Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPσ

. 2023 Dec ; 40 (23-24) : 2500-2521. [epub] 20231011

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37606910

Grantová podpora
R01 NS101105 NINDS NIH HHS - United States

Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.

Zobrazit více v PubMed

Sekhon LHS, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 2001;26(Supplement):S2–S12; doi: 10.1097/00007632-200112151-00002 PubMed DOI

Kumar R, Lim J, Mekary RA, et al. . Traumatic spinal injury: global epidemiology and worldwide volume. World Neurosurg 2018;113:e345–e363; doi: 10.1016/j.wneu.2018.02.033 PubMed DOI

Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 2004;21(10):1371–1383; doi: 10.1089/neu.2004.21.1371 PubMed DOI

Snow DM, Steindler DA, Silver J. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev Biol 1990;138(2):359–376; doi: 10.1016/0012-1606(90)90203-U PubMed DOI

Brittis PA, Canning DR, Silver J. Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science (1979) 1992;255(5045):733–736; doi: 10.1126/science.1738848 PubMed DOI

Brooks JM, Su J, Levy C, et al. . A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 2013;5(3):573–581; doi: 10.1016/j.celrep.2013.09.041 PubMed DOI PMC

Lang BT, Cregg JM, DePaul MA, et al. . Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 2015;518(7539):404–408; doi: 10.1038/nature13974 PubMed DOI PMC

Luo F, Tran AP, Xin L, et al. . Modulation of proteoglycan receptor PTPσ enhances MMP-2 activity to promote recovery from multiple sclerosis. Nat Commun 2018;9(1):4126; doi: 10.1038/s41467-018-06505-6 PubMed DOI PMC

Kazanis I, ffrench-Constant C. Extracellular matrix and the neural stem cell niche. Dev Neurobiol 2011;71(11):1006–1017; doi: 10.1002/dneu.20970 PubMed DOI PMC

Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev 2018;98(2):881–917; doi: 10.1152/physrev.00017.2017 PubMed DOI PMC

Massey JM, Hubscher CH, Wagoner MR, et al. . Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 2006;26(16):4406–4414; doi: 10.1523/JNEUROSCI.5467-05.2006 PubMed DOI PMC

Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 2007;17(1):120–127; doi: 10.1016/j.conb.2006.09.004 PubMed DOI

Alilain WJ, Horn KP, Hu H, et al. . Functional regeneration of respiratory pathways after spinal cord injury. Nature 2011;475(7355):196–200; doi: 10.1038/nature10199 PubMed DOI PMC

Li L, Zheng H, Ma X, et al. . Inhibition of astrocytic carbohydrate sulfotransferase 15 promotes nerve repair after spinal cord injury via mitigation of CSPG mediated axonal inhibition. Cell Mol Neurobiol 2023; doi: 10.1007/s10571-023-01333-9 PubMed DOI PMC

Andrews EM, Richards RJ, Yin FQ, et al. . Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol 2012;235(1):174–187; doi: 10.1016/j.expneurol.2011.09.008 PubMed DOI PMC

Lipachev N, Arnst N, Melnikova A, et al. . Quantitative changes in perineuronal nets in development and posttraumatic condition. J Mol Histol 2019;50(3):203–216; doi: 10.1007/s10735-019-09818-y PubMed DOI

Silver DJ, Silver J. Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Curr Opin Neurobiol 2014;27:171–178; doi: 10.1016/j.conb.2014.03.016 PubMed DOI PMC

Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol 2015;269:169–187; doi: 10.1016/j.expneurol.2015.04.006 PubMed DOI

Hryciw T, Geremia NM, Walker MA, et al. . Anti-chondroitin sulfate proteoglycan strategies in spinal cord injury: temporal and spatial considerations explain the balance between neuroplasticity and neuroprotection. J Neurotrauma 2018;35(16):1958–1969; doi: 10.1089/neu.2018.5928 DOI

Grycz K, Głowacka A, Ji B, et al. . Regulation of perineuronal net components in the synaptic bouton vicinity on lumbar α-motoneurons in the rat after spinalization and locomotor training: new insights from spatio-temporal changes in gene, protein expression and WFA labeling. Exp Neurol 2022;354:114098; doi: 10.1016/j.expneurol.2022.114098 PubMed DOI

