Neuronal Pentraxin 2 Binds PNNs and Enhances PNN Formation

. 2019 ; 2019 () : 6804575. [epub] 20191020

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31772567

Grantová podpora
MC_PC_16050 Medical Research Council - United Kingdom
MR/R004463/1 Medical Research Council - United Kingdom
MR/R004544/1 Medical Research Council - United Kingdom

The perineuronal net (PNN) is a mesh-like proteoglycan structure on the neuronal surface which is involved in regulating plasticity. The PNN regulates plasticity via multiple pathways, one of which is direct regulation of synapses through the control of AMPA receptor mobility. Since neuronal pentraxin 2 (Nptx2) is a known regulator of AMPA receptor mobility and Nptx2 can be removed from the neuronal surface by PNN removal, we investigated whether Nptx2 has a function in the PNN. We found that Nptx2 binds to the glycosaminoglycans hyaluronan and chondroitin sulphate E in the PNN. Furthermore, in primary cortical neuron cultures, the addition of NPTX2 to the culture medium enhances PNN formation during PNN development. These findings suggest Nptx2 as a novel PNN binding protein with a role in the mechanism of PNN formation.

Zobrazit více v PubMed

Begum M. R., Sng J. C. G. Molecular mechanisms of experience-dependent maturation in cortical GABAergic inhibition. Journal of Neurochemistry. 2017;142(5):649–661. doi: 10.1111/jnc.14103. PubMed DOI PMC

Laabs T., Carulli D., Geller H. M., Fawcett J. W. Chondroitin sulfate proteoglycans in neural development and regeneration. Current Opinion in Neurobiology. 2005;15(1):116–120. doi: 10.1016/j.conb.2005.01.014. PubMed DOI

Kwok J. C. F., Foscarin S., Fawcett J. W. Perineuronal nets: a special structure in the central nervous system extracellular matrix. In: Jennie Leach B., Elizabeth Powell M., editors. Extracellular Matrix. New York, NY, USA: Humana Press; 2015. pp. 23–32. DOI

Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J. W., Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248–1251. doi: 10.1126/science.1072699. PubMed DOI

Hensch T. K. Critical period regulation. Annual Review of Neuroscience. 2004;27:549–579. doi: 10.1146/annurev.neuro.27.070203.144327. PubMed DOI

Brückner G., Grosche J., Hartlage-Rübsamen M., Schmidt S., Schachner M. Region and lamina-specific distribution of extracellular matrix proteoglycans, hyaluronan and tenascin-R in the mouse hippocampal formation. Journal of Chemical Neuroanatomy. 2003;26(1):37–50. doi: 10.1016/s0891-0618(03)00036-x. PubMed DOI

Carulli D., Rhodes K. E., Brown D. J., et al. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. The Journal of Comparative Neurology. 2006;494(4):559–577. doi: 10.1002/cne.20822. PubMed DOI

Day A. J., Prestwich G. D. Hyaluronan-binding proteins: tying up the giant. Journal of Biological Chemistry. 2002;277(7):4585–4588. doi: 10.1074/jbc.R100036200. PubMed DOI

Deepa S. S., Carulli D., Galtrey C., et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. Journal of Biological Chemistry. 2006;281(26):17789–17800. doi: 10.1074/jbc.M600544200. PubMed DOI

Sugahara K., Mikami T. Chondroitin/dermatan sulfate in the central nervous system. Current Opinion in Structural Biology. 2007;17(5):536–545. doi: 10.1016/j.sbi.2007.08.015. PubMed DOI

Kwok J. C., Carulli D., Fawcett J. W. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. Journal of Neurochemistry. 2010;114(5):1447–1459. doi: 10.1111/j.1471-4159.2010.06878.x. PubMed DOI

Oohashi T., Edamatsu M., Bekku Y., Carulli D. The hyaluronan and proteoglycan link proteins: organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Experimental Neurology. 2015;274(Pt B):134–144. doi: 10.1016/j.expneurol.2015.09.010. PubMed DOI

Morawski M., Dityatev A., Hartlage-Rübsamen M., et al. Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1654, article 20140046) doi: 10.1098/rstb.2014.0046. PubMed DOI PMC

Rauch U. Extracellular matrix components associated with remodeling processes in brain. Cellular and Molecular Life Sciences. 2004;61(16):2031–2045. doi: 10.1007/s00018-004-4043-x. PubMed DOI PMC

