The potential of memory enhancement through modulation of perineuronal nets

. 2019 Sep ; 176 (18) : 3611-3621. [epub] 20190520

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30924524

Grantová podpora
MC_PC_16050 Medical Research Council - United Kingdom

With an increasingly aging global population, the incidence of neurological diseases such as dementia is set to increase to unmanageable levels, yet there are currently only symptomatic therapies available for treatment. The mechanisms underlying the development of some forms of dementia, such as Alzheimer's disease (AD), are not yet completely elucidated with several competing hypotheses existing. During the closure of the critical period in the brain, significant compositional changes occur to the neural extracellular matrix (ECM). Specifically, condensed mesh-like structures called perineuronal nets (PNNs) form around subsets of neurons and have a profound effect on axonal growth and limit neuronal plasticity. These PNNs act as a morphological checkpoint and can influence memory and cognition. Manipulating these important ECM structures may provide the key to reactivating plasticity and restoring memory, both of which are severely impaired in AD and other associated neurological diseases. This review explores the current understanding of how PNNs are manipulated and examines potential new methods for PNN modulation. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.

Zobrazit více v PubMed

Ajmo, J. M. , Bailey, L. A. , Howell, M. D. , Cortez, L. K. , Pennypacker, K. R. , Mehta, H. N. , … Gottschall, P. E. (2010). Abnormal post‐translational and extracellular processing of brevican in plaque‐bearing mice over‐expressing APPsw. Journal of Neurochemistry, 113, 784–795. 10.1111/j.1471-4159.2010.06647.x PubMed DOI PMC

Alexander, S. P. H. , Fabbro, D. , Kelly, E. , Marrion, N. V. , Peters, J. A. , Faccenda, E. , … CGTP Collaborators (2017). The Concise Guide to PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 174, S272–S359. 10.1111/bph.13877 PubMed DOI PMC

Alexander, S. P. H. , Kelly, E. , Marrion, N. V. , Peters, J. A. , Faccenda, E. , Harding, S. D. , … CGTP Collaborators (2017). The Concise Guide to PHARMACOLOGY 2017/18: Other proteins. British Journal of Pharmacology, 174, S1–S16. 10.1111/bph.13882 PubMed DOI PMC

Alexander, S. P. H. , Peters, J. A. , Kelly, E. , Marrion, N. V. , Faccenda, E. , Harding, S. D. , … CGTP Collaborators (2017). The Concise Guide to PHARMACOLOGY 2017/18: Ligand‐gated ion channels. British Journal of Pharmacology, 174, S130–S159. 10.1111/bph.13879 PubMed DOI PMC

Ballard, C. , Gauthier, S. , Corbett, A. , Brayne, C. , Aarsland, D. , & Jones, E. (2011). Alzheimer's disease. Lancet, 377, 1019–1031. 10.1016/S0140-6736(10)61349-9 PubMed DOI

Bandtlow, C. E. , & Zimmermann, D. R. (2000). Proteoglycans in the developing brain: New conceptual insights for old proteins. Physiological Reviews, 80, 1267–1290. 10.1152/physrev.2000.80.4.1267 PubMed DOI

Bekku, Y. , Saito, M. , Moser, M. , Fuchigami, M. , Maehara, A. , Nakayama, M. , … Oohashi, T. (2012). Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. The Journal of Comparative Neurology, 520, 1721–1736. 10.1002/cne.23009 PubMed DOI

Bernard, C. , & Prochiantz, A. (2016). Otx2‐PNN interaction to regulate cortical plasticity. Neural Plasticity, 2016, 1–7. 10.1155/2016/7931693 PubMed DOI PMC

Beurdeley, M. , Spatazza, J. , Lee, H. H. C. , Sugiyama, S. , Bernard, C. , Di Nardo, A. A. , … Prochiantz, A. (2012). Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. The Journal of Neuroscience, 32, 9429–9437. 10.1523/JNEUROSCI.0394-12.2012 PubMed DOI PMC

Bloom, G. S. (2014). Amyloid‐β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71, 505–508. 10.1001/jamaneurol.2013.5847 PubMed DOI

Boggio, E. M. , Ehlert, E. M. , Lupori, L. , Moloney, E. B. , De Winter, F. , Vander Kooi, C. W. , … Pizzorusso, T. (2019). Inhibition of semaphorin3A promotes ocular dominance plasticity in the adult rat visual cortex. Molecular Neurobiology. 10.1007/s12035-019-1499-0 PubMed DOI

Bradbury, E. J. , Moon, L. D. F. , Popat, R. J. , King, V. R. , Bennett, G. S. , Patel, P. N. , … McMahon, S. B. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 416, 636–640. 10.1038/416636a PubMed DOI

Carulli, D. , Pizzorusso, T. , Kwok, J. C. F. , Putignano, E. , Poli, A. , Forostyak, S. , … Fawcett, J. W. (2010). Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain, 133, 2331–2347. 10.1093/brain/awq145 PubMed DOI

Cheung, S. T. , Miller, M. S. , Pacoma, R. , Roland, J. , Liu, J. , Schumacher, A. M. , & Hsieh‐Wilson, L. C. (2017). Discovery of a small‐molecule modulator of glycosaminoglycan sulfation. ACS Chemical Biology, 12, 3126–3133. 10.1021/acschembio.7b00885 PubMed DOI PMC

Corredor, M. , Bonet, R. , Moure, A. , Domingo, C. , Bujons, J. , Alfonso, I. , … Messeguer, À. (2016). Cationic peptides and Peptidomimetics bind glycosaminoglycans as potential Sema3A pathway inhibitors. Biophysical Journal, 110, 1291–1303. 10.1016/j.bpj.2016.01.033 PubMed DOI PMC

Cummings, J. L. , Morstorf, T. , & Zhong, K. (2014). Alzheimer's disease drug‐development pipeline: Few candidates, frequent failures. Alzheimer's Research & Therapy, 6, 37 10.1186/alzrt269 PubMed DOI PMC

Czipri, M. , Otto, J. M. , Cs‐Szabó, G. , Kamath, R. V. , Vermes, C. , Firneisz, G. , … Glant, T. T. (2003). Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency. The Journal of Biological Chemistry, 278, 39214–39223. 10.1074/jbc.M303329200 PubMed DOI

Deepa, S. S. , Carulli, D. , Galtrey, C. , Rhodes, K. , Fukuda, J. , Mikami, T. , … Fawcett, J. W. (2006). Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net‐associated proteoglycans. The Journal of Biological Chemistry, 281, 17789–17800. 10.1074/jbc.M600544200 PubMed DOI

Despras, G. , Bernard, C. , Perrot, A. , Cattiaux, L. , Prochiantz, A. , Lortat‐Jacob, H. , & Mallet, J. M. (2013). Toward libraries of biotinylated chondroitin sulfate analogues: From synthesis to in vivo studies. Chemistry, 19, 531–540. 10.1002/chem.201202173 PubMed DOI

Dick, G. , Tan, C. L. , Alves, J. N. , Ehlert, E. M. , Miller, G. M. , Hsieh‐Wilson, L. C. , … Kwok, J. C. (2013). Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. The Journal of Biological Chemistry, 288, 27384–27395. 10.1074/jbc.M111.310029 PubMed DOI PMC

Dickendesher, T. L. , Baldwin, K. T. , Mironova, Y. A. , Koriyama, Y. , Raiker, S. J. , Askew, K. L. , … Giger, R. J. (2012). NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nature Neuroscience, 15, 703–712. 10.1038/nn.3070 PubMed DOI PMC

Doody, R. S. , Thomas, R. G. , Farlow, M. , Iwatsubo, T. , Vellas, B. , Joffe, S. , … Solanezumab Study Group (2014). Phase 3 trials of solanezumab for mild‐to‐moderate Alzheimer's disease. The New England Journal of Medicine, 370, 311–321. 10.1056/NEJMoa1312889 PubMed DOI

Fawcett, J. W. (2015). The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Progress in Brain Research, 218, 213–226. 10.1016/bs.pbr.2015.02.001 PubMed DOI

Fisher, D. , Xing, B. , Dill, J. , Li, H. , Hoang, H. H. , Zhao, Z. , … Li, S. (2011). Leukocyte common antigen‐related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. The Journal of Neuroscience, 31, 14051–14066. 10.1523/JNEUROSCI.1737-11.2011 PubMed DOI PMC

Foscarin, S. , Raha‐Chowdhury, R. , Fawcett, J. W. , & Kwok, J. C. F. (2017). Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging (Albany NY), 9, 1607–1622. 10.18632/aging.101256 PubMed DOI PMC

Frischknecht, R. , Heine, M. , Perrais, D. , Seidenbecher, C. I. , Choquet, D. , & Gundelfinger, E. D. (2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short‐term synaptic plasticity (Reprinted from Erschienen in Nature Neuroscience, vol 12, pg 897‐804, 2009). E‐Neuroforum, 15, 94–95. PubMed

Garg, H. G. , & Hales, C. A. (2004). Chemistry and biology of hyaluronan. Amsterdam: Elsevier.

Geissler, M. , Gottschling, C. , Aguado, A. , Rauch, U. , Wetzel, C. H. , Hatt, H. , & Faissner, A. (2013). Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. The Journal of Neuroscience, 33, 7742–7755. 10.1523/JNEUROSCI.3275-12.2013 PubMed DOI PMC

Glumoff, V. , Savontaus, M. , Vehanen, J. , & Vuorio, E. (1994). Analysis of aggrecan and tenascin gene expression in mouse skeletal tissues by northern and in situ hybridization using species specific cDNA probes. Biochimica et Biophysica Acta, 1219, 613–622. 10.1016/0167-4781(94)90220-8 PubMed DOI

Gogolla, N. , Caroni, P. , Lüthi, A. , & Herry, C. (2009). Perineuronal nets protect fear memories from erasure. Science (New York, N.Y.), 325, 1258–1261. PubMed

Gundelfinger, E. D. , Frischknecht, R. , Choquet, D. , & Heine, M. (2010). Converting juvenile into adult plasticity: A role for the brain's extracellular matrix. The European Journal of Neuroscience, 31, 2156–2165. 10.1111/j.1460-9568.2010.07253.x PubMed DOI

Happel, M. F. K. , Niekisch, H. , Castiblanco Rivera, L. L. , Ohl, F. W. , Deliano, M. , & Frischknecht, R. (2014). Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proceedings of the National Academy of Sciences, 111, 2800–2805. 10.1073/pnas.1310272111 PubMed DOI PMC

Harding, S. D. , Sharman, J. L. , Faccenda, E. , Southan, C. , Pawson, A. J. , Ireland, S. , … NC‐IUPHAR (2018). The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucl Acids Res, 46, D1091–D1106. 10.1093/nar/gkx1121 PubMed DOI PMC

Härtig, W. , Brauer, K. , & Brückner, G. K. (1992). Wisteria floribunda agglutinin‐labelled nets surround parvalbumin‐containing neurons. Neuroreport, 3(10), 869–872. 10.1097/00001756-199210000-00012 PubMed DOI

Härtig, W. , Derouiche, A. , Welt, K. , Brauer, K. , Grosche, J. , Mäder, M. , … Brückner, G. (1999). Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Research, 842, 15–29. 10.1016/S0006-8993(99)01784-9 PubMed DOI

Haunsoø, A. , Ibrahim, M. , Bartsch, U. , Letiembre, M. , Celio, M. R. , & Menoud, P. A. (2000). Morphology of perineuronal nets in tenascin‐R and parvalbumin single and double knockout mice. Brain Research, 864, 142–145. 10.1016/S0006-8993(00)02173-9 PubMed DOI

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley & Sons, Inc. London, Chapman & Hall, Limited.

Howell, M. D. , Bailey, L. A. , Cozart, M. A. , Gannon, B. M. , & Gottschall, P. E. (2015). Hippocampal administration of chondroitinase ABC increases plaque‐adjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice. Acta Neuropathologica Communications, 3, 54 10.1186/s40478-015-0233-z PubMed DOI PMC

Hylin, M. J. , Orsi, S. A. , Moore, A. N. , & Dash, P. K. (2013). Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learning & Memory, 20, 267–273. 10.1101/lm.030197.112 PubMed DOI PMC

Iqbal, K. , Liu, F. , Gong, C.‐X. , & Grundke‐Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research, 7, 656–664. 10.2174/156720510793611592 PubMed DOI PMC

Jones, E. G. (1994). Santiago Ramon y Cajal and the croonian lecture. Trends in Neurosciences, 17, 190–192. 10.1016/0166-2236(94)90100-7 PubMed DOI

Kaneko, S. , Iwanami, A. , Nakamura, M. , Kishino, A. , Kikuchi, K. , Shibata, S. , … Okano, H. (2006). A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nature Medicine, 12, 1380–1389. 10.1038/nm1505 PubMed DOI

Kepp, K. P. (2017). Ten challenges of the amyloid hypothesis of Alzheimer's disease. J. Alzheimer's Dis., 55, 447–457. 10.3233/JAD-160550 PubMed DOI

Kitagawa, H. , Tsutsumi, K. , Tone, Y. , & Sugahara, K. (1997). Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. The Journal of Biological Chemistry, 272, 31377–31381. 10.1074/jbc.272.50.31377 PubMed DOI

Kosaka, T. , & Heizmann, C. W. (1989). Selective staining of a population of parvalbumin‐containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N‐acetylgalactosamine. Brain Research, 483, 158–163. 10.1016/0006-8993(89)90048-6 PubMed DOI

Kwok, J. C. F. , Afshari, F. , García‐Alías, G. , & Fawcett, J. W. (2008). Proteoglycans in the central nervous system: Plasticity, regeneration and their stimulation with chondroitinase ABC. Restorative Neurology and Neuroscience, 26, 131–145. PubMed

Kwok, J. C. F. , Carulli, D. , & Fawcett, J. W. (2010). In vitro modeling of perineuronal nets: Hyaluronan synthase and link protein are necessary for their formation and integrity. Journal of Neurochemistry, 114, 1447–1459. 10.1111/j.1471-4159.2010.06878.x PubMed DOI

Kwok, J. C. F. , Dick, G. , Wang, D. , & Fawcett, J. W. (2011). Extracellular matrix and perineuronal nets in CNS repair. Developmental Neurobiology, 71, 1073–1089. 10.1002/dneu.20974 PubMed DOI

Lander, C. , Kind, P. , Maleski, M. , & Hockfield, S. (1997). A family of activity‐dependent neuronal cell‐surface chondroitin sulfate proteoglycans in cat visual cortex. The Journal of Neuroscience, 17, 1928–1939. 10.1523/JNEUROSCI.17-06-01928.1997 PubMed DOI PMC

Lang, B. T. , Cregg, J. M. , Depaul, M. A. , Tran, A. P. , Xu, K. , Dyck, S. M. , … Silver, J. (2015). Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature, 518, 404–408. 10.1038/nature13974 PubMed DOI PMC

Lee, H. H. C. , Bernard, C. , Ye, Z. , Acampora, D. , Simeone, A. , Prochiantz, A. , … Hensch, T. K. (2017). Genetic Otx2 mis‐localization delays critical period plasticity across brain regions. Molecular Psychiatry, 22, 680–688. 10.1038/mp.2017.1 PubMed DOI PMC

Lin, R. , Rosahl, T. W. , Whiting, P. J. , Fawcett, J. W. , & Kwok, J. C. F. (2011). 6‐Sulphated chondroitins have a positive influence on axonal regeneration. PLoS ONE, 6, e21499. PubMed PMC

Lundell, A. , Olin, A. I. , Mörgelin, M. , Al‐Karadaghi, S. , Aspberg, A. , & Logan, D. T. (2004). Structural basis for interactions between tenascins and lectican C‐type lectin domains: Evidence for a crosslinking role for tenascins. Structure, 12, 1495–1506. 10.1016/j.str.2004.05.021 PubMed DOI

Martin, S. J. , Grimwood, P. D. , & Morris, R. G. M. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711. 10.1146/annurev.neuro.23.1.649 PubMed DOI

McRae, P. A. , & Porter, B. E. (2012). The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochemistry International, 61, 963–972. 10.1016/j.neuint.2012.08.007 PubMed DOI PMC

Miao, Q.‐L. , Ye, Q. , & Zhang, X.‐H. (2014). Perineuronal net, CSPG receptor and their regulation of neural plasticity. Sheng Li Xue Bao, 66, 387–397. PubMed

Mikami, T. , & Kitagawa, H. (2013). Biosynthesis and function of chondroitin sulfate. Biochim. Biophys. Acta ‐ Gen. Subj., 1830, 4719–4733. 10.1016/j.bbagen.2013.06.006 PubMed DOI

Miyata, S. , & Kitagawa, H. (2016). Chondroitin 6‐sulfation regulates perineuronal net formation by controlling the stability of aggrecan. Neural Plasticity, 2016, 7–9. PubMed PMC

Miyata, S. , Komatsu, Y. , Yoshimura, Y. , Taya, C. , & Kitagawa, H. (2012). Persistent cortical plasticity by upregulation of chondroitin 6‐sulfation. Nature Neuroscience, 15, 414–422. 10.1038/nn.3023 PubMed DOI

Morawski, M. , Reinert, T. , Meyer‐Klaucke, W. , Wagner, F. E. , Tröger, W. , Reinert, A. , … Arendt, T. (2015). Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Scientific Reports, 5 10.1038/srep16471 PubMed DOI PMC

Nagy, N. , Kuipers, H. F. , Frymoyer, A. R. , Ishak, H. D. , Bollyky, J. B. , Wight, T. N. , & Bollyky, P. L. (2015). 4‐Methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Frontiers in Immunology, 6 10.3389/fimmu.2015.00123 PubMed DOI PMC

Pizzorusso, T. , Medini, P. , Berardi, N. , Chierzi, S. , Fawcett, J. W. , & Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science (80‐.), 298, 1248–1251. PubMed

Popp, S. , Andersen, J. S. , Maurel, P. , & Margolis, R. U. (2003). Localization of aggrecan and versican in the developing rat central nervous system. Developmental Dynamics, 227, 143–149. 10.1002/dvdy.10282 PubMed DOI

Prince, M. , Knapp, M. , Guerchet, M. , McCrone, P. , Prina, M. , Comas‐Herrera, M. , … Salimkumar, D. (2014). Dementia UK: Update (2nd ed.).

Reimers, S. , Hartlage‐Rübsamen, M. , Brückner, G. , & Roßner, S. (2007). Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity. The European Journal of Neuroscience, 25, 2640–2648. 10.1111/j.1460-9568.2007.05514.x PubMed DOI

Romberg, C. , Yang, S. , Melani, R. , Andrews, M. R. , Horner, A. E. , Spillantini, M. G. , … Saksida, L. M. (2013). Depletion of perineuronal nets enhances recognition memory and long‐term depression in the perirhinal cortex. The Journal of Neuroscience, 33, 7057–7065. 10.1523/JNEUROSCI.6267-11.2013 PubMed DOI PMC

Rowlands, D. , Lensjø, K. K. , Dinh, T. , Yang, S. , Andrews, M. R. , Hafting, T. , … Dick, G. (2018). Aggrecan directs extracellular matrix‐mediated neuronal plasticity. Journal of Neuroscience, 38, 10102 LP–10113. PubMed PMC

Saito, H. , & Yamagata, T. (1968). Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates enzymatic quantities methods for the determination of small of isomeric chondroitin sulfates. The Journal of Biological Chemistry, 243, 1536–1542. PubMed

Sale, A. , Maya Vetencourt, J. F. , Medini, P. , Cenni, M. C. , Baroncelli, L. , De Pasquale, R. , & Maffei, L. (2007). Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nature Neuroscience, 10, 679–681. 10.1038/nn1899 PubMed DOI

Samanen, J. (2013). Similarities and differences in the discovery and use of biopharmaceuticals and small‐molecule chemotherapeutics In Introduction to biological and small molecule drug research and development: Theory and case studies (pp. 161–203). Amsterdam: Elsevier.

Selkoe, D. J. , & Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine, 8, 595–608. 10.15252/emmm.201606210 PubMed DOI PMC

Shen, Y. , Tenney, A. P. , Busch, S. A. , Horn, K. P. , Cuascut, F. X. , Liu, K. , … Flanagan, J. G. (2009). PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science (80‐.), 326, 592–596. PubMed PMC

Silbert, J. E. , & Sugumaran, G. (2002). Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life, 54, 177–186. 10.1080/15216540214923 PubMed DOI

Sorg, B. A. , Berretta, S. , Blacktop, J. M. , Fawcett, J. W. , Kitagawa, H. , Kwok, J. C. F. , & Miquel, M. (2016). Casting a wide net: Role of perineuronal nets in neural plasticity. The Journal of Neuroscience, 36, 11459–11468. 10.1523/JNEUROSCI.2351-16.2016 PubMed DOI PMC

Spreafico, R. , De Biasi, S. , & Vitellaro‐Zuccarello, L. (1999). The perineuronal net: A weapon for a challenge. Journal of the History of the Neurosciences, 8, 179–185. 10.1076/jhin.8.2.179.1834 PubMed DOI

Suttkus, A. , Rohn, S. , Weigel, S. , Glöckner, P. , Arendt, T. , & Morawski, M. (2014). Aggrecan, link protein and tenascin‐R are essential components of the perineuronal net to protect neurons against iron‐induced oxidative stress. Cell Death & Disease, 5, e1119. PubMed PMC

van't Spijker, H. M. , & Kwok, J. C. F. (2017). A sweet talk: The molecular systems of perineuronal nets in controlling neuronal communication. Frontiers in Integrative Neuroscience, 11, 1–10. PubMed PMC

Thompson, E. H. , Lensjø, K. K. , Wigestrand, M. B. , Malthe‐Sørenssen, A. , Hafting, T. , & Fyhn, M. (2017). Removal of perineuronal nets disrupts recall of a remote fear memory. Proceedings of the National Academy of Sciences. 201713530. 10.1073/pnas.1713530115 PubMed DOI PMC

Tsien, R. Y. (2013). Very long‐term memories may be stored in the pattern of holes in the perineuronal net. Proceedings of the National Academy of Sciences, 110, 12456–12461. 10.1073/pnas.1310158110 PubMed DOI PMC

Vandenberghe, R. , Rinne, J. O. , Boada, M. , Katayama, S. , Scheltens, P. , Vellas, B. , … Bapineuzumab 3000 and 3001 Clinical Study Investigators (2016). Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials. Alzheimer's Research & Therapy, 8, 18 10.1186/s13195-016-0189-7 PubMed DOI PMC

Vassar, R. (2014). BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimer's Res. Ther., 6, 89 10.1186/s13195-014-0089-7 PubMed DOI PMC

Végh, M. J. , Heldring, C. M. , Kamphuis, W. , Hijazi, S. , Timmerman, A. J. , Li, K. W. , … van Kesteren, R. E. (2014). Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2, 76. PubMed PMC

Viapiano, M. S. , & Matthews, R. T. (2006). From barriers to bridges: Chondroitin sulfate proteoglycans in neuropathology. Trends in Molecular Medicine, 12, 488–496. 10.1016/j.molmed.2006.08.007 PubMed DOI

Wang, H. , Katagiri, Y. , McCann, T. E. , Unsworth, E. , Goldsmith, P. , Yu, Z.‐X. , … Geller, H. M. (2008). Chondroitin‐4‐sulfation negatively regulates axonal guidance and growth. Journal of Cell Science, 121, 3083–3091. 10.1242/jcs.032649 PubMed DOI PMC

Watanabe, E. , Aono, S. , Matsui, F. , Yamada, Y. , Naruse, I. , & Oohira, A. (1995). Distribution of a brain‐specific proteoglycan, neurocan, and the corresponding mRNA during the formation of barrels in the rat somatosensory cortex. The European Journal of Neuroscience, 7, 547–554. 10.1111/j.1460-9568.1995.tb00659.x PubMed DOI

Yamada, H. , Watanabe, K. , Shimonaka, M. , & Yamaguchi, Y. (1994). Molecular‐cloning of brevican, a novel brain proteoglycan of the aggrecan versican family. The Journal of Biological Chemistry, 269, 10119–10126. PubMed

Yamaguchi, Y. (2000). Lecticans: Organizers of the brain extracellular matrix. Cellular and Molecular Life Sciences, 57, 276–289. 10.1007/PL00000690 PubMed DOI PMC

Yamashita, N. , Jitsuki‐Takahashi, A. , Ogawara, M. , Ohkubo, W. , Araki, T. , Hotta, C. , … Goshima, Y. (2015). Anti‐semaphorin 3A neutralization monoclonal antibody prevents sepsis development in lipopolysaccharide‐treated mice. International Immunology, 27, 459–466. 10.1093/intimm/dxv014 PubMed DOI

Yang, S. , Cacquevel, M. , Saksida, L. M. , Bussey, T. J. , Schneider, B. L. , Aebischer, P. , … Spillantini, M. G. (2015). Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Experimental Neurology, 265, 48–58. 10.1016/j.expneurol.2014.11.013 PubMed DOI PMC

Yang, S. , Hilton, S. , Alves, J. N. , Saksida, L. M. , Bussey, T. , Matthews, R. T. , … Fawcett, J. W. (2017). Antibody recognizing 4‐sulfated chondroitin sulfate proteoglycans restores memory in tauopathy‐induced neurodegeneration. Neurobiology of Aging, 59, 197–209. 10.1016/j.neurobiolaging.2017.08.002 PubMed DOI

Yiannopoulou, K. G. , & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer's disease. Therapeutic Advances in Neurological Disorders, 6, 19–33. 10.1177/1756285612461679 PubMed DOI PMC

Yoshioka, N. , Miyata, S. , Tamada, A. , Watanabe, Y. , Kawasaki, A. , Kitagawa, H. , … Igarashi, M. (2017). Abnormalities in perineuronal nets and behavior in mice lacking CSGalNAcT1, a key enzyme in chondroitin sulfate synthesis. Molecular Brain, 10, 1–10. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...