Sakamoto K, Ozaki T, Ko Y-C, et al. . Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis. Nat Chem Biol 2019;15(7):699–709; doi: 10.1038/s41589-019-0274-x PubMed DOI

Grimpe B, Silver J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci 2004;24(6):1393–1397; doi: 10.1523/JNEUROSCI.4986-03.2004 PubMed DOI PMC

Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 2000;57(2):276–289; doi: 10.1007/PL00000690 PubMed DOI PMC

Lau LW, Cua R, Keough MB, et al. . Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci 2013;14(10):722–729; doi: 10.1038/nrn3550 PubMed DOI

Dyck SM, Alizadeh A, Santhosh KT, et al. . Chondroitin sulfate proteoglycans negatively modulate spinal cord neural precursor cells by signaling through LAR and RPTPσ and modulation of the Rho/ROCK pathway. Stem Cells 2015;33(8):2550–2563; doi: 10.1002/stem.1979 PubMed DOI

Sherman LS, Back SA. A ‘GAG’ reflex prevents repair of the damaged CNS. Trends Neurosci 2008;31(1):44–52; doi: 10.1016/j.tins.2007.11.001 PubMed DOI

Hartmann U, Maurer P. Proteoglycans in the nervous system — the quest for functional roles in vivo. Matrix Biol 2001;20(1):23–35; doi: 10.1016/S0945-053X(00)00137-2 PubMed DOI

Karimi-Abdolrezaee S, Schut D, Wang J, et al. . Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLoS One 2012;7(5):e37589; doi: 10.1371/journal.pone.0037589 PubMed DOI PMC

Khalil AS, Hellenbrand D, Reichl K, et al. . A localized materials-based strategy to non-virally deliver chondroitinase ABC mRNA improves hindlimb function in a rat spinal cord injury model. Adv Healthc Mater 2022;11(19):2200206; doi: 10.1002/adhm.202200206 PubMed DOI PMC

Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. . Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 2010;30(5):1657–1676; doi: 10.1523/JNEUROSCI.3111-09.2010 PubMed DOI PMC

Gandhi T, Liu C-C, Adeyelu TT, et al. . Behavioral regulation by perineuronal nets in the prefrontal cortex of the CNTNAP2 mouse model of autism spectrum disorder. Front Behav Neurosci 2023;17; doi: 10.3389/fnbeh.2023.1114789 PubMed DOI PMC

Nogueira-Rodrigues J, Leite SC, Pinto-Costa R, et al. . Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev Cell 2022;57(4):440-450.e7; doi: 10.1016/j.devcel.2021.12.008 PubMed DOI

Shafqat A, Albalkhi I, Magableh HM, et al. . Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023;17; doi: 10.3389/fncel.2023.1180825 PubMed DOI PMC

Carter LM, Starkey ML, Akrimi SF, et al. . The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury. J Neurosci 2008;28(52):14107–14120; doi: 10.1523/JNEUROSCI.2217-08.2008 PubMed DOI PMC

Ouchida J, Ozaki T, Segi N, et al. . Glypican-2 defines age-dependent axonal response to chondroitin sulfate. Exp Neurol 2023;366:114444; doi: 10.1016/j.expneurol.2023.114444 PubMed DOI

Michel-Flutot P, Lane MA, Lepore AC, et al. . Therapeutic strategies targeting respiratory recovery after spinal cord injury: from preclinical development to clinical translation. Cells 2023;12(11):1519; doi: 10.3390/cells12111519 PubMed DOI PMC

Petrosyan HA, Alessi V, Lasek K, et al. . AAV vector mediated delivery of NG2 function neutralizing antibody and neurotrophin NT-3 improves synaptic transmission, locomotion, and urinary tract function after spinal cord contusion injury in adult rats. J Neurosci 2023;43(9):1492–1508; doi: 10.1523/JNEUROSCI.1276-22.2023 PubMed DOI PMC

Miller GM, Hsieh-Wilson LC. Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Exp Neurol 2015;274:115–125; doi: 10.1016/j.expneurol.2015.08.015 PubMed DOI PMC

Pearson CS, Mencio CP, Barber AC, et al. . Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. Elife 2018;7:e37139; doi: 10.7554/eLife.37139 PubMed DOI PMC

