SIRT1 Modulators in Experimentally Induced Liver Injury

. 2019 ; 2019 () : 8765954. [epub] 20190602

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31281594

This article is directed at highlighting the involvement of the endogenous stress sensor SIRT1 (silent information regulator T1) as a possible factor involved in hepatoprotection. The selective SIRT1 modulators whether activators (STACs) or inhibitors are being tried experimentally and clinically. We discuss the modulation of SIRT1 on cytoprotection or even cytotoxicity in the liver chemically injured by hepatotoxic agents in rats, to shed light on the crosstalk between SIRT1 and its modulators. A combination of D-galactosamine and lipopolysaccharide (D-GalN/LPS) downregulated SIRT1 expression, while SIRT1 activators, SRT1720, resveratrol, and quercetin, upregulated SIRT1 and alleviated D-GalN/LPS-induced acute hepatotoxicity. Liver injury markers exhibited an inverse relationship with SIRT1 expression. However, under subchronic hepatotoxicity, quercetin decreased the significant increase in SIRT1 expression to lower levels which are still higher than normal ones and mitigated the liver-damaging effects of carbon tetrachloride. Each of these STACs was hepatoprotective and returned the conventional antioxidant enzymes to the baseline. Polyphenols tend to fine-tune SIRT1 expression towards normal in the liver of intoxicated rats in both acute and subchronic studies. Together, all these events give an impression that the cytoprotective effects of SIRT1 are exhibited within a definite range of expression. The catalytic activity of SIRT1 is important in the hepatoprotective effects of polyphenols where SIRT1 inhibitors block and the allosteric SIRT1 activators mimic the hepatoprotective effects of polyphenols. Our findings indicate that the pharmacologic modulation of SIRT1 could represent both an important move in alleviating hepatic insults and a future major step in the treatment of xenobiotic-induced hepatotoxicity.

Zobrazit více v PubMed

Blachier M., Leleu H., Peck-Radosavljevic M., Valla D. C., Roudot-Thoraval F. The burden of liver disease in Europe: a review of available epidemiological data. Journal of Hepatology. 2013;58(3):593–608. doi: 10.1016/j.jhep.2012.12.005. PubMed DOI

Rayfield B. Why we need extra liver protection, Sinclair Method. 2013, February 2014, http://www.sinclairmethod.com/index_files/Page563.htm.

Williams R. Global challenges in liver disease. Hepatology. 2006;44(3):521–526. doi: 10.1002/hep.21347. PubMed DOI

Sanchez-Valle V., Chavez-Tapia N. C., Uribe M., Mendez-Sanchez N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Current Medicinal Chemistry. 2012;19(28):4850–4860. doi: 10.2174/092986712803341520. PubMed DOI

Alonso F. T., Garmendia M. L., de Aguirre M., Searle J. Mortality trend from liver cirrhosis in Chile from 1990 to 2007. Revista Médica de Chile. 2010;138(10):1253–1258. doi: 10.4067/S0034-98872010001100007. PubMed DOI

Nobili V., Carter-Kent C., Feldstein A. E. The role of lifestyle changes in the management of chronic liver disease. BMC Medicine. 2011;9(1):p. 70. doi: 10.1186/1741-7015-9-70. PubMed DOI PMC

Torres D. M., Williams C. D., Harrison S. A. Features, diagnosis, and treatment of nonalcoholic fatty liver disease. Clinical Gastroenterology and Hepatology. 2012;10(8):837–858. doi: 10.1016/j.cgh.2012.03.011. PubMed DOI

Farghali H., Kameniková L., Hynie S., Kmonicková E. Silymarin effects on intracellular calcuim and cytotoxicity: a study in perfused rat hepatocytes after oxidative stress injury. Pharmacological Research. 2000;41(2):231–237. doi: 10.1006/phrs.1999.0575. PubMed DOI

Farghali H., Cerný D., Kameníková L., et al. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: Role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide. 2009;21(3-4):216–225. doi: 10.1016/j.niox.2009.09.004. PubMed DOI

Glauert H. P., Calfee-Mason K., Stemm D. N., Tharappel J. C., Spear B. T. Dietary antioxidants in the prevention of hepatocarcinogenesis: A review. Molecular Nutrition & Food Research. 2010;54(7):875–896. doi: 10.1002/mnfr.200900482. PubMed DOI

