Genetic and geographic influence on phenotypic variation in European sarcoidosis patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37621457
PubMed Central
PMC10446882
DOI
10.3389/fmed.2023.1218106
Knihovny.cz E-zdroje
- Klíčová slova
- genetic polymorphism, genetic risk factors, genotype–phenotype-relationship, region-specific genetic links, sarcoidosis,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Sarcoidosis is a highly variable disease in terms of organ involvement, type of onset and course. Associations of genetic polymorphisms with sarcoidosis phenotypes have been observed and suggest genetic signatures. METHODS: After obtaining a positive vote of the competent ethics committee we genotyped 1909 patients of the deeply phenotyped Genetic-Phenotype Relationship in Sarcoidosis (GenPhenReSa) cohort of 31 European centers in 12 countries with 116 potentially disease-relevant single-nucleotide polymorphisms (SNPs). Using a meta-analysis, we investigated the association of relevant phenotypes (acute vs. sub-acute onset, phenotypes of organ involvement, specific organ involvements, and specific symptoms) with genetic markers. Subgroups were built on the basis of geographical, clinical and hospital provision considerations. RESULTS: In the meta-analysis of the full cohort, there was no significant genetic association with any considered phenotype after correcting for multiple testing. In the largest sub-cohort (Serbia), we confirmed the known association of acute onset with TNF and reported a new association of acute onset an HLA polymorphism. Multi-locus models with sets of three SNPs in different genes showed strong associations with the acute onset phenotype in Serbia and Lublin (Poland) demonstrating potential region-specific genetic links with clinical features, including recently described phenotypes of organ involvement. DISCUSSION: The observed associations between genetic variants and sarcoidosis phenotypes in subgroups suggest that gene-environment-interactions may influence the clinical phenotype. In addition, we show that two different sets of genetic variants are permissive for the same phenotype of acute disease only in two geographic subcohorts pointing to interactions of genetic signatures with different local environmental factors. Our results represent an important step towards understanding the genetic architecture of sarcoidosis.
Biomedical Research in End Stage and Obstructive Lung Disease Hannover Germany
Department of Internal Medicine 1 University Hospital Schleswig Holstein Kiel Germany
Department of Pneumology and Intensive Care University Hospital Giessen Germany
Department of Pneumology Faculty of Medicine University Medical Centre Freiburg Germany
Department of Pneumology University Hospital Belgrade Serbia
Department of Pneumology University Hospital Bonn Germany
Department of Pneumology University Hospital Leipzig Leipzig Germany
Department of Pneumology University Hospital Regensburg Regensburg Germany
Department of Pneumonology Oncology and Allergology Medical University of Lublin Lublin Poland
Department of Pulmonology Medical University of Gdansk Gdansk Poland
Department of Respiratory Medicine University Hospital Southampton United Kingdom
Evangelische Lungenklinik Berlin Berlin Germany
Faculty of Medicine and Dentistry Palacký University and University Hospital Olomouc Olomouc Czechia
Foundation IRCCS Policlinico San Matteo Pulmonology Unit Pavia Italy
Groupe Hospitalier Avicenne Jean Verdier René Muret Service de Pneumologie Bobigny France
Hospital Berlin Havelhöhe Berlin Germany
Institute of Clinical Molecular Biology Kiel University Kiel Germany
Institute of Medical Informatics and Statistics Kiel University Kiel Germany
Laboratory of Respiratory Diseases and Thoracic Surgery University Hospital Leuven Belgium
Landspitali University Hospital Reykjavik Iceland
Medical Hospital Research Center Borstel Borstel Germany
National Koranyi Institute Budapest Hungary
Prague General Hospital Charles University Prague Czechia
Pulmonary Department University Hospital Bristol United Kingdom
Pulmonary Department University Hospital Jordanovac Zagreb Croatia
Pulmonology Department Academic Medical Center Amsterdam Amsterdam Netherlands
Respiratory Diseases and Lung Transplant Unit University Hospital Siena Italy
Thomayer Hospital and 1st Faculty of Medicine Charles University Praha Czechia
Zobrazit více v PubMed