Wang H, Katagiri Y, McCann TE, et al. . Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 2008;121(18):3083–3091; doi: 10.1242/jcs.032649 PubMed DOI PMC

Hussein RK, Mencio CP, Katagiri Y, et al. . Role of chondroitin sulfation following spinal cord injury. Front Cell Neurosci 2020;14:208; doi: 10.3389/fncel.2020.00208 PubMed DOI PMC

García-Alías G, Barkhuysen S, Buckle M, et al. . Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 2009;12(9):1145–1151; doi: 10.1038/nn.2377 PubMed DOI

Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5(2):146–156; doi: 10.1038/nrn1326 PubMed DOI

Cafferty WBJ, Bradbury EJ, Lidierth M, et al. . Chondroitinase ABC-mediated plasticity of spinal sensory function. J Neurosci 2008;28(46):11998–12009; doi: 10.1523/JNEUROSCI.3877-08.2008 PubMed DOI PMC

Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol 2014;13(12):1241–1256; doi: 10.1016/S1474-4422(14)70144-9 PubMed DOI

Sakamoto K, Kadomatsu K. Mechanisms of axon regeneration: the significance of proteoglycans. Biochim Biophys Acta Gen Subj 2017;1861(10):2435–2441; doi: 10.1016/j.bbagen.2017.06.005 PubMed DOI

Brown JM, Xia J, Zhuang B, et al. . A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc Natl Acad Sci 2012;109(13):4768–4773; doi: 10.1073/pnas.1121318109 PubMed DOI PMC

Sakamoto K, Ozaki T, Kadomatsu K. Axonal regeneration by glycosaminoglycan. Front Cell Dev Biol 2021;9; doi: 10.3389/fcell.2021.702179 PubMed DOI PMC

Massey JM, Amps J, Viapiano MS, et al. . Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 2008;209(2):426–445; doi: 10.1016/j.expneurol.2007.03.029 PubMed DOI PMC

Shinozaki M, Iwanami A, Fujiyoshi K, et al. . Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats. Neurosci Res 2016;113:37–47; doi: 10.1016/j.neures.2016.07.005 PubMed DOI

Wang D, Ichiyama RM, Zhao R, et al. . Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 2011;31(25):9332–9344; doi: 10.1523/JNEUROSCI.0983-11.2011 PubMed DOI PMC

Tom VJ, Steinmetz MP, Miller JH, et al. . Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 2004;24(29):6531–6539; doi: 10.1523/JNEUROSCI.0994-04.2004 PubMed DOI PMC

Warren PM, Steiger SC, Dick TE, et al. . Rapid and robust restoration of breathing long after spinal cord injury. Nat Commun 2018;9(1):4843; doi: 10.1038/s41467-018-06937-0 PubMed DOI PMC

Warren PM, Kissane RWP, Egginton S, et al. . Oxygen transport kinetics underpin rapid and robust diaphragm recovery following chronic spinal cord injury. J Physiol 2021;599(4):1199–1224; doi: 10.1113/JP280684 PubMed DOI PMC

Warren PM, Alilain WJ. Plasticity induced recovery of breathing occurs at chronic stages after cervical contusion. J Neurotrauma 2019;36(12):1985–1999; doi: 10.1089/neu.2018.6186 PubMed DOI PMC

Hettiaratchi MH, O'Meara MJ, O'Meara TR, et al. . Reengineering biocatalysts: Computational redesign of chondroitinase ABC improves efficacy and stability. Sci Adv 2020;6(34); doi: 10.1126/sciadv.abc6378 PubMed DOI PMC

Hettiaratchi MH, O'Meara MJ, Teal CJ, et al. . Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J Control Release 2019;297:14–25; doi: 10.1016/j.jconrel.2019.01.033 PubMed DOI

Lee H, McKeon RJ, Bellamkonda R V. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci 2010;107(8):3340–3345; doi: 10.1073/pnas.0905437106 PubMed DOI PMC

Bartus K, James ND, Didangelos A, et al. . Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci 2014;34(14):4822–4836; doi: 10.1523/JNEUROSCI.4369-13.2014 PubMed DOI PMC

Burnside ER, de Winter F, Didangelos A, et al. . Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 2018;141(8):2362–2381; doi: 10.1093/brain/awy158 PubMed DOI PMC

Shen Y, Tenney AP, Busch SA, et al. . PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science (1979) 2009;326(5952):592–596; doi: 10.1126/science.1178310 PubMed DOI PMC