Haddad Y., Vallerand D., Brault A., Haddad P. S. Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis. Evidence-Based Complementary and Alternative Medicine. 2011;2011:10. doi: 10.1093/ecam/nep164.647903 PubMed DOI PMC

Hajighasem A., Farzanegi P., Mazaheri Z., Naghizadeh M., Salehi G. Effects of resveratrol, exercises and their combination on Farnesoid X receptor, Liver X receptor and Sirtuin 1 gene expression and apoptosis in the liver of elderly rats with nonalcoholic fatty liver. PeerJ. 2018;6, article e5522 doi: 10.7717/peerj.5522. PubMed DOI PMC

Pradhan S. C., Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian Journal of Medical Research. 2006;124(5):491–504. PubMed

Chirumbolo S. The role of quercetin, flavonols, and flavones in modulating inflammatory cell function. Inflammation & Allergy - Drug Targets. 2010;9(4):263–285. doi: 10.2174/187152810793358741. PubMed DOI

Zhao L., Wu J., Yang J., Wei J., Gao W., Guo C. Dietary quercetin supplementation increases serum antioxidant capacity and alters hepatic gene expression profile in rats. Experimental Biology and Medicine. 2011;236(6):701–706. doi: 10.1258/ebm.2011.010258. PubMed DOI

Zhou H., Beevers C. S., Huang S. The targets of curcumin. Current Drug Targets. 2011;12(3):332–347. doi: 10.2174/138945011794815356. PubMed DOI PMC

Cerný D., Lekić N., Váňová K., et al. Hepatoprotective effect of curcumin in lipopolysaccharide/-galactosamine model of liver injury in rats: Relationship to HO-1/CO antioxidant system. Fitoterapia. 2011;82(5):786–791. doi: 10.1016/j.fitote.2011.04.003. PubMed DOI

Lekić N., Canová N. K., Hořínek A., Farghali H. The involvement of heme oxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Fitoterapia. 2013;87:20–26. doi: 10.1016/j.fitote.2013.03.016. PubMed DOI

Farghali H., Canová N. K., Zakhari S. Hepatoprotective properties of extensively studied medicinal plant active constituents: possible common mechanisms. Pharmaceutical Biology. 2014;53(6):781–791. doi: 10.3109/13880209.2014.950387. PubMed DOI

Mazucanti C., Cabral-Costa J., Vasconcelos A., Andreotti D., Scavone C., Kawamoto E. Longevity Pathways (mTOR, SIRT, insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Current Topics in Medicinal Chemistry. 2015;15(21):2116–2138. doi: 10.2174/1568026615666150610125715. PubMed DOI

Nassir F., Ibdah J. A. Sirtuins and nonalcoholic fatty liver disease. World Journal of Gastroenterology. 2016;22(46):10084–10092. doi: 10.3748/wjg.v22.i46.10084. PubMed DOI PMC

Shuang R., Rui X., Wenfang L. Phytosterols and dementia. Plant Foods for Human Nutrition. 2016;71(4):347–354. doi: 10.1007/s11130-016-0574-1. PubMed DOI

Dai H., Sinclair D. A., Ellis J. L., Steegborn C. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacology & Therapeutics. 2018;188:140–154. doi: 10.1016/j.pharmthera.2018.03.004. PubMed DOI PMC

Farghali H., Kemelo M. K., Kameníková L., Kutinová Canová N. SIRT1 mediates hepatoprotective effects of resveratrol-like compounds in experimental liver injury. In: Maiese K., editor. Sirtuin Biology in Medicine: Targeting New Avenues of Care in Development, Aging, and Disease. Academic Press; 2019.