Lin R., Kwok J. C., Crespo D., Fawcett J. W. Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. Journal of Neurochemistry. 2008;104(2):400–408. doi: 10.1111/j.1471-4159.2007.05066.x. PubMed DOI

Happel M. F. K., Niekisch H., Castiblanco Rivera L. L., Ohl F. W., Deliano M., Frischknecht R. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(7):2800–2805. doi: 10.1073/pnas.1310272111. PubMed DOI PMC

Yamaguchi Y., Yamamoto H., Tobisawa Y., Irie F. TMEM2: a missing link in hyaluronan catabolism identified? Matrix Biology. 2018;78-79:139–146. doi: 10.1016/j.matbio.2018.03.020. PubMed DOI PMC

van't Spijker H. M., Kwok J. C. F. A sweet talk: the molecular systems of perineuronal nets in controlling neuronal communication. Frontiers in Integrative Neuroscience. 2017;11:p. 33. doi: 10.3389/fnint.2017.00033. PubMed DOI PMC

Morawski M., Reinert T., Meyer-Klaucke W., et al. Ion exchanger in the brain: quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Scientific Reports. 2015;5(1, article 16471) doi: 10.1038/srep16471. PubMed DOI PMC

Suttkus A., Rohn S., Weigel S., Glöckner P., Arendt T., Morawski M. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death & Disease. 2014;5, article e1119 doi: 10.1038/cddis.2014.25. PubMed DOI PMC

Miyata S., Nishimura Y., Nakashima T. Perineuronal nets protect against amyloid β-protein neurotoxicity in cultured cortical neurons. Brain Research. 2007;1150:200–206. doi: 10.1016/j.brainres.2007.02.066. PubMed DOI

Bernard C., Prochiantz A. Otx2-PNN interaction to regulate cortical plasticity. Neural Plasticity. 2016;2016:7. doi: 10.1155/2016/7931693.7931693 PubMed DOI PMC

Beurdeley M., Spatazza J., Lee H. H., et al. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. The Journal of Neuroscience. 2012;32(27):9429–9437. doi: 10.1523/JNEUROSCI.0394-12.2012. PubMed DOI PMC

Dick G., Tan C. L., Alves J. N., et al. Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. Journal of Biological Chemistry. 2013;288(38):27384–27395. doi: 10.1074/jbc.M111.310029. PubMed DOI PMC

de Winter F., Kwok J. C., Fawcett J. W., Vo T. T., Carulli D., Verhaagen J. The chemorepulsive protein semaphorin 3A and perineuronal net-mediated plasticity. Neural Plasticity. 2016;2016:14. doi: 10.1155/2016/3679545.3679545 PubMed DOI PMC

Frischknecht R., Heine M., Perrais D., Seidenbecher C. I., Choquet D., Gundelfinger E. D. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nature Neuroscience. 2009;12(7):897–904. doi: 10.1038/nn.2338. PubMed DOI

Carstens K. E., Phillips M. L., Pozzo-Miller L., Weinberg R. J., Dudek S. M. Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. The Journal of Neuroscience. 2016;36(23):6312–6320. doi: 10.1523/JNEUROSCI.0245-16.2016. PubMed DOI PMC

Härtig W., Brückner G., Brauer K., Schmidt C., Bigl V. Allocation of perineuronal nets and parvalbumin-, calbindin-D28k- and glutamic acid decarboxylase-immunoreactivity in the amygdala of the rhesus monkey. Brain Research. 1995;698(1-2):265–269. doi: 10.1016/0006-8993(95)01016-o. PubMed DOI

Härtig W., Derouiche A., Welt K., et al. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Research. 1999;842(1):15–29. doi: 10.1016/s0006-8993(99)01784-9. PubMed DOI

Mabuchi M., Murakami S., Taguchi T., Ohtsuka A., Murakami T. Purkinje cells in the adult cat cerebellar cortex possess a perineuronal net of proteoglycans. Archives of Histology and Cytology. 2001;64(2):203–209. doi: 10.1679/aohc.64.203. PubMed DOI

Morikawa S., Ikegaya Y., Narita M., Tamura H. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval. Scientific Reports. 2017;7, article 46024 doi: 10.1038/srep46024. PubMed DOI PMC

Rossier J., Bernard A., Cabungcal J. H., et al. Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Molecular Psychiatry. 2015;20(2):154–161. doi: 10.1038/mp.2014.162. PubMed DOI PMC