Ham TR, Farrag M, Soltisz AM, et al. . Automated gait analysis detects improvements after intracellular σ peptide administration in a rat hemisection model of spinal cord injury. Ann Biomed Eng 2019;47(3):744–753; doi: 10.1007/s10439-019-02198-0 PubMed DOI PMC

Fisher D, Xing B, Dill J, et al. . Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 2011;31(40):14051–14066; doi: 10.1523/JNEUROSCI.1737-11.2011 PubMed DOI PMC

Irvine K-A, Ferguson AR, Mitchell KD, et al. . The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: an assessment of reliability and validity. Front Neurol 2014;5:116; doi: 10.3389/fneur.2014.00116 PubMed DOI PMC

Singh A, Krisa L, Frederick KL, et al. . Forelimb locomotor rating scale for behavioral assessment of recovery after unilateral cervical spinal cord injury in rats. J Neurosci Methods 2014;226:124–131; doi: 10.1016/j.jneumeth.2014.01.001 PubMed DOI PMC

Basso DM, Beattie MS, Breshanhan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995;12(1):1–21; doi: 10.1089/neu.1995.12.1 PubMed DOI

Lemons ML, Howland DR, Anderson DK. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 1999;160(1):51–65; doi: 10.1006/exnr.1999.7184 PubMed DOI

Hunanyan AS, Garcia-Alias G, Alessi V, et al. . Role of chondroitin sulfate proteoglycans in axonal conduction in mammalian spinal cord. J Neurosci 2010;30(23):7761–7769; doi: 10.1523/JNEUROSCI.4659-09.2010 PubMed DOI PMC

Tran AP, Sundar S, Yu M, et al. . Modulation of receptor protein tyrosine phosphatase sigma increases chondroitin sulfate proteoglycan degradation through cathepsin B secretion to enhance axon outgrowth. J Neurosci 2018;38(23):5399–5414; doi: 10.1523/JNEUROSCI.3214-17.2018 PubMed DOI PMC

Vitrac C, Benoit-Marand M. Monoaminergic modulation of motor cortex function. Front Neural Circuits 2017;11; doi: 10.3389/fncir.2017.00072 PubMed DOI PMC

Seo NJ, Fischer HW, Bogey RA, et al. . Effect of a serotonin antagonist on delay in grip muscle relaxation for persons with chronic hemiparetic stroke. Clin Neurophysiol 2011;122(4):796–802; doi: 10.1016/j.clinph.2010.10.035 PubMed DOI

Bareyre FM, Kerschensteiner M, Raineteau O, et al. . The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004;7(3):269–277; doi: 10.1038/nn1195 PubMed DOI

Fenrich KK, Rose PK. Spinal interneuron axons spontaneously regenerate after spinal cord injury in the adult feline. J Neurosci 2009;29(39):12145–12158; doi: 10.1523/JNEUROSCI.0897-09.2009 PubMed DOI PMC

Porter WT. The path of the respiratory impulse from the bulb to the phrenic nuclei. J Physiol 1895;17(6):455–485; doi: 10.1113/jphysiol.1895.sp000553 PubMed DOI PMC

Friedli L, Rosenzweig ES, Barraud Q, et al. . Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med 2015;7(302); doi: 10.1126/scitranslmed.aac5811 PubMed DOI PMC

Lane MA, White TE, Coutts MA, et al. . Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat. J Comp Neurol 2008;511(5):692–709; doi: 10.1002/cne.21864 PubMed DOI PMC

Alilain WJ, Goshgarian HG. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury. Exp Neurol 2008;212(2):348–357; doi: 10.1016/j.expneurol.2008.04.017 PubMed DOI PMC

Hawthorne AL, Hu H, Kundu B, et al. . The unusual response of serotonergic neurons after CNS injury: lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J Neurosci 2011;31(15):5605–5616; doi: 10.1523/JNEUROSCI.6663-10.2011 PubMed DOI PMC

Ishida A, Kobayashi K, Ueda Y, et al. . Dynamic interaction between cortico-brainstem pathways during training-induced recovery in stroke model rats. J Neurosci 2019;39(37):7306–7320; doi: 10.1523/JNEUROSCI.0649-19.2019 PubMed DOI PMC

