Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice

. 2022 Apr ; 181 () : 144-156. [epub] 20220121

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35066096

Grantová podpora
MR/S011110/1 Medical Research Council - United Kingdom

Hyaluronan (HA) is a core constituent of perineuronal nets (PNNs) that surround subpopulations of neurones. The PNNs control synaptic stabilization in both the developing and adult central nervous system, and disruption of PNNs has shown to reactivate neuroplasticity. We investigated the possibility of memory prolongation by attenuating PNN formation using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. Adult C57BL/6 mice were fed with chow containing 5% (w/w) 4-MU for 6 months, at a dose ~6.7 mg/g/day. The oral administration of 4-MU reduced the glycosaminoglycan level in the brain to 72% and the spinal cord to 50% when compared to the controls. Spontaneous object recognition test (SOR) performed at 2, 3, 6 and 7 months showed a significant increase in SOR score in the 6-months treatment group 24 h after object presentation. The effect however did not persist in the washout group (1-month post treatment). Immunohistochemistry confirmed a reduction of PNNs, with shorter and less arborization of aggrecan staining around dendrites in hippocampus after 6 months of 4-MU treatment. Histopathological examination revealed mild atrophy in articular cartilage but it did not affect the motor performance as demonstrated in rotarod test. In conclusion, systemic oral administration of 4-MU for 6 months reduced PNN formation around neurons and enhanced memory retention in mice. However, the memory enhancement was not sustained despite the reduction of PNNs, possibly due to the lack of memory enhancement training during the washout period. Our results suggest that 4-MU treatment might offer a strategy for PNN modulation in memory enhancement.

Zobrazit více v PubMed

Miyata S., Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan. Biochim. Biophys. Acta Gen. Subj. 2017;1861(10):2420–2434. PubMed

Frischknecht R., Heine M., Perrais D., Seidenbecher C.I., Choquet D., Gundelfinger E.D. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 2009;12(7):897–904. PubMed

Pyka M., Wetzel C., Aguado A., Geissler M., Hatt H., Faissner A. Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur. J. Neurosci. 2011;33(12):2187–2202. PubMed

Fawcett J.W., Oohashi T., Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 2019;20(8):451–465. PubMed

Sorg B.A., Berretta S., Blacktop J.M., Fawcett J.W., Kitagawa H., Kwok J.C., Miquel M. Casting a wide net: role of perineuronal nets in neural plasticity. J. Neurosci. 2016;36(45):11459–11468. PubMed PMC

Pantazopoulos H., Berretta S. In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016 9847696: p. PubMed PMC

Bozzelli P.L., Alaiyed S., Kim E., Villapol S., Conant K. Proteolytic remodeling of perineuronal nets: effects on synaptic plasticity and neuronal population dynamics. Neural Plast. 2018;2018 5735789: p. PubMed PMC

Duncan J.A., Foster R., Kwok J.C.F. The potential of memory enhancement through modulation of perineuronal nets. Br. J. Pharmacol. 2019;176(18):3611–3621. PubMed PMC

Romberg C., Yang S., Melani R., Andrews M.R., Horner A.E., Spillantini M.G., Bussey T.J., Fawcett J.W., Pizzorusso T., Saksida L.M. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J. Neurosci. 2013;33(16):7057–7065. PubMed PMC

Kwok J.C., Afshari F., García-Alías G., Fawcett J.W. Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor. Neurol. Neurosci. 2008;26(2–3):131–145. PubMed

Howell M.D., Gottschall P.E. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience. 2012;217:6–18. PubMed PMC

Yang S., Hilton S., Alves J.N., Saksida L.M., Bussey T., Matthews R.T., Kitagawa H., Spillantini M.G., Kwok J., Fawcett J.W. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration. Neurobiol. Aging. 2017;59:197–209. PubMed

Carulli D., Pizzorusso T., Kwok J.C., Putignano E., Poli A., Forostyak S., Andrews M.R., Deepa S.S., Glant T.T., Fawcett J.W. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133(Pt 8):2331–2347. PubMed

Su W., Foster S.C., Xing R., Feistel K., Olsen R.H., Acevedo S.F., Raber J., Sherman L.S. CD44 transmembrane receptor and hyaluronan regulate adult hippocampal neural stem cell quiescence and differentiation. J. Biol. Chem. 2017;292(11):4434–4445. PubMed PMC