Baig S., Wilcock G. K., Love S. Loss of perineuronal net N-acetylgalactosamine in Alzheimer’s disease. Acta Neuropathologica. 2005;110(4):393–401. doi: 10.1007/s00401-005-1060-2. PubMed DOI

Härtig W., Brauer K., Bigl V., Brückner G. Chondroitin sulfate proteoglycan-immunoreactivity of lectin-labeled perineuronal nets around parvalbumin-containing neurons. Brain Research. 1994;635(1-2):307–311. doi: 10.1016/0006-8993(94)91452-4. PubMed DOI

Lensjø K. K., Lepperød M. E., Dick G., Hafting T., Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. The Journal of Neuroscience. 2017;37(5):1269–1283. doi: 10.1523/JNEUROSCI.2504-16.2016. PubMed DOI PMC

Pantazopoulos H., Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plasticity. 2016;2016:23. doi: 10.1155/2016/9847696.9847696 PubMed DOI PMC

Rankin-Gee E. K., McRae P. A., Baranov E., Rogers S., Wandrey L., Porter B. E. Perineuronal net degradation in epilepsy. Epilepsia. 2015;56(7):1124–1133. doi: 10.1111/epi.13026. PubMed DOI

Berretta S., Pantazopoulos H., Markota M., Brown C., Batzianouli E. T. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophrenia Research. 2015;167(1-3):18–27. doi: 10.1016/j.schres.2014.12.040. PubMed DOI PMC

Tsui C. C., Copeland N. G., Gilbert D. J., Jenkins N. A., Barnes C., Worley P. F. Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. The Journal of Neuroscience. 1996;16(8):2463–2478. doi: 10.1523/jneurosci.16-08-02463.1996. PubMed DOI PMC

O'Brien R. J., Xu D., Petralia R. S., Steward O., Huganir R. L., Worley P. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron. 1999;23(2):309–323. doi: 10.1016/s0896-6273(00)80782-5. PubMed DOI

Chang M. C., Park J. M., Pelkey K. A., et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nature Neuroscience. 2010;13(9):1090–1097. doi: 10.1038/nn.2621. PubMed DOI PMC

Gu Y., Huang S., Chang M. C., Worley P., Kirkwood A., Quinlan E. M. Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron. 2013;79(2):335–346. doi: 10.1016/j.neuron.2013.05.016. PubMed DOI PMC

Rowlands D., Lensjø K. K., Dinh T., et al. Aggrecan directs extracellular matrix-mediated neuronal plasticity. The Journal of Neuroscience. 2018;38(47):10102–10113. doi: 10.1523/JNEUROSCI.1122-18.2018. PubMed DOI PMC

Manley G., Hawksworth J. Diagnosis of Hurler’s syndrome in the hospital laboratory and the determination of its genetic type. Archives of Disease in Childhood. 1966;41(215):91–96. doi: 10.1136/adc.41.215.91. PubMed DOI PMC

Tasic B., Yao Z., Graybuck L. T., et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature. 2018;563(7729):72–78. doi: 10.1038/s41586-018-0654-5. PubMed DOI PMC

Ueno H., Suemitsu S., Murakami S., et al. Layer-specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices. IBRO Reports. 2019;6:1–17. doi: 10.1016/j.ibror.2018.11.006. PubMed DOI PMC

Gong S., Zheng C., Doughty M. L., et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(6961):917–925. doi: 10.1038/nature02033. PubMed DOI

Lein E. S., Hawrylycz M. J., Ao N., et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–176. doi: 10.1038/nature05453. PubMed DOI

Spatazza J., Lee H. H., Di Nardo A. A., et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Reports. 2013;3(6):1815–1823. doi: 10.1016/j.celrep.2013.05.014. PubMed DOI PMC

Richter R. P., Baranova N. S., Day A. J., Kwok J. C. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? Current Opinion in Structural Biology. 2017;50:65–74. doi: 10.1016/j.sbi.2017.12.002. PubMed DOI

Pelkey K. A., Barksdale E., Craig M. T., et al. Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron. 2015;85(6):1257–1272. doi: 10.1016/j.neuron.2015.02.020. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The extracellular matrix and perineuronal nets in memory

. 2022 Aug ; 27 (8) : 3192-3203. [epub] 20220627

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...