4-Methylumbeliferone Treatment at a Dose of 1.2 g/kg/Day Is Safe for Long-Term Usage in Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MC-PC-16050
Medical Research Council - United Kingdom
MC_PC_16050
Medical Research Council - United Kingdom
MR/S011110/1
Medical Research Council - United Kingdom
PubMed
36835210
PubMed Central
PMC9959083
DOI
10.3390/ijms24043799
PII: ijms24043799
Knihovny.cz E-zdroje
- Klíčová slova
- 4-methylumbelliferone, chondroitin sulphates, hyaluronan, neuroplasticity,
- MeSH
- hymekromon * škodlivé účinky terapeutické užití MeSH
- interleukin-12 MeSH
- krysa rodu Rattus MeSH
- kyselina hyaluronová * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hymekromon * MeSH
- interleukin-12 MeSH
- kyselina hyaluronová * MeSH
4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period.
Department of Biology Faculty of Education J Seyle University SK 94501 Komarno Slovakia
Department of Neuroscience 2nd Faculty of Medicine Charles University 15006 Prague Czech Republic
Institute of Experimental Medicine Czech Academy of Sciences 14220 Prague Czech Republic
Institute of Physics Czech Academy of Sciences 18221 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences 14220 Prague Czech Republic
School of Biomedical Sciences Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK
Zobrazit více v PubMed
Klos C., Paumgartner G., Reichen J. Cation-anion gap and choleretic properties of rat bile. Am. J. Physiol. -Endocrinol. Metab. 1979;236:E434. doi: 10.1152/ajpendo.1979.236.4.E434. PubMed DOI
Elferink R.P.J.O., Tytgat G.N.J., Groen A.K. The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB J. 1997;11:19–28. doi: 10.1096/fasebj.11.1.9034162. PubMed DOI
Takeda S., Aburada M. The choleretic mechanism of coumarin compounds and phenolic compounds. J. Pharm. 1981;4:724–734. doi: 10.1248/bpb1978.4.724. PubMed DOI
Nagy N., Gurevich I., Kuipers H.F., Ruppert S.M., Marshall P.L., Xie B.J., Sun W., Malkovskiy A.V., Rajadas J., Grandoch M., et al. 4-Methylumbelliferyl glucuronide contributes to hyaluronan synthesis inhibition. J. Biol. Chem. 2019;294:7864–7877. doi: 10.1074/jbc.RA118.006166. PubMed DOI PMC
Dubisova J., Burianova J.S., Svobodova L., Makovicky P., Martinez-Varea N., Cimpean A., Fawcett J.W., Kwok J.C., Kubinova S. Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice. Brain Res. Bull. 2022;181:144–156. doi: 10.1016/j.brainresbull.2022.01.011. PubMed DOI PMC
Irvine S.F., Gigout S., Štěpánková K., Varea N.M., Urdzíková L.M., Jendelová P., Kwok J.C.F. 4-Methylumbelliferone enhances neuroplasticity in the central nervous system: Potential oral treatment for SCI. bioRxiv. 20232023.01.23.525137
Nagy N., Kuipers H.F., Frymoyer A.R., Ishak H.D., Bollyky J.B., Wight T.N., Bollyky P.L. 4-Methylumbelliferone Treatment and Hyaluronan Inhibition as a Therapeutic Strategy in Inflammation, Autoimmunity, and Cancer. Front. Immunol. 2015;6:123. doi: 10.3389/fimmu.2015.00123. PubMed DOI PMC
Stepankova K., Chudickova M., Simkova Z., Martinez-Varea N., Kubinova S., Urdzikova L., Jendelova P., Kwok J.C. Oral administration of 4-methylumbelliferone reduces glial scar and promotes anatomical plasticity. bioRxiv. 20232023.02.02.526565
Sorg B.A., Berretta S., Blacktop J.M., Fawcett J.W., Kitagawa H., Kwok J.C., Miquel M. Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. J. Neurosci. 2016;36:11459–11468. doi: 10.1523/JNEUROSCI.2351-16.2016. PubMed DOI PMC
Wang D., Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 2012;349:147–160. doi: 10.1007/s00441-012-1375-y. PubMed DOI
Ghorbani S., Yong V.W. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain. 2021;144:1958–1973. doi: 10.1093/brain/awab059. PubMed DOI PMC
Yong N., Guoping C. Upregulation of matrix metalloproteinase-9 dependent on hyaluronan synthesis after sciatic nerve injury. Neurosci. Lett. 2008;444:259–263. doi: 10.1016/j.neulet.2008.08.042. PubMed DOI