García-Alías G, Truong K, Shah PK, et al. . Plasticity of subcortical pathways promote recovery of skilled hand function in rats after corticospinal and rubrospinal tract injuries. Exp Neurol 2015;266:112–119; doi: 10.1016/j.expneurol.2015.01.009 PubMed DOI PMC

Asboth L, Friedli L, Beauparlant J, et al. . Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci 2018;21(4):576–588; doi: 10.1038/s41593-018-0093-5 PubMed DOI

Ueno M, Ueno-Nakamura Y, Niehaus J, et al. . Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 2016;19(6):784–787; doi: 10.1038/nn.4289 PubMed DOI PMC

Foscarin S, Raha-Chowdhury R, Fawcett JW, et al. . Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging 2017;9(6):1607–1622; doi: 10.18632/aging.101256 PubMed DOI PMC

Carulli D, Verhaagen J. An extracellular perspective on cns maturation: perineuronal nets and the control of plasticity. Int J Mol Sci 2021;22(5):2434; doi: 10.3390/ijms22052434 PubMed DOI PMC

Goussev S, Hsu J-YC, Lin Y, et al. . Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing. J Neurosurg Spine 2003;99(2):188–197; doi: 10.3171/spi.2003.99.2.0188 PubMed DOI PMC

Carceller H, Gramuntell Y, Klimczak P, et al. . Perineuronal nets: subtle structures with large implications. Neuroscientist 2022;107385842211063; doi: 10.1177/10738584221106346 PubMed DOI

Gottschling C, Wegrzyn D, Denecke B, et al. . Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep 2019;9(1):13939; doi: 10.1038/s41598-019-50404-9 PubMed DOI PMC

John U, Patro N, Patro I. Perineuronal nets: Cruise from a honeycomb to the safety nets. Brain Res Bull 2022;190:179–194; doi: 10.1016/j.brainresbull.2022.10.004 PubMed DOI

Sclip A, Südhof TC. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. Elife 2020;9:e53406; doi: 10.7554/eLife.53406 PubMed DOI PMC

Stoyanov S, Sun W, Düsedau HP, et al. . Attenuation of the extracellular matrix restores microglial activity during the early stage of amyloidosis. Glia 2021;69(1):182–200; doi: 10.1002/glia.23894 PubMed DOI

Tsien RY. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci 2013;110(30):12456–12461; doi: 10.1073/pnas.131015811 PubMed DOI PMC

Lev-Ram V, Lemieux SP, Deerinck TJ, et al. . Do perineuronal nets stabilize the engram of a synaptic circuit? BioRxiv 2023.

Atwood HL. Silent synapses in neural plasticity: current evidence. Learn Mem 1999;6(6):542–571; doi: 10.1101/lm.6.6.542 PubMed DOI

Goshgarian HG. Invited Review: The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol 2003;94(2):795–810; doi: 10.1152/japplphysiol.00847.2002 PubMed DOI

Goshgarian HG. The crossed phrenic phenomenon and recovery of function following spinal cord injury. Respir Physiol Neurobiol 2009;169(2):85–93; doi: 10.1016/j.resp.2009.06.005 PubMed DOI PMC

Lewis LJ, Brookhart JM. Significance of the crossed phrenic phenomenon. Am J Physiol 1951;166(2):241–254; doi: 10.1152/ajplegacy.1951.166.2.241 PubMed DOI

Urban MW, Ghosh B, Block CG, et al. . Protein tyrosine phosphatase σ inhibitory peptide promotes recovery of diaphragm function and sprouting of bulbospinal respiratory axons after cervical spinal cord injury. J Neurotrauma 2020;37(3):572–579; doi: 10.1089/neu.2019.6586 PubMed DOI PMC

Cheng L, Sami A, Ghosh B, et al. . LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury. Neurobiol Dis 2021;147:105153; doi: 10.1016/j.nbd.2020.105153 PubMed DOI PMC

Martin JH. The corticospinal system: from development to motor control. Neuroscientist 2005;11(2):161–173; doi: 10.1177/1073858404270843 PubMed DOI

Chen B, Li Y, Yu B, et al. . Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018;174(6):1599; doi: 10.1016/j.cell.2018.08.050 PubMed DOI PMC