Grunewald J, Grutters JC, Arkema EV, Saketkoo LA, Moller DR, Müller-Quernheim J. Sarcoidosis. Nat Rev Dis Primers. (2019) 5:45. doi: 10.1038/s41572-019-0096-x PubMed DOI
Schupp JC, Frye BC, Zissel G, Müller-Quernheim J. Sarcoidosis: drugs under investigation. Semin Respir Crit Care Med. (2017) 38:532–7. doi: 10.1055/s-0037-1603768 PubMed DOI
Sverrild A, Backer V, Kyvik KO, Kaprio J, Milman N, Svendsen CB, et al. . Heredity in sarcoidosis: a registry-based twin study. Thorax. (2008) 63:894–6. doi: 10.1136/thx.2007.094060 PubMed DOI
Fischer A, Grunewald J, Spagnolo P, Nebel A, Schreiber S, Müller-Quernheim J. Genetics of sarcoidosis. Semin Respir Crit Care Med. (2014) 35:296–306. doi: 10.1055/s-0034-1376860 PubMed DOI
Crouser ED, Fingerlin TE, Yang IV, Maier LA, Nana-Sinkam P, Collman RG, et al. . Application of "omics" and systems biology to sarcoidosis research. Ann Am Thorac Soc. (2017) 14:S445–51. doi: 10.1513/AnnalsATS.201707-567OT PubMed DOI PMC
Rivera NV, Ronninger M, Shchetynsky K, Franke A, Nöthen MM, Müller-Quernheim J, et al. . High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am J Respir Crit Care Med. (2016) 193:1008–22. doi: 10.1164/rccm.201507-1372OC PubMed DOI PMC
Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M, Stenzel A, et al. . Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet. (2005) 37:357–64. doi: 10.1038/ng1519 PubMed DOI
Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI, et al. . Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet. (2008) 40:1103–6. doi: 10.1038/ng.198 PubMed DOI
Fischer A, Nothnagel M, Franke A, Jacobs G, Saadati HR, Gaede KI, et al. . Association of inflammatory bowel disease risk loci with sarcoidosis, and its acute and chronic subphenotypes. Eur Respir J. (2011) 37:610–6. doi: 10.1183/09031936.00049410 PubMed DOI
Grunewald J, Brynedal B, Darlington P, Nisell M, Cederlund K, Hillert J, et al. . Different HLA-DRB1 allele distributions in distinct clinical subgroups of sarcoidosis patients. Respir Res. (2010) 11:25. doi: 10.1186/1465-9921-11-25 PubMed DOI PMC
Song GG, Kim JH, Lee YH. Associations between TNF-α −308 A/G and lymphotoxin-α +252 A/G polymorphisms and susceptibility to sarcoidosis: a meta-analysis. Mol Biol Rep. (2014) 41:259–67. doi: 10.1007/s11033-013-2859-x, PMID: PubMed DOI
Takashige N, Naruse TK, Matsumori A, Hara M, Nagai S, Morimoto S, et al. . Genetic polymorphisms at the tumour necrosis factor loci (TNFA and TNFB) in cardiac sarcoidosis. Tissue Antigens. (1999) 54:191–3. doi: 10.1034/j.1399-0039.1999.540211.x PubMed DOI
Levin AM, Iannuzzi MC, Montgomery CG, Trudeau S, Datta I, McKeigue P, et al. . Association of ANXA11 genetic variation with sarcoidosis in African Americans and European Americans. Genes Immun. (2013) 14:13–8. doi: 10.1038/gene.2012.48 PubMed DOI PMC
Schupp JC, Freitag-Wolf S, Bargagli E, Mihailović-Vučinić V, Rottoli P, Grubanovic A, et al. . Phenotypes of organ involvement in sarcoidosis. Eur Respir J. (2018) 51:1700991. doi: 10.1183/13993003.00991-2017 PubMed DOI
Statement on sarcoidosis . Joint statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the world Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of directors and by the ERS executive committee, February 1999. Am J Respir Crit Care Med. (1999) 160:736–55. PubMed
Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A, et al. . Correlation between genetic and geographic structure in Europe. Curr Biol. (2008) 18:1241–8. doi: 10.1016/j.cub.2008.07.049 PubMed DOI
Judson MA, Baughman RP, Teirstein AS, Terrin ML, Yeager H, Jr. Defining organ involvement in sarcoidosis: the ACCESS proposed instrument. ACCESS research group. A case control etiologic study of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. (1999) 16:75–86. PubMed
Prasse A, Katic C, Germann M, Buchwald A, Zissel G, Müller-Quernheim J. Phenotyping sarcoidosis from a pulmonary perspective. Am J Respir Crit Care Med. (2008) 177:330–6. doi: 10.1164/rccm.200705-742OC PubMed DOI
Lhote R, Annesi-Maesano I, Nunes H, Launay D, Borie R, Sacré K, et al. . Clinical phenotypes of extrapulmonary sarcoidosis: an analysis of a French, multi-ethnic, multicentre cohort. Eur Respir J. (2021) 57:2001160. doi: 10.1183/13993003.01160-2020 PubMed DOI
Stewart GB, Altman DG, Askie LM, Duley L, Simmonds MC, Stewart LA. Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice. PLoS One. (2012) 7:e46042. doi: 10.1371/journal.pone.0046042 PubMed DOI PMC
Debray TP, Moons KG, van Valkenhoef G, Efthimiou O, Hummel N, Groenwold RHH, et al. . Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Res Synth Methods. (2015) 6:293–309. doi: 10.1002/jrsm.1160 PubMed DOI PMC
