOI

Espinoza EM; Clark JA; Soliman J; Derr JB; Morales M; Vullev VI Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails. J. Electrochem. Soc. 2019, 166 (5), H3175–H3187. 10.1149/2.0241905jes. DOI

Tang T; Jones E; Wild T; Hazra A; Minteer SD; Sigman MS Investigating Oxidative Addition Mechanisms of Allylic Electrophiles with Low-Valent Ni/Co Catalysts Using Electroanalytical and Data Science Techniques. J. Am. Chem. Soc. 2022, 144 (43), 20056–20066. 10.1021/jacs.2c09120. PubMed DOI

Bard AJ; Faulkner LR; White HS Electrochemical Methods: Fundamentals and Applications, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022.

Zhou Y-Y; Uyeda C Reductive Cyclopropanations Catalyzed by Dinuclear Nickel Complexes. Angewandte Chemie International Edition 2016, 55 (9), 3171–3175. 10.1002/anie.201511271. PubMed DOI

Turro RF; Wahlman JLH; Tong ZJ; Chen X; Yang M; Chen EP; Hong X; Hadt RG; Yang Y-F; Houk KN; Reisman SE Mechanistic Investigation of Ni-Catalyzed Reductive Cross-Coupling of Alkenyl and Benzyl Electrophiles. J. Am. Chem. Soc. 2023, 145 (27), 14705–14715. 10.1021/jacs.3c02649. PubMed DOI PMC

Li G; Brady MD; Meyer GJ Visible Light Driven Bromide Oxidation and Ligand Substitution Photochemistry of a Ru Diimine Complex. J. Am. Chem. Soc. 2018, 140 (16), 5447–5456. 10.1021/jacs.8b00944. PubMed DOI

Harding MJ; Mason SF; Robbins DJ; Thomson AJ Magnetic Circular Dichroism Spectra of Some Nickel(II) Complexes. Part I. The Temperature Dependence of the Spectrum of the Nickel(II) Hexaquo-Ion. J. Chem. Soc. A 1971, No. 0, 3047–3058. 10.1039/J19710003047. DOI

Burkholder C; Dolbier WR; Médebielle M Tetrakis(Dimethylamino)Ethylene as a Useful Reductant of Some Bromodifluoromethyl Heterocycles. Application to the Synthesis of New Gem-Difluorinated Heteroarylated Compounds. J. Org. Chem. 1998, 63 (16), 5385–5394. 10.1021/jo980201+. DOI

Gaur JN; Goswami NK Kinetics of the Reduction of Mn2+ at the Dropping Mercury Electrode in Non-Aqueous Media. Electrochimica Acta 1967, 12 (11), 1489–1493. 10.1016/0013-4686(67)80064-1. DOI

Lin Q; Diao T Mechanism of Ni-Catalyzed Reductive 1,2-Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2019, 141 (44), 17937–17948. 10.1021/jacs.9b10026. PubMed DOI PMC

Anxolabéhère-Mallart E; Glaser T; Frank P; Aliverti A; Zanetti G; Hedman B; Hodgson KO; Solomon EI Sulfur K-Edge X-Ray Absorption Spectroscopy of 2Fe–2S Ferredoxin: Covalency of the Oxidized and Reduced 2Fe Forms and Comparison to Model Complexes. J. Am. Chem. Soc. 2001, 123 (23), 5444–5452. 10.1021/ja010472t. PubMed DOI

Dey A; Jenney FE; Adams MWW; Babini E; Takahashi Y; Fukuyama K; Hodgson KO; Hedman B; Solomon EI Solvent Tuning of Electrochemical Potentials in the Active Sites of HiPIP Versus Ferredoxin. Science 2007, 318 (5855), 1464–1468. 10.1126/science.1147753. PubMed DOI

Dey A; Okamura T; Ueyama N; Hedman B; Hodgson KO; Solomon EI Sulfur K-Edge XAS and DFT Calculations on P450 Model Complexes: Effects of Hydrogen Bonding on Electronic Structure and Redox Potentials. J. Am. Chem. Soc. 2005, 127 (34), 12046–12053. 10.1021/ja0519031. PubMed DOI PMC

Hadt RG; Sun N; Marshall NM; Hodgson KO; Hedman B; Lu Y; Solomon EI Spectroscopic and DFT Studies of Second-Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Nonlocal Electrostatic Contributions to Reduction Potentials. J. Am. Chem. Soc. 2012, 134 (40), 16701–16716. 10.1021/ja306438n. PubMed DOI PMC

Suzuki N; Hofstra JL; Poremba KE; Reisman SE Nickel-Catalyzed Enantioselective Cross-Coupling of N-Hydroxyphthalimide Esters with Vinyl Bromides. Org. Lett. 2017, 19 (8), 2150–2153. 10.1021/acs.orglett.7b00793. PubMed DOI PMC

