Asymmetry in previtellogenic and early vitellogenic oocytes, ultrastructure of follicular cells and egg envelope in the pigmented sterlet, Acipenser ruthenus L. 1758 (Chondrostei, Acipenseriformes)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37585228
DOI
10.1002/jmor.21631
Knihovny.cz E-zdroje
- Klíčová slova
- Balbiani body, follicular cell diversification, oocyte nucleus, ooplasm,
- MeSH
- cytoplazma MeSH
- oocyty * MeSH
- ovariální folikul * ultrastruktura MeSH
- ryby MeSH
- vitelogeneze MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ovarian follicles of sterlets (Acipenser ruthenus) are composed of a single oocyte surrounded by follicular cells (FCs), basal lamina, and thecal cells. Previtellogenic oocytes are polarized. Homogeneous ooplasm (contains ribosomes) and granular ooplasm (comprises nuage aggregations of nuclear origin, rough endoplasmic reticulum (RER), Golgi complexes, ribosomes, and mitochondria) are distinguished. Granular ooplasm is initially located near the nucleus, contacts the plasma membrane of the oocyte (oolemma) and forms a thin layer underneath its entire perimeter. Next, a ring that surrounds the nucleus is formed and sends strands directed toward the oolemma. The lipid body composed of lipid droplets forms adjacent to this ring. Later, the granular ooplasm and strands enlarge toward the oolemma, lipid body disperses, and homogeneous ooplasm is no longer present. A thin cortical ooplasm is formed underneath the oolemma and does not contain any organelles. The oocyte nucleus moves to the center. The nucleoplasm contains lampbrush chromosomes, nuclear bodies, and multiple nucleoli. Early vitellogenic oocytes are polarized, too. Three regions in the ooplasm are distinguished: the perinuclear (contains lipid droplets near the nuclear envelope), the endoplasm (contains yolk platelets and lipid droplets), and the periplasm (contains yolk spheres, pigment granules, and microtubules). In all these regions the RER, Golgi complexes, nuage, and mitochondria are present. Micropinocytotic vesicles, Golgi vesicles and precursors of the internal layer of the egg envelope are in the cortical ooplasm. Some FCs delaminate from the follicular epithelium, degenerate and vesicles are released into the perioocytic space. They may contain precursors of egg envelope and may be involved in "cell-cell" communication. The egg envelope (zona radiata, zona pellucida) is made up of three layers: the vitelline envelope (inner layer), the middle layer, and the outer layer. In its deposition, both the oocyte and FCs are engaged.
Zobrazit více v PubMed
Aguero, T., Kassmer, S., Alberio, R., Johnson, A., & King, M. L. (2017). Mechanisms of vertebrate germ cells determination. In F. Pelegri, M. Danilchik, & A. Sutherland (Eds.), Vertebrate development. Maternal to zygotic control. Advances in experimental medicine and biology (Vol. 953, pp. 383-440). Springer International Publishing AG.
Azevedo, C. (1984). Development and ultrastructural autoradiographic studies of nucleolus-like bodies (nuages) in oocytes of a viviparous teleost (Xiphophorus helleri). Cell and Tissue Research, 238, 121-128.
Azevedo, C., & Coimbra, A. (1980). Evolution of nucleoli in the course of oogenesis in a viviparous teleost (Xiphophorus helleri). Biologie Cellulaire, 38, 43-48.
Babin, P. J., Carnevali, O., Lubzens, E., & Schneider, W. J. (2007). Molecular aspects of oocyte vitellogenesis in fish. In P. J. Babin, J. Cerdá, & E. Lubzens (Eds.), The Fish oocyte: From basic studies to biotechnological applications (pp. 39-76). Springer.
Biliński, S. M., & Bilińska, B. (1996). A new version of the Ag-NOR technique. A combination with DAPI staining. The Histochemical Journal, 28, 651-656.
Billard, R., & Lecointre, G. (2000). Biology and conservation of sturgeon and paddlefish. Reviews in Fish Biology and Fisheries, 10, 355-392.
Brylińska, M. (Ed.). (2000). Polish freshawater fish. New Edition (pp. 148-151). Wydawnictwo Naukowe PWN.
Cherr, G. N., & Clark, Jr., W. H. (1982). Fine structure of the envelope and micropyles in the eggs of the white sturgeon, Acipenser transmontanus Richardson. Development, Growth and Differentiation, 24(4), 341-352.
Cox, R. T., & Spradling, A. C. (2003). A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development, 130, 1579-1590.
Debus, L., Winkler, M., & Billard, R. (2002). Structure of micropyle surface on oocytes and caviar grains in sturgeons. International Review of Hydrobiology, 87(5-6), 585-603.