Singh C. K., Chhabra G., Ndiaye M. A., Garcia-Peterson L. M., Mack N. J., Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxidants & Redox Signaling. 2018;28(8):643–661. doi: 10.1089/ars.2017.7290. PubMed DOI PMC

Raynes R., Brunquell J., Westerheide S. D. Stress inducibility of SIRT1 and its role in cytoprotection and cancer. Genes & Cancer. 2013;4(3-4):172–182. doi: 10.1177/1947601913484497. PubMed DOI PMC

Toiber D., Sebastian C., Mostoslavsky R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Handbook of Experimental Pharmacology. 2011;206:189–224. doi: 10.1007/978-3-642-21631-2_9. PubMed DOI

Bonkowski M. S., Sinclair D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology. 2016;17(11):679–690. doi: 10.1038/nrm.2016.93. PubMed DOI PMC

Kulkarni S. R., Soroka C. J., Hagey L. R., Boyer J. L. Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid–fed mouse model of cholestasis. Hepatology. 2016;64(6):2151–2164. doi: 10.1002/hep.28826. PubMed DOI PMC

Ding R. B., Bao J., Deng C. X. Emerging roles of SIRT1 in fatty liver diseases. International Journal of Biological Sciences. 2017;13(7):852–867. doi: 10.7150/ijbs.19370. PubMed DOI PMC

Nakamura K., Zhang M., Kageyama S., et al. Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia reperfusion injury. Journal of Hepatology. 2017;67(6):1232–1242. doi: 10.1016/j.jhep.2017.08.010. PubMed DOI PMC

Morris B. J. Seven sirtuins for seven deadly diseases ofaging. Free Radical Biology & Medicine. 2013;56:133–171. doi: 10.1016/j.freeradbiomed.2012.10.525. PubMed DOI

Scalbert A., Morand C., Manach C., Rémésy C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy. 2002;56(6):276–282. doi: 10.1016/S0753-3322(02)00205-6. PubMed DOI

Hori Y. S., Kuno A., Hosoda R., Horio Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One. 2013;8(9, article e73875) doi: 10.1371/journal.pone.0073875. PubMed DOI PMC

Khader A., Yang W.-L., Kuncewitch M., et al. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation. 2014;98(2):148–156. doi: 10.1097/TP.0000000000000194. PubMed DOI

Li Y., Wu S. Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Molecular and Cellular Biochemistry. 2018;448(1-2):175–185. doi: 10.1007/s11010-018-3324-x. PubMed DOI

Kobayashi Y., Furukawa-Hibi Y., Chen C., et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. International Journal of Molecular Medicine. 2005;16(2):237–243. PubMed

Yeung F., Hoberg J. E., Ramsey C. S., et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal. 2004;23(12):2369–2380. doi: 10.1038/sj.emboj.7600244. PubMed DOI PMC

Lee Y. S., Kang Y. S., Lee J.-S., Nicolova S., Kim J.-A. Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apototic cell death by capsaicin in HepG2 human hepatoma cells. Free Radical Research. 2004;38(4):405–412. doi: 10.1080/10715760410001665262. PubMed DOI

Han M.-K., Song E.-K., Guo Y., Ou X., Mantel C., Broxmeyer H. E. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008;2(3):241–251. doi: 10.1016/j.stem.2008.01.002. PubMed DOI PMC

Wang Y.-Q., Cao Q., Wang F., et al. SIRT1 protects against oxidative stress-induced endothelial progenitor cells apoptosis by inhibiting FOXO3a via FOXO3a ubiquitination and degradation. Journal of Cellular Physiology. 2015;230(9):2098–2107. doi: 10.1002/jcp.24938. PubMed DOI

Hubbard B. P., Sinclair D. A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences. 2014;35(3):146–154. doi: 10.1016/j.tips.2013.12.004. PubMed DOI PMC

Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews. 1998;56(11):317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x. PubMed DOI

Pandey K. B., Rizvi S. I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009;2(5):278. doi: 10.4161/oxim.2.5.9498. PubMed DOI PMC

Egert S., Wolffram S., Bosy-Westphal A., et al. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. The Journal of Nutrition. 2008;138(9):1615–1621. doi: 10.1093/jn/138.9.1615. PubMed DOI

Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research. 2004;24(10):851–874. doi: 10.1016/j.nutres.2004.07.005. DOI

Aherne S. A., O’Brien N. M. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002;18(1):75–81. doi: 10.1016/S0899-9007(01)00695-5. PubMed DOI

Burns J., Yokota T., Ashihara H., Lean M. E. J., Crozier A. Plant foods and herbal sources of resveratrol. Journal of Agricultural and Food Chemistry. 2002;50(11):3337–3340. doi: 10.1021/jf0112973. PubMed DOI

Schultz J. C., Hunter M. D., Appel H. M. Plant Polyphenols. Boston, MA, USA: Springer; 1992. Antimicrobial activity of polyphenols mediates plant-herbivore interactions; pp. 621–637. DOI

Morazonni P., Bombardelli E. Silybum marianum (Carduus marianus) Fitoterapia. 1995;66:3–42.