Arias-Rotondo DM; McCusker JK The Photophysics of Photoredox Catalysis: A Roadmap for Catalyst Design. Chem. Soc. Rev. 2016, 45 (21), 5803–5820. 10.1039/C6CS00526H. PubMed DOI

Fillman KL; Przyojski JA; Al-Afyouni MH; Tonzetich ZJ; Neidig ML A Combined Magnetic Circular Dichroism and Density Functional Theory Approach for the Elucidation of Electronic Structure and Bonding in Three- and Four-Coordinate Iron(ii)–N-Heterocyclic Carbene Complexes. Chem. Sci. 2015, 6 (2), 1178–1188. 10.1039/C4SC02791D. PubMed DOI PMC

Kawamata Y; Vantourout JC; Hickey DP; Bai P; Chen L; Hou Q; Qiao W; Barman K; Edwards MA; Garrido-Castro AF; deGruyter JN; Nakamura H; Knouse K; Qin C; Clay KJ; Bao D; Li C; Starr JT; Garcia-Irizarry C; Sach N; White HS; Neurock M; Minteer SD; Baran PS Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. J. Am. Chem. Soc. 2019, 141 (15), 6392–6402. 10.1021/jacs.9b01886. PubMed DOI PMC

Cherney AH Development of Nickel-Catalyzed Asymmetric Reductive Cross-Coupling of Benzylic Electrophiles, California Institute of Technology, 2015. https://resolver.caltech.edu/CaltechTHESIS:06012015-102412340.

Venanzi LM 140. Tetrahedral Nickel(II) Complexes and the Factors Determining Their Formation. Part I. Bistriphenylphosphine Nickel(II) Compounds. J. Chem. Soc. 1958, No. 0, 719–724. 10.1039/JR9580000719. DOI

Garton G; Henn DE; Powell HM; Venanzi LM 682. Tetrahedral Nickel(II) Complexes and the Factors Determining Their Formation. Part V. The Tetrahedral Co-Ordination of Nickel in Dichlorobistriphenylphosphinenickel. J. Chem. Soc. 1963, No. 0, 3625–3629. 10.1039/JR9630003625. DOI

Cotton FA; Goodgame DML New Tetrahedral Complexes of Nickel(II). J. Am. Chem. Soc. 1960, 82 (22), 5771–5774. 10.1021/ja01507a001. DOI

Venanzi LM Tetrahedral Complexes of Nickel (II) and the Factors Determining Their Formation. Journal of Inorganic and Nuclear Chemistry 1958, 8, 137–142. 10.1016/0022-1902(58)80175-X. DOI

Cotton FA; Faut OD; Goodgame DML Preparation, Spectra and Electronic Structures of Tetrahedral Nickel(II) Complexes Containing Triphenylphosphine and Halide Ions as Ligands. J. Am. Chem. Soc. 1961, 83 (2), 344–351. 10.1021/ja01463a021. DOI

Davies JE; Gerloch M; Phillips DJ Phosphine π-Acceptor Properties in Dihalogenobis(Triphenylphosphine)-Nickel(II) and -Cobalt(II). J. Chem. Soc., Dalton Trans. 1979, No. 11, 1836–1842. 10.1039/DT9790001836. DOI

Gerloch M; Hanton LR; Manning MR Tetrahedral Complexes of Nickel(II): Electronic Spectra, γ and π Bonding, and the Electroneutrality Principle. Inorganica Chimica Acta 1981, 48, 205–214. 10.1016/S0020-1693(00)90092-6. DOI

Koester VJ; Dunn TM Electronic Spectrum of the Tetrachloronickelate(II) Complex at 2.2.Deg.K. Inorg. Chem. 1975, 14 (8), 1811–1817. 10.1021/ic50150a014. DOI

Lever AB P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier, 1984.

Gerloch M; Manning MR Structural and Ligand Field Parameters of Some Trigonally Distorted Tetrahedral Cobalt(II) and Nickel(II) Complexes. Inorg. Chem. 1981, 20 (4), 1051–1056. 10.1021/ic50218a020. DOI

Sigel H; Martin RB Coordinating Properties of the Amide Bond. Stability and Structure of Metal Ion Complexes of Peptides and Related Ligands. Chem. Rev. 1982, 82 (4), 385–426. 10.1021/cr00050a003. DOI

Connelly NG; Geiger WE Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96 (2), 877–910. 10.1021/cr940053x. PubMed DOI

Okamoto K; Shida N; Morizumi H; Kitano Y; Chiba K Oxidation Potential Gap (ΔEox): The Hidden Parameter in Redox Chemistry. Angewandte Chemie International Edition 2022, 61 (30), e202206064. 10.1002/anie.202206064. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes

. 2024 Jun 07 ; 14 (11) : 9055-9076. [epub] 20240529

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...