Kuipers H.F., Nagy N., Ruppert S.M., Sunkari V.G., Marshall P.L., A Gebe J., Ishak H.D., Keswani S.G., Bollyky J., Frymoyer A.R., et al. The pharmacokinetics and dosing of oral 4-methylumbelliferone for inhibition of hyaluronan synthesis in mice. Clin. Exp. Immunol. 2016;185:372–381. doi: 10.1111/cei.12815. PubMed DOI PMC
Garrett E.R., Venitz J., Eberst K., Cerda J.J. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14:13–39. doi: 10.1002/bdd.2510140103. PubMed DOI
Morita K., Sugiyama Y., Hanano M. Pharmacokinetic study of 4-methylumbelliferone in rats: Influence of dose on its first-pass hepatic elimination. J. Pharm. 1986;9:117–124. doi: 10.1248/bpb1978.9.117. PubMed DOI
Kobayashi T., Chanmee T., Itano N. Hyaluronan: Metabolism and Function. Biomolecules. 2020;10:1525. doi: 10.3390/biom10111525. PubMed DOI PMC
David S., Hamilton J.P. Drug-induced Liver Injury. US Gastroenterol. Hepatol. Rev. 2010;6:73–80. PubMed PMC
Hoffmann R.M., Schwarz G., Pohl C., Ziegenhagen D.J., Kruis W. [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility] Dtsch. Med. Wochenschr. (1946) 2005;130:1938–1943. doi: 10.1055/s-2005-872606. PubMed DOI
Makris K., Markou N., Evodia E., Dimopoulou E., Drakopoulos I., Ntetsika K., Rizos D., Baltopoulos G., Haliassos A. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin. Chem. Lab. Med. 2009;47:79–82. doi: 10.1515/CCLM.2009.004. PubMed DOI
Zhang X., Chen X., Hong Q., Lin H., Zhu H., Liu Q., Wang J., Xie Y., Shang X., Shi S., et al. TIMP-1 promotes age-related renal fibrosis through upregulating ICAM-1 in human TIMP-1 transgenic mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006;61:1130–1143. doi: 10.1093/gerona/61.11.1130. PubMed DOI
Goncharova V., Serobyan N., Iizuka S., Schraufstatter I., de Ridder A., Povaliy T., Wacker V., Itano N., Kimata K., Orlovskaja I.A., et al. Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis. J. Biol. Chem. 2012;287:25419–25433. doi: 10.1074/jbc.M112.376699. PubMed DOI PMC
Sikes K.J., Renner K., Li J., Grande-Allen K.J., Connell J.P., Cali V., Midura R.J., Sandy J.D., Plaas A., Wang V.M. Knockout of hyaluronan synthase 1, but not 3, impairs formation of the retrocalcaneal bursa. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2018;36:2622–2632. doi: 10.1002/jor.24027. PubMed DOI PMC
Papakonstantinou E., Roth M., Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinol. 2012;4:253–258. doi: 10.4161/derm.21923. PubMed DOI PMC
Nakamura T., Takagaki K., Shibata S., Tanaka K., Higuchi T., Endo M. Hyaluronic-Acid-Deficient Extracellular Matrix Induced by Addition of 4-Methylumbelliferone to the Medium of Cultured Human Skin Fibroblasts. Biochem. Biophys. Res. Commun. 1995;208:470–475. doi: 10.1006/bbrc.1995.1362. PubMed DOI
Kakizaki I., Kojima K., Takagaki K., Endo M., Kannagi R., Ito M., Maruo Y., Sato H., Yasuda T., Mita S., et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J. Biol. Chem. 2004;279:33281–33289. doi: 10.1074/jbc.M405918200. PubMed DOI
Monslow J., Govindaraju P., Puré E. Hyaluronan—A functional and structural sweet spot in the tissue microenvironment. Front Immunol. 2015;6:231. doi: 10.3389/fimmu.2015.00231. PubMed DOI PMC
Vigetti D., Rizzi M., Viola M., Karousou E., Genasetti A., Clerici M., Bartolini B., Hascall V.C., De Luca G., Passi A. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19:537–546. doi: 10.1093/glycob/cwp022. PubMed DOI
Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC
Peters A., Sherman L.S. Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int. J. Mol. Sci. 2020;21:5988. doi: 10.3390/ijms21175988. PubMed DOI PMC
Smith C.C., Mauricio R., Nobre L., Marsh B., Wüst R.C., Rossiter H.B., Ichiyama R.M. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res Bull. 2015;111:20–26. doi: 10.1016/j.brainresbull.2014.12.005. PubMed DOI