Kesavanarayanan K. S., Sathiya S., Ranju V., et al. In vitro cytotoxic, antioxidative and α-glucosidase inhibitory potential of a herbal mixture comprised of Allium sativum and Lagerstroemia speciosa. European Review for Medical and Pharmacological Sciences. 2012;16(Supplement 3):58–68. PubMed

Perez Gutierrez R. M., Anaya Sosa I., Hoyo Vadillo C., Victoria T. C. Effect of flavonoids from Prosthechea michuacana on carbon tetrachloride induced acute hepatotoxicity in mice. Pharmaceutical Biology. 2011;49(11):1121–1127. doi: 10.3109/13880209.2011.570766. PubMed DOI

Cui C. X., Deng J. N., Yan L., et al. Silibinin capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. Journal of Ethnopharmacology. 2017;208:24–35. doi: 10.1016/j.jep.2017.06.030. PubMed DOI

Loguercio C., Festi D. Silybin and the liver: from basic research to clinical practice. World Journal of Gastroenterology. 2011;17(18):2288–2301. doi: 10.3748/wjg.v17.i18.2288. PubMed DOI PMC

Sampson L., Rimm E., Hollman P. C. H., de Vries J. H. M., Katan M. B. Flavonol and flavone intakes in US health professionals. Journal of the American Dietetic Association. 2002;102(10):1414–1420. doi: 10.1016/S0002-8223(02)90314-7. PubMed DOI

Bonnefont-Rousselot D. Resveratrol and cardiovascular diseases. Nutrients. 2016;8(5):p. 250. doi: 10.3390/nu8050250. PubMed DOI PMC

Ferrières J. The French paradox: lessons for other countries. Heart. 2004;90(1):107–111. doi: 10.1136/heart.90.1.107. PubMed DOI PMC

Kanner J., Gorelik S., Roman S., Kohen R. Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: the stomach as a bioreactor. Journal of Agricultural and Food Chemistry. 2012;60(36):8790–8796. doi: 10.1021/jf300193g. PubMed DOI

Rahman T., Hosen I., Islam M. M. T., Shekhar H. U. Oxidative stress and human health. Advances in Bioscience and Biotechnology. 2012;3(7):997–1019. doi: 10.4236/abb.2012.327123. DOI

Amararathna M., Johnston M., Rupasinghe H. Plant polyphenols as chemopreventive agents for lung cancer. International Journal of Molecular Sciences. 2016;17(8):p. 1352. doi: 10.3390/ijms17081352. PubMed DOI PMC

Almeida S., Alves M. G., Sousa M., Oliveira P. F., Silva B. M. Are polyphenols strong dietary agents against neurotoxicity and neurodegeneration? Neurotoxicity Research. 2016;30(3):345–366. doi: 10.1007/s12640-015-9590-4. PubMed DOI

Ma Y., Gao W., Wu K., Bao Y. Flavonoid intake and the risk of age-related cataract in China’s Heilongjiang Province. Food & Nutrition Research. 2015;59(1, article 29564) doi: 10.3402/fnr.v59.29564. PubMed DOI PMC

Husain S. R., Cillard J., Cillard P. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry. 1987;26(9):2489–2491. doi: 10.1016/S0031-9422(00)83860-1. DOI

Di Meo F., Lemaur V., Cornil J., et al. Free radical scavenging by natural polyphenols: atom versus electron transfer. The Journal of Physical Chemistry A. 2013;117(10):2082–2092. doi: 10.1021/jp3116319. PubMed DOI

Howitz K. T., Bitterman K. J., Cohen H. Y., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–196. doi: 10.1038/nature01960. PubMed DOI

