Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPσ
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 NS101105
NINDS NIH HHS - United States
PubMed
37606910
PubMed Central
PMC10698859
DOI
10.1089/neu.2023.0117
Knihovny.cz E-zdroje
- Klíčová slova
- CSPGs, axon regeneration, axon sprouting, perineuronal net, receptor PTPσ, spinal cord injury,
- MeSH
- chondroitinasa ABC farmakologie MeSH
- chondroitinsulfát proteoglykany * farmakologie MeSH
- krysa rodu Rattus MeSH
- mícha MeSH
- poranění míchy * MeSH
- potkani Sprague-Dawley MeSH
- přední končetina MeSH
- regenerace nervu fyziologie MeSH
- tyrosinfosfatasy receptorového typu, třída 2 MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chondroitinasa ABC MeSH
- chondroitinsulfát proteoglykany * MeSH
- tyrosinfosfatasy receptorového typu, třída 2 MeSH
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.
Department of Neurosciences Case Western Reserve University Cleveland Ohio USA
Institute of Experimental Medicine Czech Academy of Science Prague Czech Republic
Wolfson Centre for Age Related Diseases King's College London London United Kingdom
Zobrazit více v PubMed
Sekhon LHS, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 2001;26(Supplement):S2–S12; doi: 10.1097/00007632-200112151-00002 PubMed DOI
Kumar R, Lim J, Mekary RA, et al. . Traumatic spinal injury: global epidemiology and worldwide volume. World Neurosurg 2018;113:e345–e363; doi: 10.1016/j.wneu.2018.02.033 PubMed DOI
Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 2004;21(10):1371–1383; doi: 10.1089/neu.2004.21.1371 PubMed DOI
Snow DM, Steindler DA, Silver J. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev Biol 1990;138(2):359–376; doi: 10.1016/0012-1606(90)90203-U PubMed DOI
Brittis PA, Canning DR, Silver J. Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science (1979) 1992;255(5045):733–736; doi: 10.1126/science.1738848 PubMed DOI
Brooks JM, Su J, Levy C, et al. . A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 2013;5(3):573–581; doi: 10.1016/j.celrep.2013.09.041 PubMed DOI PMC
Lang BT, Cregg JM, DePaul MA, et al. . Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 2015;518(7539):404–408; doi: 10.1038/nature13974 PubMed DOI PMC
Luo F, Tran AP, Xin L, et al. . Modulation of proteoglycan receptor PTPσ enhances MMP-2 activity to promote recovery from multiple sclerosis. Nat Commun 2018;9(1):4126; doi: 10.1038/s41467-018-06505-6 PubMed DOI PMC
Kazanis I, ffrench-Constant C. Extracellular matrix and the neural stem cell niche. Dev Neurobiol 2011;71(11):1006–1017; doi: 10.1002/dneu.20970 PubMed DOI PMC
Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev 2018;98(2):881–917; doi: 10.1152/physrev.00017.2017 PubMed DOI PMC
Massey JM, Hubscher CH, Wagoner MR, et al. . Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 2006;26(16):4406–4414; doi: 10.1523/JNEUROSCI.5467-05.2006 PubMed DOI PMC
Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 2007;17(1):120–127; doi: 10.1016/j.conb.2006.09.004 PubMed DOI
Alilain WJ, Horn KP, Hu H, et al. . Functional regeneration of respiratory pathways after spinal cord injury. Nature 2011;475(7355):196–200; doi: 10.1038/nature10199 PubMed DOI PMC
Li L, Zheng H, Ma X, et al. . Inhibition of astrocytic carbohydrate sulfotransferase 15 promotes nerve repair after spinal cord injury via mitigation of CSPG mediated axonal inhibition. Cell Mol Neurobiol 2023; doi: 10.1007/s10571-023-01333-9 PubMed DOI PMC
Andrews EM, Richards RJ, Yin FQ, et al. . Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol 2012;235(1):174–187; doi: 10.1016/j.expneurol.2011.09.008 PubMed DOI PMC
Lipachev N, Arnst N, Melnikova A, et al. . Quantitative changes in perineuronal nets in development and posttraumatic condition. J Mol Histol 2019;50(3):203–216; doi: 10.1007/s10735-019-09818-y PubMed DOI
Silver DJ, Silver J. Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Curr Opin Neurobiol 2014;27:171–178; doi: 10.1016/j.conb.2014.03.016 PubMed DOI PMC
Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol 2015;269:169–187; doi: 10.1016/j.expneurol.2015.04.006 PubMed DOI
Hryciw T, Geremia NM, Walker MA, et al. . Anti-chondroitin sulfate proteoglycan strategies in spinal cord injury: temporal and spatial considerations explain the balance between neuroplasticity and neuroprotection. J Neurotrauma 2018;35(16):1958–1969; doi: 10.1089/neu.2018.5928 DOI
Grycz K, Głowacka A, Ji B, et al. . Regulation of perineuronal net components in the synaptic bouton vicinity on lumbar α-motoneurons in the rat after spinalization and locomotor training: new insights from spatio-temporal changes in gene, protein expression and WFA labeling. Exp Neurol 2022;354:114098; doi: 10.1016/j.expneurol.2022.114098 PubMed DOI
Sakamoto K, Ozaki T, Ko Y-C, et al. . Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis. Nat Chem Biol 2019;15(7):699–709; doi: 10.1038/s41589-019-0274-x PubMed DOI
Grimpe B, Silver J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci 2004;24(6):1393–1397; doi: 10.1523/JNEUROSCI.4986-03.2004 PubMed DOI PMC
Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 2000;57(2):276–289; doi: 10.1007/PL00000690 PubMed DOI PMC
Lau LW, Cua R, Keough MB, et al. . Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci 2013;14(10):722–729; doi: 10.1038/nrn3550 PubMed DOI
Dyck SM, Alizadeh A, Santhosh KT, et al. . Chondroitin sulfate proteoglycans negatively modulate spinal cord neural precursor cells by signaling through LAR and RPTPσ and modulation of the Rho/ROCK pathway. Stem Cells 2015;33(8):2550–2563; doi: 10.1002/stem.1979 PubMed DOI
Sherman LS, Back SA. A ‘GAG’ reflex prevents repair of the damaged CNS. Trends Neurosci 2008;31(1):44–52; doi: 10.1016/j.tins.2007.11.001 PubMed DOI
Hartmann U, Maurer P. Proteoglycans in the nervous system — the quest for functional roles in vivo. Matrix Biol 2001;20(1):23–35; doi: 10.1016/S0945-053X(00)00137-2 PubMed DOI
Karimi-Abdolrezaee S, Schut D, Wang J, et al. . Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLoS One 2012;7(5):e37589; doi: 10.1371/journal.pone.0037589 PubMed DOI PMC
Khalil AS, Hellenbrand D, Reichl K, et al. . A localized materials-based strategy to non-virally deliver chondroitinase ABC mRNA improves hindlimb function in a rat spinal cord injury model. Adv Healthc Mater 2022;11(19):2200206; doi: 10.1002/adhm.202200206 PubMed DOI PMC
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. . Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 2010;30(5):1657–1676; doi: 10.1523/JNEUROSCI.3111-09.2010 PubMed DOI PMC
Gandhi T, Liu C-C, Adeyelu TT, et al. . Behavioral regulation by perineuronal nets in the prefrontal cortex of the CNTNAP2 mouse model of autism spectrum disorder. Front Behav Neurosci 2023;17; doi: 10.3389/fnbeh.2023.1114789 PubMed DOI PMC
Nogueira-Rodrigues J, Leite SC, Pinto-Costa R, et al. . Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev Cell 2022;57(4):440-450.e7; doi: 10.1016/j.devcel.2021.12.008 PubMed DOI
Shafqat A, Albalkhi I, Magableh HM, et al. . Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023;17; doi: 10.3389/fncel.2023.1180825 PubMed DOI PMC
Carter LM, Starkey ML, Akrimi SF, et al. . The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury. J Neurosci 2008;28(52):14107–14120; doi: 10.1523/JNEUROSCI.2217-08.2008 PubMed DOI PMC
Ouchida J, Ozaki T, Segi N, et al. . Glypican-2 defines age-dependent axonal response to chondroitin sulfate. Exp Neurol 2023;366:114444; doi: 10.1016/j.expneurol.2023.114444 PubMed DOI
Michel-Flutot P, Lane MA, Lepore AC, et al. . Therapeutic strategies targeting respiratory recovery after spinal cord injury: from preclinical development to clinical translation. Cells 2023;12(11):1519; doi: 10.3390/cells12111519 PubMed DOI PMC
Petrosyan HA, Alessi V, Lasek K, et al. . AAV vector mediated delivery of NG2 function neutralizing antibody and neurotrophin NT-3 improves synaptic transmission, locomotion, and urinary tract function after spinal cord contusion injury in adult rats. J Neurosci 2023;43(9):1492–1508; doi: 10.1523/JNEUROSCI.1276-22.2023 PubMed DOI PMC