Kwok J.C.F., Carulli D., Fawcett J.W. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J. Neurochem. 2010;114(5):1447–1459. PubMed

Kakizaki I., Kojima K., Takagaki K., Endo M., Kannagi R., Ito M., Maruo Y., Sato H., Yasuda T., Mita S., Kimata K., Itano N. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J. Biol. Chem. 2004;279(32):33281–33289. PubMed

Kultti A., Pasonen-Seppänen S., Jauhiainen M., Rilla K.J., Kärnä R., Pyöriä E., Tammi R.H., Tammi M.I. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp. Cell Res. 2009;315(11):1914–1923. PubMed

Vigetti D., Rizzi M., Viola M., Karousou E., Genasetti A., Clerici M., Bartolini B., Hascall V.C., De Luca G., Passi A. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537–546. PubMed

Ishizuka S., Askew E.B., Ishizuka N., Knudson C.B., Knudson W. 4-methylumbelliferone diminishes catabolically activated articular chondrocytes and cartilage explants via a mechanism independent of hyaluronan inhibition. J. Biol. Chem. 2016;291(23):12087–12104. PubMed PMC

Nagy N., Kuipers H.F., Frymoyer A.R., Ishak H.D., Bollyky J.B., Wight T.N., Bollyky P.L. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front. Immunol. 2015;6:123. PubMed PMC

Kuipers H.F., Rieck M., Gurevich I., Nagy N., Butte M.J., Negrin R.S., Wight T.N., Steinman L., Bollyky P.L. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc. Natl. Acad. Sci. USA. 2016;113(5):1339–1344. PubMed PMC

Mueller A.M., Yoon B.H., Sadiq S.A. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem. 2014;289(33):22888–22899. PubMed PMC

McKallip R.J., Ban H., Uchakina O.N. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250–1259. PubMed

McKallip R.J., Hagele H.F., Uchakina O.N. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins. 2013;5(10):1814–1826. PubMed PMC

Yoshioka Y., Kozawa E., Urakawa H., Arai E., Futamura N., Zhuo L., Kimata K., Ishiguro N., Nishida Y. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160–1170. PubMed

Andreichenko I.N., Tsitrina A.A., Fokin A.V., Gabdulkhakova A.I., Maltsev D.I., Perelman G.S., Bulgakova E.V., Kulikov A.M., Mikaelyan A.S., Kotelevtsev Y.V. 4-methylumbelliferone prevents liver fibrosis by affecting hyaluronan deposition, FSTL1 expression and cell localization. Int. J. Mol. Sci. 2019;20(24) PubMed PMC

Ennaceur A., Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 1988;31(1):47–59. PubMed

Winters J.M., Feng X., Wang Y., Johnson L.M., Foil J. Progress toward universal interface technologies for telerehabilitation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2004;2004:4777–4780. PubMed

Bartko S.J., Vendrell I., Saksida L.M., Bussey T.J. A computer-automated touchscreen paired-associates learning (PAL) task for mice: impairments following administration of scopolamine or dicyclomine and improvements following donepezil. Psychopharmacology. 2011;214(2):537–548. PubMed

Lin R., Rosahl T.W., Whiting P.J., Fawcett J.W., Kwok J.C. 6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration. PLoS One. 2011;6:7. PubMed PMC

Manley G., Hawksworth J. Diagnosis of Hurler’s syndrome in the hospital laboratory and the determination of its genetic type. Arch. Dis. Child. 1966;41(215):91–96. PubMed PMC

Trabucchi E., Baratti C., Centemero A., Zuin M., Rizzitelli E., Colombo R. Controlled-study of the effects of tiropramide on biliary dyskinesia. Pharmatherapeutica. 1986;4(9):541–550. PubMed

Kuipers H.F., Nagy N., Ruppert S.M., Sunkari V.G., Marshall P.L., Gebe J.A., Ishak H.D., Keswani S.G., Bollyky J., Frymoyer A.R., Wight T.N., Steinman L., Bollyky P.L. The pharmacokinetics and dosing of oral 4-methylumbelliferone for inhibition of hyaluronan synthesis in mice. Clin. Exp. Immunol. 2016;185(3):372–381. PubMed PMC

Tsuchiya S., Ohashi Y., Ishizuka S., Ishiguro N., O’Rourke D.P., Knudson C.B., Knudson W. Suppression of murine osteoarthritis by 4-methylumbelliferone. J. Orthop. Res. 2020;38(5):1122–1131. PubMed PMC

Kwok, J.C.F., R. Foster, J.A. Duncan, Treatment of conditions of the nervous system. PCT/EP2020/079979, 2021. 2021-4-29.