Kaeberlein M., McDonagh T., Heltweg B., et al. Substrate-specific activation of sirtuins by resveratrol. Journal of Biological Chemistry. 2005;280(17):17038–17045. doi: 10.1074/jbc.M500655200. PubMed DOI

Beher D., Wu J., Cumine S., et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chemical Biology & Drug Design. 2009;74(6):619–624. doi: 10.1111/j.1747-0285.2009.00901.x. PubMed DOI

Baur J., Mai A., Guarente L. Revelations into resveratrol’s mechanism. Nature Medicine. 2012;18(4):500–501. doi: 10.1038/nm.2727. DOI

Hardie D. G., Ross F. A., Hawley S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology. 2012;13(4):251–262. doi: 10.1038/nrm3311. PubMed DOI PMC

Ruderman N. B., Julia Xu X., Nelson L., et al. AMPK and SIRT1: a long-standing partnership? American Journal of Physiology-Endocrinology and Metabolism. 2010;298(4):E751–E760. doi: 10.1152/ajpendo.00745.2009. PubMed DOI PMC

Fulco M., Cen Y., Zhao P., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Developmental Cell. 2008;14(5):661–673. doi: 10.1016/j.devcel.2008.02.004. PubMed DOI PMC

Zhang J. Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochemical Journal. 2006;397(3):519–527. doi: 10.1042/BJ20050977. PubMed DOI PMC

Gescher A. J., Steward W. P. Relationship between mechanisms, bioavailability, and preclinical chemopreventive efficacy of resveratrol: a conundrum. Cancer Epidemiology and Prevention Biomarkers. 2003;12:953–957. PubMed

Farghali H., Kameníková L. Targeted drug delivery system: potential application to resveratrol. Ceska a Slovenska Farmacie. 2017;66(2):76–82. PubMed

Milne J. C., Lambert P. D., Schenk S., et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712–716. doi: 10.1038/nature06261. PubMed DOI PMC

Hubbard B. P., Gomes A. P., Dai H., et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339(6124):1216–1219. doi: 10.1126/science.1231097. PubMed DOI PMC

Hu J., Jing H., Lin H. Sirtuin inhibitors as anticancer agents. Future Medicinal Chemistry. 2014;6(8):945–966. doi: 10.4155/fmc.14.44. PubMed DOI PMC

Villalba J. M., Alcaín F. J. Sirtuin activators and inhibitors. BioFactors. 2012;38(5):349–359. doi: 10.1002/biof.1032. PubMed DOI PMC

Andrade R. J., Robles M., Fernández-Castañer A., López-Ortega S., López-Vega M. C., Lucena M. I. Assessment of drug-induced hepatotoxicity in clinical practice: a challenge for gastroenterologists. World Journal of Gastroenterology. 2007;13(3):329–340. doi: 10.3748/wjg.v13.i3.329. PubMed DOI PMC

Lee W. Etiologies of Acute Liver Failure. Seminars in Liver Disease. 2008;28(2):142–152. doi: 10.1055/s-2008-1073114. PubMed DOI

Bateman D. N., Carroll R., Pettie J., et al. Effect of the UK’s revised paracetamol poisoning management guidelines on admissions, adverse reactions and costs of treatment. British Journal of Clinical Pharmacology. 2014;78(3):610–618. doi: 10.1111/bcp.12362. PubMed DOI PMC

Bernal W., Auzinger G., Dhawan A., Wendon J. Acute liver failure. The Lancet. 2010;376(9736):190–201. doi: 10.1016/S0140-6736(10)60274-7. PubMed DOI

Eren S. H., Demirel Y., Ugurlu S., Korkmaz I., Aktas C., Güven F. M. K. Mushroom poisoning: retrospective analysis of 294 cases. Clinics. 2010;65(5):491–496. doi: 10.1590/S1807-59322010000500006. PubMed DOI PMC

Fleming L. Environmental Medicine: Integrating a Missing Element into Medical Education. Washington, DC, USA: The National Academies Press; 1995. PubMed DOI

Strader D. B., Bacon B. R., Lindsay K. L., et al. Use of complementary and alternative medicine in patients with liver disease. The American Journal of Gastroenterology. 2002;97(9):2391–2397. doi: 10.1111/j.1572-0241.2002.05993.x. PubMed DOI