Viechtbauer W. Conducting Meta-analyses inRwith themetaforPackage. J Stat Softw. (2010) 36:1–48. doi: 10.18637/jss.v036.i03 DOI
Choi SC, Lu IL. Effect of non-random missing data mechanisms in clinical trials. Stat Med. (1995) 14:2675–84. doi: 10.1002/sim.4780142407 PubMed DOI
Wijnen PA, Nelemans PJ, Verschakelen JA, Bekers O, Voorter CE, Drent M. The role of tumor necrosis factor alpha G-308A polymorphisms in the course of pulmonary sarcoidosis. Tissue Antigens. (2010) 75:262–8. doi: 10.1111/j.1399-0039.2009.01437.x PubMed DOI
Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, et al. . Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut. (2014) 63:80–7. doi: 10.1136/gutjnl-2013-305193 PubMed DOI
Australia, New Zealand Multiple Sclerosis Genetics C . Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. (2009) 41:824–8. doi: 10.1038/ng.396, PMID: PubMed DOI
Ruiz-Narvaez EA, Fraser PA, Palmer JR, Cupples LA, Reich D, Wang YA, et al. . MHC region and risk of systemic lupus erythematosus in African American women. Hum Genet. (2011) 130:807–15. doi: 10.1007/s00439-011-1045-2 PubMed DOI PMC
Crommelin H, Vorselaars A, van der Vis J, Deneer V, van Moorsel CHM. Pharmacogenetics of antitumor necrosis factor therapy in severe sarcoidosis. Curr Opin Pulm Med. (2020) 26:267–76. doi: 10.1097/MCP.0000000000000681 PubMed DOI
Chadha S, Miller K, Farwell L, Sacks S, Daly MJ, Rioux JD, et al. . Haplotype analysis of tumour necrosis factor receptor genes in 1p36: no evidence for association with systemic lupus erythematosus. Eur J Hum Genet. (2006) 14:69–78. doi: 10.1038/sj.ejhg.5201527 PubMed DOI
Mohamud R, LeMasurier JS, Boer JC, Sieow JL, Rolland JM, O’Hehir RE, et al. . Synthetic nanoparticles that promote tumor necrosis factor receptor 2 expressing regulatory T cells in the lung and resistance to allergic airways inflammation. Front Immunol. (2017) 8:1812. doi: 10.3389/fimmu.2017.01812 PubMed DOI PMC
Zissel G, Schlaak J, Schlaak M, Müller-Quernheim J. Regulation of cytokine release by alveolar macrophages treated with interleukin-4, interleukin-10, or transforming growth factor beta. Eur Cytokine Netw. (1996) 7:59–66. PMID: PubMed
An SJ, Chen ZH, Lin QX, Su J, Chen HJ, Lin JY, et al. . The −271 G>a polymorphism of kinase insert domain-containing receptor gene regulates its transcription level in patients with non-small cell lung cancer. BMC Cancer. (2009) 9:144. doi: 10.1186/1471-2407-9-144 PubMed DOI PMC
Yamashita M, Mouri T, Niisato M, Kowada K, Kobayashi H, Chiba R, et al. . Heterogeneous characteristics of lymphatic microvasculatures associated with pulmonary sarcoid granulomas. Ann Am Thorac Soc. (2013) 10:90–7. doi: 10.1513/AnnalsATS.201209-078OC PubMed DOI
Newman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, et al. . A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med. (2004) 170:1324–30. doi: 10.1164/rccm.200402-249OC PubMed DOI
Jostins L, Barrett JC. Genetic risk prediction in complex disease. Hum Mol Genet. (2011) 20:R182–8. doi: 10.1093/hmg/ddr378, PMID: PubMed DOI PMC
Rivera NV, Patasova K, Kullberg S, Diaz-Gallo LM, Iseda T, Bengtsson C, et al. . A gene-environment interaction between smoking and gene polymorphisms provides a high risk of two subgroups of sarcoidosis. Sci Rep. (2019) 9:18633. doi: 10.1038/s41598-019-54612-1 PubMed DOI PMC
Blanc PD, Annesi-Maesano I, Balmes JR, Cummings KJ, Fishwick D, Miedinger D, et al. . The occupational burden of nonmalignant respiratory diseases. An official American Thoracic Society and European Respiratory Society statement. Am J Respir Crit Care Med. (2019) 199:1312–34. doi: 10.1164/rccm.201904-0717ST PubMed DOI PMC
Judson MA. Environmental risk factors for sarcoidosis. Front Immunol. (2020) 11:1340. doi: 10.3389/fimmu.2020.01340, PMID: PubMed DOI PMC
Oliver LC, Zarnke AM. Sarcoidosis: An occupational disease? Chest. (2021) 160:1360–7. doi: 10.1016/j.chest.2021.06.003, PMID: PubMed DOI PMC
Frye BC, Gaede KI, Saltini C, Rossman MD, Monos DS, Rosenman KD, et al. . Analysis of single nucleotide polymorphisms in chronic beryllium disease. Respir Res. (2021) 22:107. doi: 10.1186/s12931-021-01691-2 PubMed DOI PMC
Greaves SA, Ravindran A, Santos RG, Chen L, Falta MT, Wang Y, et al. . CD4+ T cells in the lungs of acute sarcoidosis patients recognize an aspergillus nidulans epitope. J Exp Med. (2021) 218:e20210785. doi: 10.1084/jem.20210785 PubMed DOI PMC