Miller GM, Hsieh-Wilson LC. Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Exp Neurol 2015;274:115–125; doi: 10.1016/j.expneurol.2015.08.015 PubMed DOI PMC
Pearson CS, Mencio CP, Barber AC, et al. . Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. Elife 2018;7:e37139; doi: 10.7554/eLife.37139 PubMed DOI PMC
Wang H, Katagiri Y, McCann TE, et al. . Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 2008;121(18):3083–3091; doi: 10.1242/jcs.032649 PubMed DOI PMC
Hussein RK, Mencio CP, Katagiri Y, et al. . Role of chondroitin sulfation following spinal cord injury. Front Cell Neurosci 2020;14:208; doi: 10.3389/fncel.2020.00208 PubMed DOI PMC
García-Alías G, Barkhuysen S, Buckle M, et al. . Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 2009;12(9):1145–1151; doi: 10.1038/nn.2377 PubMed DOI
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5(2):146–156; doi: 10.1038/nrn1326 PubMed DOI
Cafferty WBJ, Bradbury EJ, Lidierth M, et al. . Chondroitinase ABC-mediated plasticity of spinal sensory function. J Neurosci 2008;28(46):11998–12009; doi: 10.1523/JNEUROSCI.3877-08.2008 PubMed DOI PMC
Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol 2014;13(12):1241–1256; doi: 10.1016/S1474-4422(14)70144-9 PubMed DOI
Sakamoto K, Kadomatsu K. Mechanisms of axon regeneration: the significance of proteoglycans. Biochim Biophys Acta Gen Subj 2017;1861(10):2435–2441; doi: 10.1016/j.bbagen.2017.06.005 PubMed DOI
Brown JM, Xia J, Zhuang B, et al. . A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc Natl Acad Sci 2012;109(13):4768–4773; doi: 10.1073/pnas.1121318109 PubMed DOI PMC
Sakamoto K, Ozaki T, Kadomatsu K. Axonal regeneration by glycosaminoglycan. Front Cell Dev Biol 2021;9; doi: 10.3389/fcell.2021.702179 PubMed DOI PMC
Massey JM, Amps J, Viapiano MS, et al. . Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 2008;209(2):426–445; doi: 10.1016/j.expneurol.2007.03.029 PubMed DOI PMC
Shinozaki M, Iwanami A, Fujiyoshi K, et al. . Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats. Neurosci Res 2016;113:37–47; doi: 10.1016/j.neures.2016.07.005 PubMed DOI
Wang D, Ichiyama RM, Zhao R, et al. . Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 2011;31(25):9332–9344; doi: 10.1523/JNEUROSCI.0983-11.2011 PubMed DOI PMC
Tom VJ, Steinmetz MP, Miller JH, et al. . Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 2004;24(29):6531–6539; doi: 10.1523/JNEUROSCI.0994-04.2004 PubMed DOI PMC
Warren PM, Steiger SC, Dick TE, et al. . Rapid and robust restoration of breathing long after spinal cord injury. Nat Commun 2018;9(1):4843; doi: 10.1038/s41467-018-06937-0 PubMed DOI PMC
Warren PM, Kissane RWP, Egginton S, et al. . Oxygen transport kinetics underpin rapid and robust diaphragm recovery following chronic spinal cord injury. J Physiol 2021;599(4):1199–1224; doi: 10.1113/JP280684 PubMed DOI PMC
Warren PM, Alilain WJ. Plasticity induced recovery of breathing occurs at chronic stages after cervical contusion. J Neurotrauma 2019;36(12):1985–1999; doi: 10.1089/neu.2018.6186 PubMed DOI PMC
Hettiaratchi MH, O'Meara MJ, O'Meara TR, et al. . Reengineering biocatalysts: Computational redesign of chondroitinase ABC improves efficacy and stability. Sci Adv 2020;6(34); doi: 10.1126/sciadv.abc6378 PubMed DOI PMC
Hettiaratchi MH, O'Meara MJ, Teal CJ, et al. . Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J Control Release 2019;297:14–25; doi: 10.1016/j.jconrel.2019.01.033 PubMed DOI
Lee H, McKeon RJ, Bellamkonda R V. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci 2010;107(8):3340–3345; doi: 10.1073/pnas.0905437106 PubMed DOI PMC
Bartus K, James ND, Didangelos A, et al. . Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci 2014;34(14):4822–4836; doi: 10.1523/JNEUROSCI.4369-13.2014 PubMed DOI PMC
Burnside ER, de Winter F, Didangelos A, et al. . Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 2018;141(8):2362–2381; doi: 10.1093/brain/awy158 PubMed DOI PMC