Weng Y-L, An R, Cassin J, et al. . An intrinsic epigenetic barrier for functional axon regeneration. Neuron 2017;94(2):337-346.e6; doi: 10.1016/j.neuron.2017.03.034 PubMed DOI PMC

Buttry JL, Goshgarian HG. Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways. Exp Neurol 2014;261:440–450; doi: 10.1016/j.expneurol.2014.07.016 PubMed DOI

Liu JA, Tam KW, Chen YL, et al. . Transplanting human neural stem cells with ≈50% reduction of SOX9 gene dosage promotes tissue repair and functional recovery from severe spinal cord injury. Adv Sci 2023;10(20):e2205804; doi: 10.1002/advs.202205804 PubMed DOI PMC

Luo F, Wang J, Zhang Z, et al. . Inhibition of CSPG receptor PTPσ promotes migration of newly born neuroblasts, axonal sprouting, and recovery from stroke. Cell Rep 2022;40(4):111137; doi: 10.1016/j.celrep.2022.111137 PubMed DOI PMC

Yao M, Fang J, Li J, et al. . Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice. J Neuroinflammation 2022;19(1):207; doi: 10.1186/s12974-022-02561-4 PubMed DOI PMC

Um JW, Ko J. LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol 2013;23(10):465–475; doi: 10.1016/j.tcb.2013.07.004 PubMed DOI

Takahashi H, Craig AM. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci 2013;36(9):522–534; doi: 10.1016/j.tins.2013.06.002 PubMed DOI PMC

Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021;200:101983; doi: 10.1016/j.pneurobio.2020.101983 PubMed DOI

Woo J, Kwon S-K, Choi S, et al. . Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 2009;12(4):428–437; doi: 10.1038/nn.2279 PubMed DOI

Yim YS, Kwon Y, Nam J, et al. . Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. Proc Natl Acad Sci 2013;110(10):4057–4062; doi: 10.1073/pnas.1209881110 PubMed DOI PMC

Woo J, Kwon S-K, Kim E. The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Mol Cell Neurosci 2009;42(1):1–10; doi: 10.1016/j.mcn.2009.05.008 PubMed DOI

Okuno Y, Sakoori K, Matsuyama K, et al. . PTPδ is a presynaptic organizer for the formation and maintenance of climbing fiber to Purkinje cell synapses in the developing cerebellum. Front Mol Neurosci 2023;16; doi: 10.3389/fnmol.2023.1206245 PubMed DOI PMC

Rink S, Arnold D, Wöhler A, et al. . Recovery after spinal cord injury by modulation of the proteoglycan receptor PTPσ. Exp Neurol 2018;309:148–159; doi: 10.1016/j.expneurol.2018.08.003 PubMed DOI

Ham TR, Pukale DD, Hamrangsekachaee M, et al. . Subcutaneous priming of protein-functionalized chitosan scaffolds improves function following spinal cord injury. Mater Sci Eng C Mater Biol Appl 2020;110:110656; doi: 10.1016/j.msec.2020.110656 PubMed DOI

Ran N, Li W, Zhang R, et al. . Autologous exosome facilitates load and target delivery of bioactive peptides to repair spinal cord injury. Bioact Mater 2022;25:766-782; doi: 10.1016/j.bioactmat.2022.07.002 PubMed DOI PMC

Sun X, Liu H, Tan Z, et al. . Remodeling microenvironment for endogenous repair through precise modulation of chondroitin sulfate proteoglycans following spinal cord injury. Small 2023;19(6):2205012; doi: 10.1002/smll.202205012 PubMed DOI

Gardner RT, Wang L, Lang BT, et al. . Targeting protein tyrosine phosphatase σ after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun 2015;6(1):6235; doi: 10.1038/ncomms7235 PubMed DOI PMC

Sepe JJ, Gardner RT, Blake MR, et al. . Therapeutics that promote sympathetic reinnervation modulate the inflammatory response after myocardial infarction. JACC Basic Transl Sci 2022;7(9):915–930; doi: 10.1016/j.jacbts.2022.04.009 PubMed DOI PMC

Li H, Wong C, Li W, et al. . Enhanced regeneration and functional recovery after spinal root avulsion by manipulation of the proteoglycan receptor PTPσ. Sci Rep 2015;5:14923; doi: 10.1038/srep14923 PubMed DOI PMC