Baxter M.G. “I’ve seen it all before”: explaining age-related impairments in object recognition. theoretical comment on Burke et al. (2010) Behav. Neurosci. 2010;124(5):706–709. PubMed

Yang S., Cacquevel M., Saksida L.M., Bussey T.J., Schneider B.L., Aebischer P., Melani R., Pizzorusso T., Fawcett J.W., Spillantini M.G. Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Exp. Neurol. 2015;265:48–58. PubMed PMC

Kwok J.C., Dick G., Wang D., Fawcett J.W. Extracellular matrix and perineuronal nets in cns repair. Dev. Neurobiol. 2011;71(11):1073–1089. PubMed

Galtrey C.M., Kwok J.C., Carulli D., Rhodes K.E., Fawcett J.W. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 2008;27(6):1373–1390. PubMed

Hylin M.J., Orsi S.A., Moore A.N., Dash P.K. Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning. Learn Mem. 2013;20(5):267–273. PubMed PMC

Lewis D.A., Curley A.A., Glausier J.R., Volk D.W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35(1):57–67. PubMed PMC

Wen T.H., Binder D.K., Ethell I.M., Razak K.A. The perineuronal ‘safety’ net? perineuronal net abnormalities in neurological disorders. Front. Mol. Neurosci. 2018;11:270. PubMed PMC

Raber J., Olsen R.H., Su W., Foster S., Xing R., Acevedo S.F., Sherman L.S. CD44 is required for spatial memory retention and sensorimotor functions. Behav. Brain Res. 2014;275:146–149. PubMed PMC

Kwok J.C.F., Carulli D., Fawcett J.W. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J. Neurochem. 2010;114(5):1447–1459. PubMed

Rilla K., Oikari S., Jokela T.A., Hyttinen J.M., Kärnä R., Tammi R.H., Tammi M.I. Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J. Biol. Chem. 2013;288(8):5973–5983. PubMed PMC

Carulli D., Rhodes K.E., Brown D.J., Bonnert T.P., Pollack S.J., Oliver K., Strata P., Fawcett J.W. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 2006;494(4):559–577. PubMed

Arranz A.M., Perkins K.L., Irie F., Lewis D.P., Hrabe J., Xiao F., Itano N., Kimata K., Hrabetova S., Yamaguchi Y. Hyaluronan deficiency due to <em>Has3</em> knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 2014;34(18):6164–6176. PubMed PMC

Saito T., Dai T., Asano R. The hyaluronan synthesis inhibitor 4-methylumbelliferone exhibits antitumor effects against mesenchymal-like canine mammary tumor cells. Oncol. Lett. 2013;5(3):1068–1074. PubMed PMC

Goncharova V., Serobyan N., Iizuka S., Schraufstatter I., de Ridder A., Povaliy T., Wacker V., Itano N., Kimata K., Orlovskaja I.A., Yamaguchi Y., Khaldoyanidi S. Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis. J. Biol. Chem. 2012;287(30):25419–25433. PubMed PMC

Nagy N., Freudenberger T., Melchior-Becker A., Röck K., Ter Braak M., Jastrow H., Kinzig M., Lucke S., Suvorava T., Kojda G., Weber A.A., Sörgel F., Levkau B., Ergün S., Fischer J.W. Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. Circulation. 2010;122(22):2313–2322. PubMed

Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004–. PubChem Compound Summary for CID 5280567, Hymecromone. PubChem [Internet], 2021.

Lontane L., et al. Toxicological and teratological study of 4-methylumbelliferone. Therapie. 1968;XXIII:359–371.

Mueller A.M., Yoon B.H., Sadiq S.A. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem. 2014;289(33):22888–22899. PubMed PMC

Sunkari V., et al. Inhibition of hyaluronan synthesis restores normoglycemia and promotes a regenerative wound phenotype in obese and diabetic mice. Wound Repair Regen. 2015;23(2) p. A41-A41.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...