Wojnarová L., Kutinová Canová N., Farghali H., Kučera T. Sirtuin 1 modulation in rat model of acetaminophen-induced hepatotoxicity. Physiological Research. 2015;64:S477–S487. PubMed

Farghali H., Kemelo M. K., Wojnarová L., Canová N. K. In vitro and in vivo experimental hepatotoxic models in liver research: applications to the assessment of potential hepatoprotective drugs. Physiological Research. 2016;65(Supplement 4):S417–S425. PubMed

Farghali H., Kutinová Canová N., Lekić N. Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets. Physiological Research. 2013;62(1):1–13. PubMed

Nolan J. P. Endotoxin, reticuloendothelial function, and liver injury. Hepatology. 1981;1(5):458–465. doi: 10.1002/hep.1840010516. PubMed DOI

Hsu H.-Y., Wen M.-H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. Journal of Biological Chemistry. 2002;277(25):22131–22139. doi: 10.1074/jbc.M111883200. PubMed DOI

Silverstein R. D-Galactosamine lethality model: scope and limitations. Journal of Endotoxin Research. 2004;10(3):147–162. doi: 10.1179/096805104225004879. PubMed DOI

Liu L.-M., Zhang J.-X., Luo J., et al. A role of cell apoptosis in lipopolysaccharide (LPS)-induced nonlethal liver injury in D-galactosamine (D-GalN)-sensitized rats. Digestive Diseases and Sciences. 2008;53(5):1316–1324. doi: 10.1007/s10620-007-9994-y. PubMed DOI

Kemelo M. K., Horinek A., Canová N. K., Farghali H. Comparative effects of quercetin and SRT1720 against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in rats: biochemical and molecular biological investigations. European Review for Medical and Pharmacological Sciences. 2016;20(2):363–371. PubMed

Parmar K., Singh G., Gupta G., Pathak T., Nayak S. Evaluation of De Ritis ratio in liver-associated diseases. International Journal of Medical Science and Public Health. 2016;5(9):p. 1783. doi: 10.5455/ijmsph.2016.24122015322. DOI

Botros M., Sikaris K. A. The De Ritis ratio: the test of time. Clinical Biochemist Reviews. 2013;34:117–130. PubMed PMC

Jansen T., Hortmann M., Oelze M., et al. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1—evidence for direct and indirect antioxidant actions of bilirubin. Journal of Molecular and Cellular Cardiology. 2010;49(2):186–195. doi: 10.1016/j.yjmcc.2010.04.011. PubMed DOI

Baranano D. E., Rao M., Ferris C. D., Snyder S. H. Biliverdin reductase: a major physiologic cytoprotectant. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(25):16093–16098. doi: 10.1073/pnas.252626999. PubMed DOI PMC

Kemelo M. K., Kutinová Canová N., Horinek A., Farghali H. Sirtuin-activating compounds (STACs) alleviate D-galactosamine/lipopolysaccharide-induced hepatotoxicity in rats: involvement of sirtuin 1 and heme oxygenase 1. Physiological Research. 2017;66 PubMed

Suematsu M., Goda N., Sano T., et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. Journal of Clinical Investigation. 1995;96(5):2431–2437. doi: 10.1172/JCI118300. PubMed DOI PMC

Shinoda Y., Suematsu M., Wakabayashi Y., et al. Carbon monoxide as a regulator of bile canalicular contractility in cultured rat hepatocytes. Hepatology. 1998;28(2):286–295. doi: 10.1002/hep.510280202. PubMed DOI

Kyokane T., Norimizu S., Taniai H., et al. Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver. Gastroenterology. 2001;120(5):1227–1240. doi: 10.1053/gast.2001.23249. PubMed DOI

Das T. K., Wati M. R., Fatima-Shad K. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Archives of Neuroscience. 2014;2(3):1–8. doi: 10.5812/archneurosci.20078. DOI

Hermes-Lima M. Functional Metabolism: Regulation and Adaptation. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2005. Oxygen in biology and biochemistry: role of free radicals; pp. 319–368. DOI

Piao L., Choi J., Kwon G., Ha H. Endogenous catalase delays high-fat diet-induced liver injury in mice. The Korean Journal of Physiology & Pharmacology. 2017;21(3):317–325. doi: 10.4196/kjpp.2017.21.3.317. PubMed DOI PMC