Pantazopoulos H., Berretta S. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast. 2016;2016:9847696. doi: 10.1155/2016/9847696. PubMed DOI PMC
De la Motte C.A., Kessler S.P. The role of hyaluronan in innate defense responses of the intestine. Int. J. Cell Biol. 2015;2015:481301. doi: 10.1155/2015/481301. PubMed DOI PMC
Galdi F., Pedone C., McGee C.A., George M., Rice A.B., Hussain S.S., Vijaykumar K., Boitet E.R., Tearney G.J., McGrath J.A., et al. Inhaled high molecular weight hyaluronan ameliorates respiratory failure in acute COPD exacerbation: A pilot study. Respir. Res. 2021;22:30. doi: 10.1186/s12931-020-01610-x. PubMed DOI PMC
Papanastasopoulou C., Papastamataki M., Karampatsis P., Anagnostopoulou E., Papassotiriou I., Sitaras N. Cardiovascular Risk and Serum Hyaluronic Acid: A Preliminary Study in a Healthy Population of Low/Intermediate Risk. J. Clin. Lab. Anal. 2017;31:e22010. doi: 10.1002/jcla.22010. PubMed DOI PMC
Amir A., Kim S., Stecco A., Jankowski M.P., Raghavan P. Hyaluronan homeostasis and its role in pain and muscle stiffness. PM R J. Inj. Funct. Rehabil. 2022;14:1490–1496. doi: 10.1002/pmrj.12771. PubMed DOI PMC
Kaux J.F., Samson A., Crielaard J.M. Hyaluronic acid and tendon lesions. Muscles Ligaments Tendons J. 2015;5:264–269. doi: 10.32098/mltj.04.2015.02. PubMed DOI PMC
Tamer T.M. Hyaluronan and synovial joint: Function, distribution and healing. Interdiscip. Toxicol. 2013;6:111–125. doi: 10.2478/intox-2013-0019. PubMed DOI PMC
Rivers D.A., Stern R. Hyaluronan and the Process of Aging in Skin. In: Farage M., Miller K., Maibach H., editors. Textbook of Aging Skin. Springer; Berlin, Heidelberg: 2017.
Hansen J.F., Christiansen K.M., Staugaard B., Moessner B.K., Lillevang S., Krag A., Christensen P.B. Combining liver stiffness with hyaluronic acid provides superior prognostic performance in chronic hepatitis C. PLoS ONE. 2019;14:e0212036. doi: 10.1371/journal.pone.0212036. PubMed DOI PMC
Katarey D., Verma S. Drug-induced liver injury. Clin. Med. 2016;16((Suppl. 6)):s104–s109. doi: 10.7861/clinmedicine.16-6-s104. PubMed DOI PMC
Kakehi K., Kinoshita M., Yasueda S.-i. Hyaluronic acid: Separation and biological implications. J. Chromatogr. B. 2003;797:347–355. doi: 10.1016/S1570-0232(03)00479-3. PubMed DOI
Toole B.P. Hyaluronan: From extracellular glue to pericellular cue. Nat. Rev. Cancer. 2004;4:528–539. doi: 10.1038/nrc1391. PubMed DOI
Fenderson B.A., Stamenkovic I., Aruffo A. Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differ. Res. Biol. Divers. 1993;54:85–98. PubMed
Tammi M., Seppälä P.O., Lehtonen A., Möttönen M. Connective tissue components in normal and atherosclerotic human coronary arteries. Atherosclerosis. 1978;29:191–194. doi: 10.1016/0021-9150(78)90007-2. PubMed DOI
Smadja-Joffe F., Legras S., Girard N., Li Y., Delpech B., Bloget F., Morimoto K., Le Bousse-Kerdilès C., Clay D., Jasmin C., et al. CD44 and hyaluronan binding by human myeloid cells. Leuk. Lymphoma. 1996;21:407–420. doi: 10.3109/10428199609093438. PubMed DOI
Drózdz M., Kula B., Wardas M., Weglarz L. Hyaluronic acid content and hyaluronidase activity in liver and spleen of rats with hydralazine-induced collagen-like syndrome. Biomed. Biochim. Acta. 1988;47:247–250. PubMed
Andreutti D., Geinoz A., Gabbiani G. Effect of hyaluronic acid on migration, proliferation and alpha-smooth muscle actin expression by cultured rat and human fibroblasts. J. Submicrosc. Cytol. Pathol. 1999;31:173–177. PubMed
Klamer S., Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhes. Migr. 2014;8:563–577. doi: 10.4161/19336918.2014.968501. PubMed DOI PMC