Shen Y, Tenney AP, Busch SA, et al. . PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science (1979) 2009;326(5952):592–596; doi: 10.1126/science.1178310 PubMed DOI PMC
Ham TR, Farrag M, Soltisz AM, et al. . Automated gait analysis detects improvements after intracellular σ peptide administration in a rat hemisection model of spinal cord injury. Ann Biomed Eng 2019;47(3):744–753; doi: 10.1007/s10439-019-02198-0 PubMed DOI PMC
Fisher D, Xing B, Dill J, et al. . Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 2011;31(40):14051–14066; doi: 10.1523/JNEUROSCI.1737-11.2011 PubMed DOI PMC
Irvine K-A, Ferguson AR, Mitchell KD, et al. . The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: an assessment of reliability and validity. Front Neurol 2014;5:116; doi: 10.3389/fneur.2014.00116 PubMed DOI PMC
Singh A, Krisa L, Frederick KL, et al. . Forelimb locomotor rating scale for behavioral assessment of recovery after unilateral cervical spinal cord injury in rats. J Neurosci Methods 2014;226:124–131; doi: 10.1016/j.jneumeth.2014.01.001 PubMed DOI PMC
Basso DM, Beattie MS, Breshanhan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995;12(1):1–21; doi: 10.1089/neu.1995.12.1 PubMed DOI
Lemons ML, Howland DR, Anderson DK. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 1999;160(1):51–65; doi: 10.1006/exnr.1999.7184 PubMed DOI
Hunanyan AS, Garcia-Alias G, Alessi V, et al. . Role of chondroitin sulfate proteoglycans in axonal conduction in mammalian spinal cord. J Neurosci 2010;30(23):7761–7769; doi: 10.1523/JNEUROSCI.4659-09.2010 PubMed DOI PMC
Tran AP, Sundar S, Yu M, et al. . Modulation of receptor protein tyrosine phosphatase sigma increases chondroitin sulfate proteoglycan degradation through cathepsin B secretion to enhance axon outgrowth. J Neurosci 2018;38(23):5399–5414; doi: 10.1523/JNEUROSCI.3214-17.2018 PubMed DOI PMC
Vitrac C, Benoit-Marand M. Monoaminergic modulation of motor cortex function. Front Neural Circuits 2017;11; doi: 10.3389/fncir.2017.00072 PubMed DOI PMC
Seo NJ, Fischer HW, Bogey RA, et al. . Effect of a serotonin antagonist on delay in grip muscle relaxation for persons with chronic hemiparetic stroke. Clin Neurophysiol 2011;122(4):796–802; doi: 10.1016/j.clinph.2010.10.035 PubMed DOI
Bareyre FM, Kerschensteiner M, Raineteau O, et al. . The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004;7(3):269–277; doi: 10.1038/nn1195 PubMed DOI
Fenrich KK, Rose PK. Spinal interneuron axons spontaneously regenerate after spinal cord injury in the adult feline. J Neurosci 2009;29(39):12145–12158; doi: 10.1523/JNEUROSCI.0897-09.2009 PubMed DOI PMC
Porter WT. The path of the respiratory impulse from the bulb to the phrenic nuclei. J Physiol 1895;17(6):455–485; doi: 10.1113/jphysiol.1895.sp000553 PubMed DOI PMC
Friedli L, Rosenzweig ES, Barraud Q, et al. . Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med 2015;7(302); doi: 10.1126/scitranslmed.aac5811 PubMed DOI PMC
Lane MA, White TE, Coutts MA, et al. . Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat. J Comp Neurol 2008;511(5):692–709; doi: 10.1002/cne.21864 PubMed DOI PMC
Alilain WJ, Goshgarian HG. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury. Exp Neurol 2008;212(2):348–357; doi: 10.1016/j.expneurol.2008.04.017 PubMed DOI PMC
Hawthorne AL, Hu H, Kundu B, et al. . The unusual response of serotonergic neurons after CNS injury: lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J Neurosci 2011;31(15):5605–5616; doi: 10.1523/JNEUROSCI.6663-10.2011 PubMed DOI PMC
Ishida A, Kobayashi K, Ueda Y, et al. . Dynamic interaction between cortico-brainstem pathways during training-induced recovery in stroke model rats. J Neurosci 2019;39(37):7306–7320; doi: 10.1523/JNEUROSCI.0649-19.2019 PubMed DOI PMC
García-Alías G, Truong K, Shah PK, et al. . Plasticity of subcortical pathways promote recovery of skilled hand function in rats after corticospinal and rubrospinal tract injuries. Exp Neurol 2015;266:112–119; doi: 10.1016/j.expneurol.2015.01.009 PubMed DOI PMC