Debus, L., Winkler, M., & Billard, R. (2008). Ultrastructure of the oocyte envelopes of some Eurasian acipenserids. Journal of Applied Ichthyology, 24(Suppl. 1), 57-64.
Denef, N., & Schüpbach, T. (2003). Patterning: JAK-STAT signalling in the drosophila follicular epithelium. Current Biology, 13, R388-R390.
Dettlaff, T. A., Ginsburg, A. S., & Schmalhausen, O. I. (1993). Sturgeon fishes: Developmental biology and aquaculture. Springer-Verlag.
Dymek, A. M., Pecio, A., & Piprek, R. P. (2021). Diversity of Balbiani body formation in internally and externally fertilizing representatives of Osteoglossiformes (Teleostei: Osteoglossomorpha). Journal of Morphology, 282, 1313-1329. https://doi.org/10.1002/jmor.21387
Elkouby, Y. M. (2017). All in one-Iintegrating cell polarity, meiosis, mitosis and mechanical forces in early oocyte differentiation in vertebrates. The International Journal of Developmental Biology, 61, 179-193.
Elkouby, Y. M., Jamieson-Lucy, A., & Mullins, M. C. (2016). Oocyte polarization is coupled to the chromosomal bouquet, a conserved polarized nuclear configuration in meiosis. PLoS Biology, 14(1), e1002335. https://doi.org/10.1371/journal.pbio.1002335
Elkouby, Y. M., & Mullins, M. C. (2017). Coordination of cellular differentiation, polarity, mitosis and meiosis-New findings from early vertebrate oogenesis. Developmental Biology, 430, 275-287.
Escobar-Aguirre, M., Elkouby, Y. M., & Mullins, M. C. (2017). Localization in oogenesis of maternal regulators of embryonic development. In F. Pelegri, M. Danilchik, & A. Sutherland (Eds.), Vertebrate development. Maternal to zygotic control. Advances in experimental medicine and biology (953, pp. 173-207). Springer.
Friedman, J. R., Lackner, L. L., West, M., DiBenedetto, J. R., Nunnari, J., & Voeltz, G. K. (2011). ER tubules mark sites of mitochondrial division. Science, 334(6054), 358-362.
Grandi, G., & Chicca, M. (2008). Histological and ultrastructural investigation of early gonad development and sex differentiation in Adriatic sturgeon (Acipenser naccarii, Acipenseriformes, Chondrostei). Journal of Morphology, 269, 1238-1262.
Greco, V., Hannus, M., & Eaton, S. (2001). Argosomes. Cell, 106, 633-645.
Herrera, S. C., & Bach, E. A. (2019). JAK/STAT signaling in stem cells and regeneration: From Drosophila to vertebrates. Development, 146, dev167643. https://doi.org/10.1242/dev.167643
Iegorova, V., Naraine, R., Psenicka, M., Zelazowska, M., & Sindelka, R. (2022). Comparison of RNA localization during oogenesis within Acipenser ruthenus and Xenopus laevis. Frontiers in Cell and Developmental Biology, 10, 982732. https://doi.org/10.3389/fcell.2022.982732
Ikami, K., Nuzhat, N., & Lei, L. (2017). Organelle transport during mouse oocyte differentiation in germline cysts. Current Opinion in Cell Biology, 44, 14-19.
Jaglarz, M. K., Krzeminski, W., & Bilinski, S. M. (2008). Structure of the ovaries and follicular epithelium morphogenesis in Drosophila and its kin. Development Genes and Evolution, 218, 399-411.
Jamieson-Lucy, A. H., Kobayashi, M., James Aykit, Y., Elkouby, Y. M., Escobar-Aguirre, M., Vejnar, C. E., Giraldez, A. J., & Mullins, M. C. (2022). A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Developmental Biology, 484, 1-11.
Kalluri, R., & McAndrews, K. M. (2023). The role of extracellular vesicles in cancer. Cell, 186, 1610-1626.
Kloc, M., Bilinski, S., Chan, A. P., Allen, L. H., Zearfoss, N. R., & Etkin, L. D. (2001). RNA localization and germ cell determination in Xenopus. International Reviews in Cytology, 203, 63-91.
Kloc, M., & Etkin, L. D. (2005). RNA localization mechanisms in oocytes. Journal of Cell Science, 118, 269-282.
Kloc, M., Jaglarz, M., Dougherty, M., Stewart, M., Nelthemaat, L., & Bilinski, S. (2008). Mouse early oocytes are transiently polar: Three-dimensional and ultrastructural analysis. Experimental Cell Research, 314, 3245-3254.
