Detection of botanical adulterants in saffron powder
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_FPBT_2021_001
Vysoká Škola Chemicko-technologická v Praze
A1_FPBT_2022_005
Vysoká Škola Chemicko-technologická v Praze
A1_FPBT_2023_002
Vysoká Škola Chemicko-technologická v Praze
A2_FPBT_2021_052
Vysoká Škola Chemicko-technologická v Praze
MEYS Grants - number LN2023064
Metrofood-CZ
MEYS Grants - numbers LM2018100
Metrofood-CZ
PubMed
37587313
PubMed Central
PMC10474180
DOI
10.1007/s00216-023-04853-x
PII: 10.1007/s00216-023-04853-x
Knihovny.cz E-zdroje
- Klíčová slova
- Authenticity, Botanical adulterants, Crocus sativus L., Metabolomic fingerprinting, Saffron, UHPLC-HRMS/MS,
- MeSH
- antioxidancia MeSH
- barvicí látky MeSH
- Beta vulgaris * MeSH
- biologické přípravky * MeSH
- Capsicum * MeSH
- Crocus * MeSH
- koření MeSH
- prášky, zásypy, pudry MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- barvicí látky MeSH
- biologické přípravky * MeSH
- prášky, zásypy, pudry MeSH
Saffron is a unique spice obtained by drying stigmas of saffron flowers (Crocus sativus L.). Due to its high price, economically motivated adulteration occurs relatively often. The presented study aimed to develop an effective strategy for the detection of the following potential botanical adulterants used for a saffron substitution or dilution: safflower (Carthamus tinctorius L.), calendula (Calendula officinalis L.), turmeric (Curcuma longa L.), achiote (Bixa orellana L.), red pepper (Capsicum spp.), mountain arnica (Arnica montana L.), beet (Beta vulgaris L.), and pomegranate (Punica granatum L.). A non-target screening strategy based on ultra-high performance reverse-phase liquid chromatography coupled to tandem high-resolution mass spectrometry (UHPLC-HRMS/MS) was employed for the analysis of an aqueous ethanol plant extract. By using multivariate statistical methods, principal components analysis (PCA), and partial least squares discriminant analysis (PLS-DA), for processing the generated "chemical fingerprints," metabolites unique to the investigated plants could be identified. To enable routine saffron authenticity control by target screening, an internal spectral database was developed; currently, it involves 82 unique markers. In this way, the detection addition as low as 1% (w/w) of all analyzed botanical adulterants in admixture with saffron was possible. The developed method was used to control 7 saffron powder samples from the Czech market, and none of the monitored adulterants were confirmed.
Zobrazit více v PubMed
Moratalla-López N, Zalacain A, Bagur MJ, Salinas MR, Alonso GL. Saffron. 2018. In: Food Integrity handbook on food authenticity issues and related analytical techniques [Internet]. Eurofins Analytics France; [193-204].
Torelli A, Marieschi M, Bruni R. Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control. 2014;36(1):126–31. doi: 10.1016/j.foodcont.2013.08.001. DOI
Yilmaz A, Nyberg NT, Mølgaard P, Asili J, Jaroszewski JW. 1H NMR metabolic fingerprinting of saffron extracts. Metabolomics. 2010;6(4):511–7. doi: 10.1007/s11306-010-0221-z. DOI
Soffritti G, Busconi M, Sánchez RA, Thiercelin JM, Polissiou M, Roldán M, et al. Genetic and epigenetic approaches for the possible detection of adulteration and auto-adulteration in saffron (Crocus sativus L.) spice. Molecules (Basel, Switzerland). 2016;21(3):343. doi: 10.3390/molecules21030343. PubMed DOI PMC
Guijarro-Díez M, Castro-Puyana M, Crego AL, Marina ML. Detection of saffron adulteration with gardenia extracts through the determination of geniposide by liquid chromatography–mass spectrometry. J Food Compost Anal. 2017;55:30–7. doi: 10.1016/j.jfca.2016.11.004. DOI
Huang W-J, Li F-F, Liu Y-J, Long C-L. Identification of Crocus sativus and its adulterants from Chinese markets by using DNA barcoding technique. Iran J Biotechnol. 2015;13(1):36–42. doi: 10.15171/ijb.1034. PubMed DOI PMC
Petrakis EA, Polissiou MG. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta. 2017;162:558–66. doi: 10.1016/j.talanta.2016.10.072. PubMed DOI
Petrakis EA, Cagliani LR, Polissiou MG, Consonni R. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting. Food Chem. 2015;173:890–6. doi: 10.1016/j.foodchem.2014.10.107. PubMed DOI
Senizza B, Rocchetti G, Ghisoni S, Busconi M, De Los MozosPascual M, Fernandez JA, et al. Identification of phenolic markers for saffron authenticity and origin: an untargeted metabolomics approach. Food Res Int. 2019;126:108584. doi: 10.1016/j.foodres.2019.108584. PubMed DOI
Khilare V, Tiknaik A, Prakash B, Ughade B, Korhale G, Nalage D, et al. Multiple tests on saffron find new adulterant materials and reveal that Ist grade saffron is rare in the market. Food Chem. 2019;272:635–42. doi: 10.1016/j.foodchem.2018.08.089. PubMed DOI
Ghiasi S, Parastar H. Chemometrics-assisted isotope ratio fingerprinting based on gas chromatography/combustion/isotope ratio mass spectrometry for saffron authentication. J Chromatogr A. 2021;1657:462587. doi: 10.1016/j.chroma.2021.462587. PubMed DOI
Hashemi-Nasab FS, Parastar H. Vis-NIR hyperspectral imaging coupled with independent component analysis for saffron authentication. Food Chem. 2022;393:133450. doi: 10.1016/j.foodchem.2022.133450. PubMed DOI
Hegazi NM, Khattab AR, Frolov A, Wessjohann LA, Farag MA. Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chem. 2022;367:130739. doi: 10.1016/j.foodchem.2021.130739. PubMed DOI
Dowlatabadi R, Farshidfar F, Zare Z, Pirali M, Rabiei M, Khoshayand MR, et al. 2017 Detection of adulteration in Iranian saffron samples by 1H NMR spectroscopy and multivariate data analysis techniques. Metabolomics. 13(2). 10.1007/s11306-016-1155-x.