Asboth L, Friedli L, Beauparlant J, et al. . Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci 2018;21(4):576–588; doi: 10.1038/s41593-018-0093-5 PubMed DOI
Ueno M, Ueno-Nakamura Y, Niehaus J, et al. . Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 2016;19(6):784–787; doi: 10.1038/nn.4289 PubMed DOI PMC
Foscarin S, Raha-Chowdhury R, Fawcett JW, et al. . Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging 2017;9(6):1607–1622; doi: 10.18632/aging.101256 PubMed DOI PMC
Carulli D, Verhaagen J. An extracellular perspective on cns maturation: perineuronal nets and the control of plasticity. Int J Mol Sci 2021;22(5):2434; doi: 10.3390/ijms22052434 PubMed DOI PMC
Goussev S, Hsu J-YC, Lin Y, et al. . Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing. J Neurosurg Spine 2003;99(2):188–197; doi: 10.3171/spi.2003.99.2.0188 PubMed DOI PMC
Carceller H, Gramuntell Y, Klimczak P, et al. . Perineuronal nets: subtle structures with large implications. Neuroscientist 2022;107385842211063; doi: 10.1177/10738584221106346 PubMed DOI
Gottschling C, Wegrzyn D, Denecke B, et al. . Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep 2019;9(1):13939; doi: 10.1038/s41598-019-50404-9 PubMed DOI PMC
John U, Patro N, Patro I. Perineuronal nets: Cruise from a honeycomb to the safety nets. Brain Res Bull 2022;190:179–194; doi: 10.1016/j.brainresbull.2022.10.004 PubMed DOI
Sclip A, Südhof TC. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. Elife 2020;9:e53406; doi: 10.7554/eLife.53406 PubMed DOI PMC
Stoyanov S, Sun W, Düsedau HP, et al. . Attenuation of the extracellular matrix restores microglial activity during the early stage of amyloidosis. Glia 2021;69(1):182–200; doi: 10.1002/glia.23894 PubMed DOI
Tsien RY. Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci 2013;110(30):12456–12461; doi: 10.1073/pnas.131015811 PubMed DOI PMC
Lev-Ram V, Lemieux SP, Deerinck TJ, et al. . Do perineuronal nets stabilize the engram of a synaptic circuit? BioRxiv 2023.
Atwood HL. Silent synapses in neural plasticity: current evidence. Learn Mem 1999;6(6):542–571; doi: 10.1101/lm.6.6.542 PubMed DOI
Goshgarian HG. Invited Review: The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol 2003;94(2):795–810; doi: 10.1152/japplphysiol.00847.2002 PubMed DOI
Goshgarian HG. The crossed phrenic phenomenon and recovery of function following spinal cord injury. Respir Physiol Neurobiol 2009;169(2):85–93; doi: 10.1016/j.resp.2009.06.005 PubMed DOI PMC
Lewis LJ, Brookhart JM. Significance of the crossed phrenic phenomenon. Am J Physiol 1951;166(2):241–254; doi: 10.1152/ajplegacy.1951.166.2.241 PubMed DOI
Urban MW, Ghosh B, Block CG, et al. . Protein tyrosine phosphatase σ inhibitory peptide promotes recovery of diaphragm function and sprouting of bulbospinal respiratory axons after cervical spinal cord injury. J Neurotrauma 2020;37(3):572–579; doi: 10.1089/neu.2019.6586 PubMed DOI PMC
Cheng L, Sami A, Ghosh B, et al. . LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury. Neurobiol Dis 2021;147:105153; doi: 10.1016/j.nbd.2020.105153 PubMed DOI PMC
Martin JH. The corticospinal system: from development to motor control. Neuroscientist 2005;11(2):161–173; doi: 10.1177/1073858404270843 PubMed DOI
Chen B, Li Y, Yu B, et al. . Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018;174(6):1599; doi: 10.1016/j.cell.2018.08.050 PubMed DOI PMC
Weng Y-L, An R, Cassin J, et al. . An intrinsic epigenetic barrier for functional axon regeneration. Neuron 2017;94(2):337-346.e6; doi: 10.1016/j.neuron.2017.03.034 PubMed DOI PMC
Buttry JL, Goshgarian HG. Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways. Exp Neurol 2014;261:440–450; doi: 10.1016/j.expneurol.2014.07.016 PubMed DOI
Liu JA, Tam KW, Chen YL, et al. . Transplanting human neural stem cells with ≈50% reduction of SOX9 gene dosage promotes tissue repair and functional recovery from severe spinal cord injury. Adv Sci 2023;10(20):e2205804; doi: 10.1002/advs.202205804 PubMed DOI PMC
Luo F, Wang J, Zhang Z, et al. . Inhibition of CSPG receptor PTPσ promotes migration of newly born neuroblasts, axonal sprouting, and recovery from stroke. Cell Rep 2022;40(4):111137; doi: 10.1016/j.celrep.2022.111137 PubMed DOI PMC
Yao M, Fang J, Li J, et al. . Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice. J Neuroinflammation 2022;19(1):207; doi: 10.1186/s12974-022-02561-4 PubMed DOI PMC
Um JW, Ko J. LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol 2013;23(10):465–475; doi: 10.1016/j.tcb.2013.07.004 PubMed DOI
Takahashi H, Craig AM. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci 2013;36(9):522–534; doi: 10.1016/j.tins.2013.06.002 PubMed DOI PMC
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021;200:101983; doi: 10.1016/j.pneurobio.2020.101983 PubMed DOI
Woo J, Kwon S-K, Choi S, et al. . Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 2009;12(4):428–437; doi: 10.1038/nn.2279 PubMed DOI
Yim YS, Kwon Y, Nam J, et al. . Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. Proc Natl Acad Sci 2013;110(10):4057–4062; doi: 10.1073/pnas.1209881110 PubMed DOI PMC
Woo J, Kwon S-K, Kim E. The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Mol Cell Neurosci 2009;42(1):1–10; doi: 10.1016/j.mcn.2009.05.008 PubMed DOI
Okuno Y, Sakoori K, Matsuyama K, et al. . PTPδ is a presynaptic organizer for the formation and maintenance of climbing fiber to Purkinje cell synapses in the developing cerebellum. Front Mol Neurosci 2023;16; doi: 10.3389/fnmol.2023.1206245 PubMed DOI PMC
Rink S, Arnold D, Wöhler A, et al. . Recovery after spinal cord injury by modulation of the proteoglycan receptor PTPσ. Exp Neurol 2018;309:148–159; doi: 10.1016/j.expneurol.2018.08.003 PubMed DOI
Ham TR, Pukale DD, Hamrangsekachaee M, et al. . Subcutaneous priming of protein-functionalized chitosan scaffolds improves function following spinal cord injury. Mater Sci Eng C Mater Biol Appl 2020;110:110656; doi: 10.1016/j.msec.2020.110656 PubMed DOI
Ran N, Li W, Zhang R, et al. . Autologous exosome facilitates load and target delivery of bioactive peptides to repair spinal cord injury. Bioact Mater 2022;25:766-782; doi: 10.1016/j.bioactmat.2022.07.002 PubMed DOI PMC
Sun X, Liu H, Tan Z, et al. . Remodeling microenvironment for endogenous repair through precise modulation of chondroitin sulfate proteoglycans following spinal cord injury. Small 2023;19(6):2205012; doi: 10.1002/smll.202205012 PubMed DOI
Gardner RT, Wang L, Lang BT, et al. . Targeting protein tyrosine phosphatase σ after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun 2015;6(1):6235; doi: 10.1038/ncomms7235 PubMed DOI PMC
Sepe JJ, Gardner RT, Blake MR, et al. . Therapeutics that promote sympathetic reinnervation modulate the inflammatory response after myocardial infarction. JACC Basic Transl Sci 2022;7(9):915–930; doi: 10.1016/j.jacbts.2022.04.009 PubMed DOI PMC
Li H, Wong C, Li W, et al. . Enhanced regeneration and functional recovery after spinal root avulsion by manipulation of the proteoglycan receptor PTPσ. Sci Rep 2015;5:14923; doi: 10.1038/srep14923 PubMed DOI PMC
Lv S-Q, Wu W. ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury. Neural Regen Res 2021;16(8):1598; doi: 10.4103/1673-5374.294565 PubMed DOI PMC
Duncan JA, Foster R, Kwok JCF. The potential of memory enhancement through modulation of perineuronal nets. Br J Pharmacol 2019;176(18):3611–3621; doi: 10.1111/bph.14672 PubMed DOI PMC
Nagy N, Kuipers HF, Frymoyer AR, et al. . 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol 2015; 23;6:123; doi: 10.3389/fimmu.2015.00123 PubMed DOI PMC
Caon I, Bartolini B, Parnigoni A, et al. . Revisiting the hallmarks of cancer: the role of hyaluronan. Semin Cancer Biol 2020;62:9–19; doi: 10.1016/j.semcancer.2019.07.007 PubMed DOI
Irvine SF, Gigout S, Štepánková K, et al. . 4-methylumbelliferone enhances neuroplasticity in the central nervous system: potential oral treatment for SCI. bioRxiv 2023.