Kloc, M., Jedrzejowska, I., Tworzydlo, W., & Bilinski, S. M. (2014). Balbiani body, nuage and sponge bodies-The germ plasm pathway players. Arthropod Structure & Development, 43, 341-348.
Kobayashi, H., & Iwamatsu, T. (2000). Development and fine structure of the yolk nucleus of previtellogenic oocytes in the medaka Oryzias latipes. Development Growth and Differentiation, 42, 623-631.
Kunz, Y. W. (2004). Egg envelope. In Y. W. Kunz (Ed.), Developmental biology of teleost fishes (pp. 49-76). Springer.
Li, C.-J., Qi-Wei, W., Xi-Hua, C., Li, Z., Hong, C., Fang, G., & Jian-Fang, G. (2011). Molecular characterization and expression pattern of three zona pellucida 3 genes in the Chinese sturgeon. Fish Physiology & Biochemistry, 37, 471-484.
Ludwig, H. (1874). Über die Eibildung in Thierreiche. Arbeiten aus dem Physiologischen Laboratorium der Würzburger Hochschule 1, 287-510.
Ma, X.-X., Zhu, J.-Q., Zhou, H., & Yang, W.-X. (2012). The formation of zona radiata in Pseudosciaena crocea revealed by light and transmission electron microscopy. Micron, 43, 435-444.
Marlow, F. L., & Mullins, M. C. (2008). Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Developmental Biology, 321, 40-50.
Meldolesi, J. (2018). Exosomes and ectosomes in intercellular communication. Current Biology, 28, R435-R444.
Le Menn, F., Benneteau-Pelissero, C., & Le Menn, R. (2018). An updated version of histological and ultrastructural studies of oogenesis in the Siberian sturgeon Acipenser baerii. In P. Williot, G. Nonnotte, D. Vizziano-Cantonnet, & M. Chebanov (Eds.), The Siberian sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology (pp. 279-305). Springer.
Le Menn, F., Cerdá, J., & Babin, P. J. (2007). Ultrastructural aspects of the ontogeny and differentiation of ray-finned fish ovarian follicles. In P. J. Babin, J. Cerdá, & E. Lubzens (Eds.), The fish oocyte: From basic studies to biotechnological applications (pp. 1-37). Springer.
Le Menn, F., & Pelissero, C. (1991). Histological and utrastructural studies of oogenesis of the Siberian sturgeon Acipenser baerii. In P. Williot (Ed.), Acipenser (pp. 113-127). Cemagref Publications.
Murata, K., Conte, F. S., McInnis, E., Fong, T. H., & Cherr, G. N. (2014). Identification of the origin and localization of chorion (egg envelope) proteins in an ancient fish, the white sturgeon, Acipenser transmontanus. Biology of Reproduction, 90(6), 132 1-12.
Ostaszewska, T., & Dabrowski, K. (2009). Early development of Acipenseriformes (Chondrostei: Actinopterygii). In Y. W. Kunz, C. A. Luer, & B. G. Kapoor (Eds.), Development of non-teleost fishes (pp. 170-229). Science Publishers.
Pek, J. W., Patil, V. S., & Kai, T. (2012). piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Development, Growth & Differentiation, 54, 66-77.
Pocherniaieva, K., Sidova, M., Havelka, M., Saito, T., Psenicka, M., Sindelka, R., & Kaspar, V. (2018). Comparison of oocyte mRNA localization patterns in sterlet Acipenser ruthenus and African clawed frog Xenopus laevis. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 330, 181-187.
Raikova, E. V. (1976). Evolution of the nucleolar apparatus during oogenesis in Acipenseridae. Development, 35, 667-687.
Raikova, E. V., Steinert, G., & Thomas, C. (1979). Amplified ribosomal DNA in meiotic prophase oocyte nuclei of Acipenserid fishes. Wilhelm Roux's Archives of Developmental Biology, 186, 81-85.
Ravaglia, M. A., & Maggese, M. C. (2003). Ovarian follicle ultrastructure in the teleost Synbranchus marmoratus (Bloch, 1795), with special reference to the vitelline envelope development. Tissue and Cell, 35, 9-17.
Rzepkowska, M., & Ostaszewska, T. (2014). Proliferating cell nuclear antigen and Vasa protein expression during gonadal development and sexual differentiation in cultured Siberian (Acipenser baerii Brandt, 1869) and Russian (Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833) sturgeon. Reviews in Aquaculture, 6(2), 75-88.
Saito, T., Pšenička, M., Goto, R., Adachi, S., Inoue, K., Arai, K., & Yamaha, E. (2014). The origin and migration of primordial germ cells in sturgeons. PLoS One, 9, 1-10.