Lv S-Q, Wu W. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury. Neural Regen Res 2021;16(8):1598; doi: 10.4103/1673-5374.294565 PubMed DOI PMC

Duncan JA, Foster R, Kwok JCF. The potential of memory enhancement through modulation of perineuronal nets. Br J Pharmacol 2019;176(18):3611–3621; doi: 10.1111/bph.14672 PubMed DOI PMC

Nagy N, Kuipers HF, Frymoyer AR, et al. . 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol 2015; 23;6:123; doi: 10.3389/fimmu.2015.00123 PubMed DOI PMC

Caon I, Bartolini B, Parnigoni A, et al. . Revisiting the hallmarks of cancer: the role of hyaluronan. Semin Cancer Biol 2020;62:9–19; doi: 10.1016/j.semcancer.2019.07.007 PubMed DOI

Irvine SF, Gigout S, Štepánková K, et al. . 4-methylumbelliferone enhances neuroplasticity in the central nervous system: potential oral treatment for SCI. bioRxiv 2023.

Štepánková K, Chudíčková M, Šimková Z, et al. . Oral administration of 4-methylumbelliferone reduces glial scar and promotes anatomical plasticity. bioRxiv 2023. PubMed

Even-Ram S, Yamada KM. Cell migration in 3D matrix. Curr Opin Cell Biol 2005;17(5):524–532; doi: 10.1016/j.ceb.2005.08.015 PubMed DOI

Zuo J, Ferguson TA, Hernandez YJ, et al. . Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci 1998;18(14):5203–5211; doi: 10.1523/JNEUROSCI.18-14-05203.1998 PubMed DOI PMC

Krystosek A, Seeds NW. Peripheral neurons and Schwann cells secrete plasminogen activator. J Cell Biol 1984;98(2):773–776; doi: 10.1083/jcb.98.2.773 PubMed DOI PMC

Turk V, Stoka V, Vasiljeva O, et al. . Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta Proteins Proteom 2012;1824(1):68–88; doi: 10.1016/j.bbapap.2011.10.002 PubMed DOI PMC

Ellis RC, O'Steen WA, Hayes RL, et al. . Cellular localization and enzymatic activity of cathepsin B after spinal cord injury in the rat. Exp Neurol 2005;193(1):19–28; doi: 10.1016/j.expneurol.2004.11.034 PubMed DOI

Jacobs BL, Fornal CA. Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 1999;21(2):9S-15S; doi: 10.1016/S0893-133X(99)00012-3 PubMed DOI

Wei K, Glaser JI, Deng L, et al. . Serotonin affects movement gain control in the spinal cord. J Neurosci 2014;34(38):12690–12700; doi: 10.1523/JNEUROSCI.1855-14.2014 PubMed DOI PMC

Sakai M, Matsunaga M, Kubota A, et al. . Reduction in excessive muscle tone by selective depletion of serotonin in intercollicularly decerebrated rats. Brain Res 2000;860(1–2):104–111; doi: 10.1016/S0006-8993(00)02022-9 PubMed DOI

Weidner N, Ner A, Salimi N, et al. . Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci 2001;98(6):3513–3518; doi: 10.1073/pnas.051626798 PubMed DOI PMC

Aoki M, Fujito Y, Satomi H, et al. . The possible role of collateral sprouting in the functional restitution of corticospinal connections after spinal hemisection. Neurosci Res 1986;3(6):617–627; doi: 10.1016/0168-0102(86)90058-1 PubMed DOI

Li WWY, Yew DTW, Chuah MI, et al. . Axonal sprouting in the hemisected adult rat spinal cord. Neuroscience 1994;61(1):133–139; doi: 10.1016/0306-4522(94)90066-3 PubMed DOI

Curcio M, Bradke F. Axon regeneration in the central nervous system: facing the challenges from the inside. Annu Rev Cell Dev Biol 2018;34(1):495–521; doi: 10.1146/annurev-cellbio-100617-062508 PubMed DOI

Bareyre FM, Kerschensteiner M, Raineteau O, et al. . The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004;7(3):269–277; doi: 10.1038/nn1195 PubMed DOI

Dyck S, Kataria H, Alizadeh A, et al. . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflammation 2018;15(1):90; doi: 10.1186/s12974-018-1128-2 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...