Köpke-Aguiar L.A., Martins J.R., Passerotti C.C., Toledo C.F., Nader H.B., Borges D.R. Serum hyaluronic acid as a comprehensive marker to assess severity of liver disease in schistosomiasis. Acta Trop. 2002;84:117–126. doi: 10.1016/S0001-706X(02)00136-5. PubMed DOI
Malakouti M., Kataria A., Ali S.K., Schenker S. Elevated Liver Enzymes in Asymptomatic Patients-What Should I Do? J. Clin. Transl. Hepatol. 2017;5:394–403. doi: 10.14218/JCTH.2017.00027. PubMed DOI PMC
Dufour D.R., Lott J.A., Nolte F.S., Gretch D.R., Koff R.S., Seeff L.B. Diagnosis and monitoring of hepatic injury. II. Recommendations for use of laboratory tests in screening, diagnosis, and monitoring. Clin. Chem. 2000;46:2050–2068. doi: 10.1093/clinchem/46.12.2050. PubMed DOI PMC
Miura Y. [Aspartate aminotransferase (AST) and alanine aminotransferase (ALT)] Pt 1Nihon Rinsho Jpn. J. Clin. Med. 1995;53:266–271. PubMed
Kvietys P.R., Granger D.N. Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann. N. Y. Acad. Sci. 2010;1207((Suppl. 1)):E29–E43. doi: 10.1111/j.1749-6632.2010.05709.x. PubMed DOI PMC
De la Motte C.A., Hascall V.C., Drazba J., Bandyopadhyay S.K., Strong S.A. Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: Inter-alpha-trypsin inhibitor is crucial to structure and function. Am. J. Pathol. 2003;163:121–133. doi: 10.1016/S0002-9440(10)63636-X. PubMed DOI PMC
Kaul A., Singampalli K.L., Parikh U.M., Yu L., Keswani S.G., Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatr. Nephrol. 2022;37:735–744. doi: 10.1007/s00467-021-05113-9. PubMed DOI PMC
Colombaro V., Declèves A.E., Jadot I., Voisin V., Giordano L., Habsch I., Nonclercq D., Flamion B., Caron N. Inhibition of hyaluronan is protective against renal ischaemia-reperfusion injury. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2013;28:2484–2493. doi: 10.1093/ndt/gft314. PubMed DOI
Fraser J.R., Laurent T.C., Laurent U.B. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997;242:27–33. doi: 10.1046/j.1365-2796.1997.00170.x. PubMed DOI
Laurent C., Johnson-Wells G., Hellström S., Engström-Laurent A., Wells A.F. Localization of hyaluronan in various muscular tissues. A morphological study in the rat. Cell Tissue Res. 1991;263:201–205. doi: 10.1007/BF00318761. PubMed DOI
Stecco C., Stern R., Porzionato A., Macchi V., Masiero S., Stecco A., De Caro R. Hyaluronan within fascia in the etiology of myofascial pain. Surg. Radiol. Anat. SRA. 2011;33:891–896. doi: 10.1007/s00276-011-0876-9. PubMed DOI
Purslow P.P. Muscle fascia and force transmission. J. Bodyw. Mov. Ther. 2010;14:411–417. doi: 10.1016/j.jbmt.2010.01.005. PubMed DOI
Hunter S.K., Pereira H.M., Keenan K.G. The aging neuromuscular system and motor performance. J. Appl. Physiol. 2016;121:982–995. doi: 10.1152/japplphysiol.00475.2016. PubMed DOI PMC
Stern R., Maibach H.I. Hyaluronan in skin: Aspects of aging and its pharmacologic modulation. Clin. Dermatol. 2008;26:106–122. doi: 10.1016/j.clindermatol.2007.09.013. PubMed DOI
Longaker M.T., Chiu E.S., Adzick N.S., Stern M., Harrison M.R., Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann. Surg. 1991;213:292–296. doi: 10.1097/00000658-199104000-00003. PubMed DOI PMC
Schachtschabel D.O., Wever J. Age-related decline in the synthesis of glycosaminoglycans by cultured human fibroblasts (WI-38) Mech. Ageing Dev. 1978;8:257–264. doi: 10.1016/0047-6374(78)90025-8. PubMed DOI
Girish K.S., Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sci. 2007;80:1921–1943. doi: 10.1016/j.lfs.2007.02.037. PubMed DOI
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Horton M.R., Burdick M.D., Strieter R.M., Bao C., Noble P.W. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J. Immunol. 1998;160:3023–3030. doi: 10.4049/jimmunol.160.6.3023. PubMed DOI
King A., Balaji S., Le L.D., Crombleholme T.M., Keswani S.G. Regenerative Wound Healing: The Role of Interleukin-10. Adv. Wound Care. 2014;3:315–323. doi: 10.1089/wound.2013.0461. PubMed DOI PMC