Marieschi M, Torelli A, Bruni R. Quality control of saffron (Crocus sativus L.): development of SCAR markers for the detection of plant adulterants used as bulking agents. J Agric Food Chem. 2012;60(44):10998–1004. doi: 10.1021/jf303106r. PubMed DOI
Kong W, An H, Zhang J, Sun L, Nan Y, Song A, et al. Development of a high-performance liquid chromatography with tandem mass spectrometry method for identifying common adulterant content in saffron (Crocus sativus L.) J Pharm Pharmacol. 2019;71(12):1864–70. doi: 10.1111/jphp.13152. PubMed DOI
Negi A, Pare A, Meenatchi R. Emerging techniques for adulterant authentication in spices and spice products. Food Control. 2021;127:108113. doi: 10.1016/j.foodcont.2021.108113. DOI
Musio B, Todisco S, Antonicelli M, Garino C, Arlorio M, Mastrorilli P, et al. Non-targeted NMR method to assess the authenticity of saffron and trace the agronomic practices applied for its production. Appl Sci. 2022;12(5):2583. doi: 10.3390/app12052583. DOI
Villa C, Costa J, Oliveira MB, Mafra I. Novel quantitative real-time PCR approach to determine safflower (Carthamus tinctorius) adulteration in saffron (Crocus sativus) Food Chem. 2017;229:680–7. doi: 10.1016/j.foodchem.2017.02.136. PubMed DOI
Varliklioz Er S, Eksi-Kocak H, Yetim H, Boyaci IH. Novel spectroscopic method for determination and quantification of saffron adulteration. Food Anal Methods. 2017;10(5):1547–55. doi: 10.1007/s12161-016-0710-4. DOI
Angelis ED, Pilolli R, Bejjani A, Guagnano R, Garino C, Arlorio M, et al. Optimization of an untargeted DART-HRMS method envisaging identification of potential markers for saffron authenticity assessment. Foods. 2021;10(6):1238. doi: 10.3390/foods10061238. PubMed DOI PMC
Li S, Xing B, Lin D, Yi H, Shao Q. Rapid detection of saffron (Crocus sativus L.) adulterated with lotus stamens and corn stigmas by near-infrared spectroscopy and chemometrics. Ind Crops Prod. 2020;152:112539. doi: 10.1016/j.indcrop.2020.112539. DOI
Dai H, Gao Q, He L. Rapid determination of saffron grade and adulteration by thin-layer chromatography coupled with Raman spectroscopy. Food Anal Methods. 2020;13(11):2128–37. doi: 10.1007/s12161-020-01828-x. DOI
Guijarro-Díez M, Castro-Puyana M, Crego AL, Marina ML. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. Food Chem. 2017;228:403–10. doi: 10.1016/j.foodchem.2017.02.015. PubMed DOI
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L) adulteration. Food Chem. 2020;307:125527. doi: 10.1016/j.foodchem.2019.125527. PubMed DOI
Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL 2006 Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem. 54(3):973-9. 10.1021/jf052297w. PubMed
Moras B, Loffredo L, Rey S. Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis) Food Chem. 2018;257:325–32. doi: 10.1016/j.foodchem.2018.03.025. PubMed DOI
ISO. International standard ISO 3632-1 (2011). Spices-saffron (Crocus sativus L.) - part 1: specifications. 2 ed. Geneva: The International Organization for Standardization; 2011.
ISO. International standard ISO 3632-2 (2010). Spices-saffron (Crocus sativus L.) - part 2: test methods. 2 ed. Geneva: International Organization for Standardization; 2010.
Sabatino L, Scordino M, Gargano M, Belligno A, Traulo P, Gagliano G. HPLC/PDA/ESI-MS evaluation of saffron (Crocus sativus L) adulteration. Nat Prod Commun. 2011;6(12):1873–6. doi: 10.1177/1934578X1100601220. PubMed DOI
Rubert J, Lacina O, Zachariasova M, Hajslova J. Saffron authentication based on liquid chromatography high resolution tandem mass spectrometry and multivariate data analysis. Food Chem. 2016;204:201–9. doi: 10.1016/j.foodchem.2016.01.003. PubMed DOI
Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8(2):31. doi: 10.3390/metabo8020031. PubMed DOI PMC
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) Metabolomics. 2007;3(3):211–21. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC