A Sweet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MC_PC_16050
Medical Research Council - United Kingdom
PubMed
29249944
PubMed Central
PMC5717013
DOI
10.3389/fnint.2017.00033
Knihovny.cz E-zdroje
- Klíčová slova
- chondroitin sulfates, hyaluronan, interneurons, neuronal communication, perineuronal nets, plasticity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Perineuronal nets (PNNs) are mesh-like structures, composed of a hierarchical assembly of extracellular matrix molecules in the central nervous system (CNS), ensheathing neurons and regulating plasticity. The mechanism of interactions between PNNs and neurons remain uncharacterized. In this review, we pose the question: how do PNNs regulate communication to and from neurons? We provide an overview of the current knowledge on PNNs with a focus on the cellular interactions. PNNs ensheath a subset of the neuronal population with distinct molecular aspects in different areas of the CNS. PNNs control neuronal communication through molecular interactions involving specific components of the PNNs. This review proposes that the PNNs are an integral part of neurons, crucial for the regulation of plasticity in the CNS.
Zobrazit více v PubMed
Arranz A. M., Perkins K. L., Irie F., Lewis D. P., Hrabe J., Xiao F., et al. . (2014). Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34, 6164–6176. 10.1523/JNEUROSCI.3458-13.2014 PubMed DOI PMC
Baig S., Wilcock G. K., Love S. (2005). Loss of perineuronal net N-acetylgalactosamine in Alzheimer's disease. Acta Neuropathol. 110, 393–401. 10.1007/s00401-005-1060-2 PubMed DOI
Banerjee S. B., Gutzeit V. A., Baman J., Aoued H. S., Doshi N. K., Liu R. C., et al. . (2017). Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron 95, 169.e163–179.e163. 10.1016/j.neuron.2017.06.007 PubMed DOI PMC
Baranova N. S., Nilebäck E., Haller F. M., Briggs D. C., Svedhem S., Day A. J., et al. . (2011). The inflammation-associated protein TSG-6 cross-links hyaluronan via hyaluronan-induced TSG-6 oligomers. J. Biol. Chem. 286, 25675–25686. 10.1074/jbc.M111.247395 PubMed DOI PMC
Barritt A. W., Davies M., Marchand F., Hartley R., Grist J., Yip P., et al. . (2006). Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J. Neurosci. 26, 10856–10867. 10.1523/JNEUROSCI.2980-06.2006 PubMed DOI PMC
Beebe N. L., Young J. W., Mellott J. G., Schofield B. R. (2016). Extracellular molecular markers and soma size of inhibitory neurons: evidence for four subtypes of GABAergic cells in the inferior colliculus. J. Neurosci. 36, 3988–3999. 10.1523/JNEUROSCI.0217-16.2016 PubMed DOI PMC
Beurdeley M., Spatazza J., Lee H. H., Sugiyama S., Bernard C., Di Nardo A. A., et al. . (2012). Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J. Neurosci. 32, 9429–9437. 10.1523/JNEUROSCI.0394-12.2012 PubMed DOI PMC
Blosa M., Bursch C., Weigel S., Holzer M., Jäger C., Janke C., et al. . (2016). Reorganization of synaptic connections and perineuronal nets in the deep cerebellar nuclei of purkinje cell degeneration mutant mice. Neural Plast. 2016:2828536. 10.1155/2016/2828536 PubMed DOI PMC
Bradbury E. J., Moon L. D., Popat R. J., King V. R., Bennett G. S., Patel P. N., et al. . (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640. 10.1038/416636a PubMed DOI
Brakebusch C., Seidenbecher C. I., Asztely F., Rauch U., Matthies H., Meyer H., et al. . (2002). Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol. Cell. Biol. 22, 7417–7427. 10.1128/MCB.22.21.7417-7427.2002 PubMed DOI PMC
Brückner G., Brauer K., Härtig W., Wolff J. R., Rickmann M. J., Derouiche A., et al. . (1993). Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8, 183–200. 10.1002/glia.440080306 PubMed DOI
Brückner G., Hausen D., Härtig W., Drlicek M., Arendt T., Brauer K. (1999). Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease. Neuroscience 92, 791–805. 10.1016/S0306-4522(99)00071-8 PubMed DOI
Bukalo O., Schachner M., Dityatev A. (2001). Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 104, 359–369. 10.1016/S0306-4522(01)00082-3 PubMed DOI
Bukalo O., Schachner M., Dityatev A. (2007). Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. J. Neurosci. 27, 6019–6028. 10.1523/JNEUROSCI.1022-07.2007 PubMed DOI PMC
Cabungcal J. H., Steullet P., Morishita H., Kraftsik R., Cuenod M., Hensch T. K., et al. . (2013). Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 110, 9130–9135. 10.1073/pnas.1300454110 PubMed DOI PMC
Caillard O., Moreno H., Schwaller B., Llano I., Celio M. R., Marty A. (2000). Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl. Acad. Sci. U.S.A. 97, 13372–13377. 10.1073/pnas.230362997 PubMed DOI PMC
Carstens K. E., Phillips M. L., Pozzo-Miller L., Weinberg R. J., Dudek S. M. (2016). Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J. Neurosci. 36, 6312–6320. 10.1523/JNEUROSCI.0245-16.2016 PubMed DOI PMC
Carulli D., Laabs T., Geller H. M., Fawcett J. W. (2005). Chondroitin sulfate proteoglycans in neural development and regeneration. Curr. Opin. Neurobiol. 15, 116–120. 10.1016/j.conb.2005.03.018 PubMed DOI
Carulli D., Rhodes K. E., Brown D. J., Bonnert T. P., Pollack S. J., Oliver K., et al. . (2006). Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 494, 559–577. 10.1002/cne.20822 PubMed DOI
Carulli D., Rhodes K. E., Fawcett J. W. (2007). Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J. Comp. Neurol. 501, 83–94. 10.1002/cne.21231 PubMed DOI
Chang M. C., Park J. M., Pelkey K. A., Grabenstatter H. L., Xu D., Linden D. J., et al. . (2010). Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13, 1090–1097. 10.1038/nn.2621 PubMed DOI PMC
Cheah M., Andrews M. R., Chew D. J., Moloney E. B., Verhaagen J., Fässler R., et al. . (2016). Expression of an activated integrin promotes long-distance sensory axon regeneration in the spinal cord. J. Neurosci. 36, 7283–7297. 10.1523/JNEUROSCI.0901-16.2016 PubMed DOI PMC
Corvetti L., Rossi F. (2005). Degradation of chondroitin sulfate proteoglycans induces sprouting of intact purkinje axons in the cerebellum of the adult rat. J. Neurosci. 25, 7150–7158. 10.1523/JNEUROSCI.0683-05.2005 PubMed DOI PMC
Coulson-Thomas V. J., Lauer M. E., Soleman S., Zhao C., Hascall V. C., Day A. J., et al. . (2016). Tumor necrosis factor-stimulated Gene-6 (TSG-6) is constitutively expressed in adult Central Nervous System (CNS) and associated with astrocyte-mediated glial scar formation following spinal cord injury. J. Biol. Chem. 291, 19939–19952. 10.1074/jbc.M115.710673 PubMed DOI PMC
Dauth S., Grevesse T., Pantazopoulos H., Campbell P. H., Maoz B. M., Berretta S., et al. . (2016). Extracellular matrix protein expression is brain region dependent. J. Comp. Neurol. 524, 1309–1336. 10.1002/cne.23965 PubMed DOI PMC
Day A. J., Prestwich G. D. (2002). Hyaluronan-binding proteins: tying up the giant. J. Biol. Chem. 277, 4585–4588. 10.1074/jbc.R100036200 PubMed DOI
Deepa S. S., Carulli D., Galtrey C., Rhodes K., Fukuda J., Mikami T., et al. . (2006). Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J. Biol. Chem. 281, 17789–17800. 10.1074/jbc.M600544200 PubMed DOI
Deepa S. S., Umehara Y., Higashiyama S., Itoh N., Sugahara K. (2002). Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors. Implications as a physiological binding partner in the brain and other tissues. J. Biol. Chem. 277, 43707–43716. 10.1074/jbc.M207105200 PubMed DOI
de Winter F., Kwok J. C., Fawcett J. W., Vo T. T., Carulli D., Verhaagen J. (2016). The chemorepulsive protein semaphorin 3A and perineuronal net-mediated plasticity. Neural Plast. 2016:3679545. 10.1155/2016/3679545 PubMed DOI PMC
Dick G., Tan C. L., Alves J. N., Ehlert E. M., Miller G. M., Hsieh-Wilson L. C., et al. . (2013). Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J. Biol. Chem. 288, 27384–27395. 10.1074/jbc.M111.310029 PubMed DOI PMC
Dityatev A., Schachner M., Sonderegger P. (2010). The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746. 10.1038/nrn2898 PubMed DOI
Donato F., Rompani S. B., Caroni P. (2013). Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276. 10.1038/nature12866 PubMed DOI
Favuzzi E., Marques-Smith A., Deogracias R., Winterflood C. M., Sánchez-Aguilera A., Mantoan L., et al. . (2017). Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron 95, 639.e610–655.e610. 10.1016/j.neuron.2017.06.028 PubMed DOI
Foscarin S., Ponchione D., Pajaj E., Leto K., Gawlak M., Wilczynski G. M., et al. . (2011). Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS ONE 6:e16666. 10.1371/journal.pone.0016666 PubMed DOI PMC
Frischknecht R., Heine M., Perrais D., Seidenbecher C. I., Choquet D., Gundelfinger E. D. (2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 12, 897–904. 10.1038/nn.2338 PubMed DOI
Galtrey C. M., Asher R. A., Nothias F., Fawcett J. W. (2007). Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain 130, 926–939. 10.1093/brain/awl372 PubMed DOI
Galtrey C. M., Kwok J. C., Carulli D., Rhodes K. E., Fawcett J. W. (2008). Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 27, 1373–1390. 10.1111/j.1460-9568.2008.06108.x PubMed DOI
Geissler M., Gottschling C., Aguado A., Rauch U., Wetzel C. H., Hatt H., et al. . (2013). Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J. Neurosci. 33, 7742–7755. 10.1523/JNEUROSCI.3275-12.2013 PubMed DOI PMC
Giamanco K. A., Matthews R. T. (2012). Deconstructing the perineuronal net: cellular contributions and molecular composition of the neuronal extracellular matrix. Neuroscience 218, 367–384. 10.1016/j.neuroscience.2012.05.055 PubMed DOI PMC
Gogolla N., Caroni P., Lüthi A., Herry C. (2009). Perineuronal nets protect fear memories from erasure. Science 325, 1258–1261. 10.1126/science.1174146 PubMed DOI
Grøndahl F., Tveit H., Akslen-Hoel L. K., Prydz K. (2011). Easy HPLC-based separation and quantitation of chondroitin sulphate and hyaluronan disaccharides after chondroitinase ABC treatment. Carbohydr. Res. 346, 50–57. 10.1016/j.carres.2010.10.025 PubMed DOI
Gu Y., Huang S., Chang M. C., Worley P., Kirkwood A., Quinlan E. M. (2013). Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron 79, 335–346. 10.1016/j.neuron.2013.05.016 PubMed DOI PMC
Gurevicius K., Gureviciene I., Valjakka A., Schachner M., Tanila H. (2004). Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin-R. Mol. Cell. Neurosci. 25, 515–523. 10.1016/j.mcn.2003.12.001 PubMed DOI
Happel M. F., Niekisch H., Castiblanco Rivera L. L., Ohl F. W., Deliano M., Frischknecht R. (2014). Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 2800–2805. 10.1073/pnas.1310272111 PubMed DOI PMC
Härtig W., Brückner G., Brauer K., Schmidt C., Bigl V. (1995). Allocation of perineuronal nets and parvalbumin-, calbindin-D28k- and glutamic acid decarboxylase-immunoreactivity in the amygdala of the rhesus monkey. Brain Res. 698, 265–269. 10.1016/0006-8993(95)01016-O PubMed DOI
Härtig W., Derouiche A., Welt K., Brauer K., Grosche J., Mäder M., et al. . (1999). Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 842, 15–29. PubMed
Hensch T. K. (2004). Critical period regulation. Annu. Rev. Neurosci. 27, 549–579. 10.1146/annurev.neuro.27.070203.144327 PubMed DOI
Hisaoka T., Nakamura Y., Senba E., Morikawa Y. (2010). The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166, 551–563. 10.1016/j.neuroscience.2009.12.055 PubMed DOI
Hylin M. J., Orsi S. A., Moore A. N., Dash P. K. (2013). Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn. Mem. 20, 267–273. 10.1101/lm.030197.112 PubMed DOI PMC
Jansen S., Gottschling C., Faissner A., Manahan-Vaughan D. (2017). Intrinsic cellular and molecular properties of in vivo hippocampal synaptic plasticity are altered in the absence of key synaptic matrix molecules. Hippocampus 27, 920–933. 10.1002/hipo.22742 PubMed DOI
Kochlamazashvili G., Henneberger C., Bukalo O., Dvoretskova E., Senkov O., Lievens P. M., et al. . (2010). The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca2+ channels. Neuron 67, 116–128. 10.1016/j.neuron.2010.05.030 PubMed DOI PMC
Kwok J. C., Carulli D., Fawcett J. W. (2010). In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J. Neurochem. 114, 1447–1459. 10.1111/j.1471-4159.2010.06878.x PubMed DOI
Kwok J. C. F., Foscarin S., Fawcett J. W. (2015). Extracellular Matrix, eds Leach B. J., Powell M. E. (New York, NY: Springer; ), 23–32.
Lafarga M., Berciano M. T., Blanco M. (1984). The perineuronal net in the fastigial nucleus of the rat cerebellum. A Golgi and quantitative study. Anat. Embryol. (Berl) 170, 79–85. 10.1007/BF00319461 PubMed DOI
Lander C., Kind P., Maleski M., Hockfield S. (1997). A family of activity-dependent neuronal cell-surface chondroitin sulfate proteoglycans in cat visual cortex. J. Neurosci. 17, 1928–1939. PubMed PMC
Lee H. H. C., Bernard C., Ye Z., Acampora D., Simeone A., Prochiantz A., et al. . (2017). Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol. Psychiatry 22, 680–688. 10.1038/mp.2017.1 PubMed DOI PMC
Lensjø K. K., Christensen A. C., Tennøe S., Fyhn M., Hafting T. (2017a). Differential expression and Cell-Type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse. eNeuro 4:ENEURO.0379-16.201. 10.1523/ENEURO.0379-16.2017 PubMed DOI PMC
Lensjø K. K., Lepperød M. E., Dick G., Hafting T., Fyhn M. (2017b). Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J. Neurosci. 37, 1269–1283. 10.1523/JNEUROSCI.2504-16.2016 PubMed DOI PMC
Mabuchi M., Murakami S., Taguchi T., Ohtsuka A., Murakami T. (2001). Purkinje cells in the adult cat cerebellar cortex possess a perineuronal net of proteoglycans. Arch. Histol. Cytol. 64, 203–209. 10.1679/aohc.64.203 PubMed DOI
Matthews R. T., Kelly G. M., Zerillo C. A., Gray G., Tiemeyer M., Hockfield S. (2002). Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J. Neurosci. 22, 7536–7547. PubMed PMC
McRae P. A., Baranov E., Rogers S. L., Porter B. E. (2012). Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur. J. Neurosci. 36, 3471–3482. 10.1111/j.1460-9568.2012.08268.x PubMed DOI PMC
Miyata S., Kitagawa H. (2015). Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate. J. Biochem. 157, 13–22. 10.1093/jb/mvu067 PubMed DOI
Miyata S., Komatsu Y., Yoshimura Y., Taya C., Kitagawa H. (2012). Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat. Neurosci. 15, 414–422, S411–S412. 10.1038/nn.3023 PubMed DOI
Miyata S., Nishimura Y., Nakashima T. (2007). Perineuronal nets protect against amyloid beta-protein neurotoxicity in cultured cortical neurons. Brain Res. 1150, 200–206. 10.1016/j.brainres.2007.02.066 PubMed DOI
Morawski M., Brückner G., Jäger C., Seeger G., Matthews R. T., Arendt T. (2012). Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathol. 22, 547–561. 10.1111/j.1750-3639.2011.00557.x PubMed DOI PMC
Morawski M., Dityatev A., Hartlage-Rübsamen M., Blosa M., Holzer M., Flach K., et al. . (2014). Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369:20140046. 10.1098/rstb.2014.0046 PubMed DOI PMC
Morawski M., Reinert T., Meyer-Klaucke W., Wagner F. E., Tröger W., Reinert A., et al. . (2015). Ion exchanger in the brain: quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Sci. Rep. 5:16471. 10.1038/srep16471 PubMed DOI PMC
Morikawa S., Ikegaya Y., Narita M., Tamura H. (2017). Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval. Sci. Rep. 7:46024. 10.1038/srep46024 PubMed DOI PMC
Orlando C., Ster J., Gerber U., Fawcett J. W., Raineteau O. (2012). Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J. Neurosci. 32, 18009–18017, 18017a. 10.1523/JNEUROSCI.2406-12.2012 PubMed DOI PMC
Pantazopoulos H., Woo T. U., Lim M. P., Lange N., Berretta S. (2010). Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch. Gen. Psychiatry 67, 155–166. 10.1001/archgenpsychiatry.2009.196 PubMed DOI PMC
Pelkey K. A., Barksdale E., Craig M. T., Yuan X., Sukumaran M., Vargish G. A., et al. . (2015). Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 85, 1257–1272. 10.1016/j.neuron.2015.02.020 PubMed DOI PMC
Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J. W., Maffei L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251. 10.1126/science.1072699 PubMed DOI
Pizzorusso T., Medini P., Landi S., Baldini S., Berardi N., Maffei L. (2006). Structural and functional recovery from early monocular deprivation in adult rats. Proc. Natl. Acad. Sci. U.S.A. 103, 8517–8522. 10.1073/pnas.0602657103 PubMed DOI PMC
Romberg C., Yang S., Melani R., Andrews M. R., Horner A. E., Spillantini M. G., et al. . (2013). Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J. Neurosci. 33, 7057–7065. 10.1523/JNEUROSCI.6267-11.2013 PubMed DOI PMC
Rossier J., Bernard A., Cabungcal J. H., Perrenoud Q., Savoye A., Gallopin T., et al. . (2015). Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Mol. Psychiatry 20, 154–161. 10.1038/mp.2014.162 PubMed DOI PMC
Shinozaki M., Iwanami A., Fujiyoshi K., Tashiro S., Kitamura K., Shibata S., et al. . (2016). Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats. Neurosci. Res. 113, 37–47. 10.1016/j.neures.2016.07.005 PubMed DOI
Smith C. C., Mauricio R., Nobre L., Marsh B., Wüst R. C., Rossiter H. B., et al. . (2015). Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res. Bull. 111, 20–26. 10.1016/j.brainresbull.2014.12.005 PubMed DOI
Spatazza J., Lee H. H., Di Nardo A. A., Tibaldi L., Joliot A., Hensch T. K., et al. . (2013). Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep. 3, 1815–1823. 10.1016/j.celrep.2013.05.014 PubMed DOI PMC
Spreafico R., De Biasi S., Vitellaro-Zuccarello L. (1999). The perineuronal net: a weapon for a challenge. J. Hist. Neurosci. 8, 179–185. 10.1076/jhin.8.2.179.1834 PubMed DOI
Steullet P., Cabungcal J. H., Cuénod M., Do K. Q. (2014). Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and effect of perineuronal net loss. Front. Cell. Neurosci. 8:244. 10.3389/fncel.2014.00244 PubMed DOI PMC
Sugiyama S., Di Nardo A. A., Aizawa S., Matsuo I., Volovitch M., Prochiantz A., et al. . (2008). Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134, 508–520. 10.1016/j.cell.2008.05.054 PubMed DOI
Suttkus A., Rohn S., Weigel S., Glöckner P., Arendt T., Morawski M. (2014). Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis. 5:e1119. 10.1038/cddis.2014.25 PubMed DOI PMC
Suzuki T., Akimoto M., Imai H., Ueda Y., Mandai M., Yoshimura N., et al. . (2007). Chondroitinase ABC treatment enhances synaptogenesis between transplant and host neurons in model of retinal degeneration. Cell Transplant. 16, 493–503. 10.3727/000000007783464966 PubMed DOI
Vo T., Carulli D., Ehlert E. M., Kwok J. C., Dick G., Mecollari V., et al. . (2013). The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol. Cell. Neurosci. 56, 186–200. 10.1016/j.mcn.2013.04.009 PubMed DOI
Wang D., Ichiyama R. M., Zhao R., Andrews M. R., Fawcett J. W. (2011). Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 31, 9332–9344. 10.1523/JNEUROSCI.0983-11.2011 PubMed DOI PMC
Yamada J., Ohgomori T., Jinno S. (2015). Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus. Eur. J. Neurosci. 41, 368–378. 10.1111/ejn.12792 PubMed DOI
Ye Q., Miao Q. L. (2013). Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex. Matrix Biol. 32, 352–363. 10.1016/j.matbio.2013.04.001 PubMed DOI
Chondroitin 6-sulphate is required for neuroplasticity and memory in ageing
Neuronal Pentraxin 2 Binds PNNs and Enhances PNN Formation
The potential of memory enhancement through modulation of perineuronal nets