Siddique, M. A. M., Cosson, J., Psenicka, M., & Linhart, O. (2014). A review of the structure of sturgeon egg membranes and of the associated terminology. Journal of Applied Ichthyology, 30, 1246-1255.
Siomi, M. C., Miyoshi, T., & Siomi, H. (2010). piRNA-mediated silencing in Drosophila germlines. Seminars in Cell & Developmental Biology, 21, 754-759.
Tworzydlo, W., Kloc, M., & Bilinski, S. M. (2010). Female germline stem cell niches of earwigs are structurally simple and different from those of Drosophila melanogaster. Journal of Morphology, 271, 634-640.
Yang, X., Yue, H., Ye, H., Li, C., & Wei, Q. (2015). Identification of a germ cell marker gene, the dead end homologue, in Chinese sturgeon Acipenser sinensis. Gene, 558, 118-125.
Ye, H., Chen, X., Wei, Q., Zhou, L., Liu, T., Gui, J., Li, C., & Cao, H. (2012). Molecular and expression characterization of a nanos1 homologue in Chinese sturgeon, Acipenser sinensis. Gene, 511, 285-292.
Ye, H., Li, C. J., Yue, H.-M., Yang, X.-G., & Wei, Q.-W. (2015). Differential expression of fertility genes boule and dazl in Chinese sturgeon (Acipenser sinensis), a basal fish. Cell and Tissue Research, 360, 413-425.
Ye, H., Yue, H., Yang, X., Li, C., & Wei, Q. (2018). Molecular characterization, tissue distribution, localization and mRNA expression of the bucky ball gene in the Dabry's sturgeon (Acipenser dabryanus) during oogenesis. Gene Expression Patterns, 28, 62-71.
Yuan, L., Li, L., Zhang, X., Jiang, H., & Chen, J. (2019). Identification and differential expression of piRNAs in the gonads of Amur sturgeon (Acipenser schrenckii). PeerJ, 7, e6709. https://doi.org/10.7717/peerj.6709
Yue, H.-M., Cao, H., Chen, X. H., Ye, H., Li, C. J., & Du, H. (2014). Molecular characterization of the cDNAs of two zona pellucida genes in the Chinese sturgeon, Acipenser sinensis Gray, 1835. Journal of Applied Ichthyology, 30, 1273-1281.
Żelazowska, M. (2010). Formation and structure of egg envelopes in Russian sturgeon, Acipenser gueldenstaedtii (Acipenseriformes: Acipenseridae). Journal of Fish Biology, 76, 694-706.
Żelazowska, M. (2014). Ultrastructure and histochemistry of the periplasm in oocytes of sturgeons during egg envelope formation. Folia Biologica, 62, 377-385.
Żelazowska, M., & Fopp-Bayat, D. (2017a). Previtellogenic and vitellogenic oocytes in ovarian follicles of cultured Siberian sturgeon Acipenser baerii (Chondrostei, Acipenseriformes). Journal of Morphology, 278, 50-61.
Żelazowska, M., & Fopp-Bayat, D. (2017b). Ovarian nests in cultured females of the Siberian sturgeon Acipenser baerii (Chondrostei, Acipenseriformes). Journal of Morphology, 278, 1438-1449.
Żelazowska, M., & Fopp-Bayat, D. (2019). Germline cysts and asymmetry in early previtellogenic ovarian follicles in cultured albino females of sterlet Acipenser ruthenus L. 1758 (Chondrostei, Acipenseriformes). Protoplasma, 256, 1229-1244.
Żelazowska, M., & Halajian, A. (2019). Previtellogenic oocytes of South African largemouth bass Micropterus salmoides Lacépède 1802 (Actinopterygii, Perciformes)-The Balbiani body, cortical alveoli and developing eggshell. Journal of Morphology, 280, 360-369.
Żelazowska, M., & Halajian, A. (2020). Asymmetry in the cytoplasm of oocytes of largescale yellowfish Labeobarbus marequensis Smith 1841 (Teleostei: Cypriniformes: Cyprinidae). Journal of Morphology, 281, 997-1009.
Zelazowska, M., Kilarski, W., Bilinski, S. M., Podder, D. D., & Kloc, M. (2007). Balbiani cytoplasm in oocytes of a primitive fish, the sturgeon Acipenser gueldenstaedtii, and its potential homology to the Balbiani body (mitochondrial cloud) of Xenopus laevis oocytes. Cell and Tissue Research, 329, 137-145.
Żelazowska, M., & Kujawa, R. (2022). Microscopic study of the primary growth ovarian follicles of the pike-perch Sander lucioperca (Linnaeus 1758) (Actinopterygii, Perciformes). Micron, 160C, 103318. https://doi.org/10.1016/j.micron.2022.103318