Yang Y., Fu W., Chen J., et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nature Cell Biology. 2007;9(11):1253–1262. doi: 10.1038/ncb1645. PubMed DOI PMC

Caito S., Rajendrasozhan S., Cook S., et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. The FASEB Journal. 2010;24(9):3145–3159. doi: 10.1096/fj.09-151308. PubMed DOI PMC

Yamakuchi M., Ferlito M., Lowenstein C. J. miR-34a repression of SIRT1 regulates apoptosis. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(36):13421–13426. doi: 10.1073/pnas.0801613105. PubMed DOI PMC

Braidy N., Guillemin G. J., Mansour H., Chan-Ling T., Poljak A., Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats. PLoS One. 2011;6(4, article e19194) doi: 10.1371/journal.pone.0019194. PubMed DOI PMC

Banks A. S., Kon N., Knight C., et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metabolism. 2008;8(4):333–341. doi: 10.1016/j.cmet.2008.08.014. PubMed DOI PMC

Xiong S., Salazar G., Patrushev N., Alexander R. W. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. Journal of Biological Chemistry. 2011;286(7):5289–5299. doi: 10.1074/jbc.M110.163667. PubMed DOI PMC

Morita Y., Wada-Hiraike O., Yano T., et al. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary. Reproductive Biology and Endocrinology. 2012;10(1):p. 14. doi: 10.1186/1477-7827-10-14. PubMed DOI PMC

Roggerio A., Strunz C., Pacanaro A., et al. Gene expression of sirtuin-1 and endogenous secretory receptor for advanced glycation end products in healthy and slightly overweight subjects after caloric restriction and resveratrol administration. Nutrients. 2018;10(7):p. 937. doi: 10.3390/nu10070937. PubMed DOI PMC

Gertz M., Fischer F., Nguyen G. T. T., et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(30):E2772–E2781. doi: 10.1073/pnas.1303628110. PubMed DOI PMC

Stoyanovsky D. A., Cederbaum A. I. Metabolism of carbon tetrachloride to trichloromethyl radical: an ESR and HPLC-EC study. Chemical Research in Toxicology. 1999;12(8):730–736. doi: 10.1021/tx9900371. PubMed DOI

Mico B. A., Pohl L. R. Reductive oxygenation of carbon tetrachloride: trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine. Archives of Biochemistry and Biophysics. 1983;225(2):596–609. doi: 10.1016/0003-9861(83)90071-1. PubMed DOI

Izutsu K. T., Smuckler E. A. Effects of carbon tetrachloride on rat liver plasmalemmal calcium adenosine triphosphatase. The American Journal of Pathology. 1978;90(1):145–158. PubMed PMC

Verkhratsky A. Calcium and cell death. Sub-Cellular Biochemistry. 2007;45:465–480. doi: 10.1007/978-1-4020-6191-2_17. PubMed DOI

Patel T., Roberts L., Jones B., Gores G. Dysregulation of apoptosis as a mechanism of liver disease: an overview. Seminars in Liver Disease. 1998;18(2):105–114. doi: 10.1055/s-2007-1007147. PubMed DOI

Canbay A., Feldstein A. E., Higuchi H., et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38(5):1188–1198. doi: 10.1053/jhep.2003.50472. PubMed DOI

Guicciardi M. E., Gores G. J. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54(7):1024–1033. doi: 10.1136/gut.2004.053850. PubMed DOI PMC

Kemelo M. K., Pierzynová A., Kutinová Canová N., Kučera T., Farghali H. The involvement of sirtuin 1 and heme oxygenase 1 in the hepatoprotective effects of quercetin against carbon tetrachloride-induced sub-chronic liver toxicity in rats. Chemico-Biological Interactions. 2017;269:1–8. doi: 10.1016/j.cbi.2017.03.014. PubMed DOI

Song S. Z., Choi Y. H., Jin G. Y., Li G. Z., Yan G. H. Protective effect of cornuside against carbon tetrachloride-induced acute hepatic injury. Bioscience, Biotechnology, and Biochemistry. 2011;75(4):656–661. doi: 10.1271/bbb.100739. PubMed DOI