Štepánková K, Chudíčková M, Šimková Z, et al. . Oral administration of 4-methylumbelliferone reduces glial scar and promotes anatomical plasticity. bioRxiv 2023. PubMed
Even-Ram S, Yamada KM. Cell migration in 3D matrix. Curr Opin Cell Biol 2005;17(5):524–532; doi: 10.1016/j.ceb.2005.08.015 PubMed DOI
Zuo J, Ferguson TA, Hernandez YJ, et al. . Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci 1998;18(14):5203–5211; doi: 10.1523/JNEUROSCI.18-14-05203.1998 PubMed DOI PMC
Krystosek A, Seeds NW. Peripheral neurons and Schwann cells secrete plasminogen activator. J Cell Biol 1984;98(2):773–776; doi: 10.1083/jcb.98.2.773 PubMed DOI PMC
Turk V, Stoka V, Vasiljeva O, et al. . Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta Proteins Proteom 2012;1824(1):68–88; doi: 10.1016/j.bbapap.2011.10.002 PubMed DOI PMC
Ellis RC, O'Steen WA, Hayes RL, et al. . Cellular localization and enzymatic activity of cathepsin B after spinal cord injury in the rat. Exp Neurol 2005;193(1):19–28; doi: 10.1016/j.expneurol.2004.11.034 PubMed DOI
Jacobs BL, Fornal CA. Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 1999;21(2):9S-15S; doi: 10.1016/S0893-133X(99)00012-3 PubMed DOI
Wei K, Glaser JI, Deng L, et al. . Serotonin affects movement gain control in the spinal cord. J Neurosci 2014;34(38):12690–12700; doi: 10.1523/JNEUROSCI.1855-14.2014 PubMed DOI PMC
Sakai M, Matsunaga M, Kubota A, et al. . Reduction in excessive muscle tone by selective depletion of serotonin in intercollicularly decerebrated rats. Brain Res 2000;860(1–2):104–111; doi: 10.1016/S0006-8993(00)02022-9 PubMed DOI
Weidner N, Ner A, Salimi N, et al. . Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci 2001;98(6):3513–3518; doi: 10.1073/pnas.051626798 PubMed DOI PMC
Aoki M, Fujito Y, Satomi H, et al. . The possible role of collateral sprouting in the functional restitution of corticospinal connections after spinal hemisection. Neurosci Res 1986;3(6):617–627; doi: 10.1016/0168-0102(86)90058-1 PubMed DOI
Li WWY, Yew DTW, Chuah MI, et al. . Axonal sprouting in the hemisected adult rat spinal cord. Neuroscience 1994;61(1):133–139; doi: 10.1016/0306-4522(94)90066-3 PubMed DOI
Curcio M, Bradke F. Axon regeneration in the central nervous system: facing the challenges from the inside. Annu Rev Cell Dev Biol 2018;34(1):495–521; doi: 10.1146/annurev-cellbio-100617-062508 PubMed DOI
Bareyre FM, Kerschensteiner M, Raineteau O, et al. . The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004;7(3):269–277; doi: 10.1038/nn1195 PubMed DOI
Dyck S, Kataria H, Alizadeh A, et al. . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflammation 2018;15(1):90; doi: 10.1186/s12974-018-1128-2 PubMed DOI PMC