Lee C.-H., Park S. W., Kim Y. S., et al. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biological & Pharmaceutical Bulletin. 2007;30(10):1898–1904. doi: 10.1248/bpb.30.1898. PubMed DOI

Rubbo H., Trostchansky A., O’Donnell V. B. Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Archives of Biochemistry and Biophysics. 2009;484(2):167–172. doi: 10.1016/j.abb.2008.11.007. PubMed DOI

Al-Shabanah O. A., Alam K., Nagi M. N., Al-Rikabi A. C., Al-Bekairi A. M. Protective effect of aminoguanidine, a nitric oxide synthase inhibitor, against carbon tetrachloride-induced hepatotoxicity in mice. Life Sciences. 1999;66(3):265–270. doi: 10.1016/S0024-3205(99)00589-5. PubMed DOI

Gómez-Crisóstomo N. P., Rodríguez Martínez E., Rivas-Arancibia S. Oxidative stress activates the transcription factors FoxO 1a and FoxO 3a in the hippocampus of rats exposed to low doses of ozone. Oxidative Medicine and Cellular Longevity. 2014;2014:8. doi: 10.1155/2014/805764.805764 PubMed DOI PMC

Wang Y., Zhou Y., Graves D. T. FOXO transcription factors: their clinical significance and regulation. BioMed Research International. 2014;2014:13. doi: 10.1155/2014/925350.925350 PubMed DOI PMC

van den Berg M. C. W., Burgering B. M. T. Integrating opposing signals toward forkhead box O. Antioxidants & Redox Signaling. 2011;14(4):607–621. doi: 10.1089/ars.2010.3415. PubMed DOI

Brunet A., Bonni A., Zigmond M. J., et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96(6):857–868. doi: 10.1016/S0092-8674(00)80595-4. PubMed DOI

Calnan D. R., Brunet A. The FoxO code. Oncogene. 2008;27(16):2276–2288. doi: 10.1038/onc.2008.21. PubMed DOI

Obsilová V., Silhan J., Boura E., Teisinger J., Obsil T. 14-3-3 proteins: a family of versatile molecular regulators. Physiological Research. 2008;57 PubMed

van den Berg M. C. W. Complex Regulation of Forkhead Box O Transcription Factors. Utrecht University Repository; 2013.

Yoshida K., Yamaguchi T., Natsume T., Kufe D., Miki Y. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nature Cell Biology. 2005;7(3):278–285. doi: 10.1038/ncb1228. PubMed DOI

Sunayama J., Tsuruta F., Masuyama N., Gotoh Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. The Journal of Cell Biology. 2005;170(2):295–304. doi: 10.1083/jcb.200409117. PubMed DOI PMC

Lee Y. H., Giraud J., Davis R. J., White M. F. c-Jun N-terminal Kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. Journal of Biological Chemistry. 2003;278(5):2896–2902. doi: 10.1074/jbc.M208359200. PubMed DOI

Moll U. M., Wolff S., Speidel D., Deppert W. Transcription-independent pro-apoptotic functions of p53. Current Opinion in Cell Biology. 2005;17(6):631–636. doi: 10.1016/j.ceb.2005.09.007. PubMed DOI

Kao T.-K., Ou Y.-C., Raung S.-L., Lai C.-Y., Liao S.-L., Chen C.-J. Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sciences. 2010;86(9-10):315–321. doi: 10.1016/j.lfs.2009.12.014. PubMed DOI

Kobori M., Takahashi Y., Akimoto Y., et al. Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. Journal of Functional Foods. 2015;15:551–560. doi: 10.1016/j.jff.2015.04.006. DOI

Hao C., Zhu P.-X., Yang X., et al. Overexpression of SIRT1 promotes metastasis through epithelial-mesenchymal transition in hepatocellular carcinoma. BMC Cancer. 2014;14(1):p. 978. doi: 10.1186/1471-2407-14-978. PubMed DOI PMC

Kemelo M. K., Wojnarová L., Kutinová Canová N., Farghali H. D-galactosamine/lipopolysaccharide-induced hepatotoxicity downregulates sirtuin 1 in rat liver: role of sirtuin 1 modulation in hepatoprotection. Physiological Research. 2014;63(5):615–623. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...