The Development of Speaking and Singing in Infants May Play a Role in Genomics and Dementia in Humans

. 2023 Aug 11 ; 13 (8) : . [epub] 20230811

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37626546

Grantová podpora
AG060504 NIA NIH HHS - United States

The development of the central auditory system, including the auditory cortex and other areas involved in processing sound, is shaped by genetic and environmental factors, enabling infants to learn how to speak. Before explaining hearing in humans, a short overview of auditory dysfunction is provided. Environmental factors such as exposure to sound and language can impact the development and function of the auditory system sound processing, including discerning in speech perception, singing, and language processing. Infants can hear before birth, and sound exposure sculpts their developing auditory system structure and functions. Exposing infants to singing and speaking can support their auditory and language development. In aging humans, the hippocampus and auditory nuclear centers are affected by neurodegenerative diseases such as Alzheimer's, resulting in memory and auditory processing difficulties. As the disease progresses, overt auditory nuclear center damage occurs, leading to problems in processing auditory information. In conclusion, combined memory and auditory processing difficulties significantly impact people's ability to communicate and engage with their societal essence.

Zobrazit více v PubMed

Rauschecker J.P. The Auditory Cortex of Primates Including Man With Reference to Speech. In: Fritzsch B., editor. The Senses: A Comprehensive Reference. 2nd ed. Elsevier; Oxford, UK: 2020. pp. 791–811.

Malone B.J., Hasenstaub A.R., Schreiner C.E. Primary Auditory Cortex II. Some Functional Considerations. In: Fritzsch B., editor. The Senses: A Comprehensive Reference. 2nd ed. Elsevier; Oxford, UK: 2020. pp. 657–680.

Kanold P.O., Nelken I., Polley D.B. Local versus global scales of organization in auditory cortex. Trends Neurosci. 2014;37:502–510. doi: 10.1016/j.tins.2014.06.003. PubMed DOI PMC

Winer J.A., Schreiner C.E. The Auditory Cortex. Springer; Berlin/Heidelberg, Germany: 2011. Toward a Synthesis of Cellular Auditory Forebrain Functional Organization; pp. 679–686.

Polley D.B., Schiller D. The promise of low-tech intervention in a high-tech era: Remodeling pathological brain circuits using behavioral reverse engineering. Neurosci. Biobehav. Rev. 2022;137:104652. doi: 10.1016/j.neubiorev.2022.104652. PubMed DOI

Rauschecker J.P., Scott S.K. Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nat. Neurosci. 2009;12:718–724. doi: 10.1038/nn.2331. PubMed DOI PMC

Fitch W.T. The Biology and Evolution of Speech: A Comparative Analysis. Annu. Rev. Linguist. 2018;4:255–279. doi: 10.1146/annurev-linguistics-011817-045748. DOI

Bass A.H., Chagnaud B.P., Feng N.Y. Sound Communication in Fishes. Springer; Vienna, Austria: 2015. Comparative Neurobiology of Sound Production in Fishes.

Schneider J.N., Mercado III E. Characterizing the rhythm and tempo of sound production by singing whales. Bioacoustics. 2019;28:239–256. doi: 10.1080/09524622.2018.1428827. DOI

King S.L., Connor R.C., Montgomery S.H. Social and vocal complexity in bottlenose dolphins. Trends Neurosci. 2022;45:881–883. doi: 10.1016/j.tins.2022.09.006. PubMed DOI

Herculano-Houzel S. The Human Advantage: A New Understanding of How Our Brain Became Remarkable. MIT Press; Cambridge, MA, USA: 2016.

Davenport M.H., Jarvis E.D. Birdsong neuroscience and the evolutionary substrates of learned vocalization. Trends Neurosci. 2023;46:97–99. doi: 10.1016/j.tins.2022.11.005. PubMed DOI

Elemans C.P., Rasmussen J.H., Herbst C.T., Düring D.N., Zollinger S.A., Brumm H., Srivastava K., Svane N., Ding M., Larsen O.N. Universal mechanisms of sound production and control in birds and mammals. Nat. Commun. 2015;6:8978. doi: 10.1038/ncomms9978. PubMed DOI PMC

Ryan M.J., Guerra M.A. The mechanism of sound production in túngara frogs and its role in sexual selection and speciation. Curr. Opin. Neurobiol. 2014;28:54–59. doi: 10.1016/j.conb.2014.06.008. PubMed DOI

Kéver L., Parmentier E., Bass A.H., Chagnaud B.P. Morphological diversity of acoustic and electric communication systems of mochokid catfish. J. Comp. Neurol. 2021;529:1787–1809. doi: 10.1002/cne.25057. PubMed DOI PMC

Schulz-Mirbach T., Ladich F., Plath M., Heß M. Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biol. Rev. 2019;94:457–482. doi: 10.1111/brv.12463. PubMed DOI

Bleckmann H., Niemann U., Fritzsch B. Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J. Comp. Neurol. 1991;314:452–466. doi: 10.1002/cne.903140304. PubMed DOI

Engelmann J., Hanke W., Mogdans J., Bleckmann H. Neurobiology: Hydrodynamic stimuli and the fish lateral line. Nature. 2000;408:51–52. doi: 10.1038/35040706. PubMed DOI

Zhang Y.S., Ghazanfar A.A. A hierarchy of autonomous systems for vocal production. Trends Neurosci. 2020;43:115–126. doi: 10.1016/j.tins.2019.12.006. PubMed DOI PMC

King A.J., Walker K.M. Listening in complex acoustic scenes. Curr. Opin. Physiol. 2020;18:63–72. doi: 10.1016/j.cophys.2020.09.001. PubMed DOI PMC

Ingham N.J., Rook V., Di Domenico F., James E., Lewis M.A., Girotto G., Buniello A., Steel K.P. Functional analysis of candidate genes from genome-wide association studies of hearing. Hear. Res. 2020;387:107879. doi: 10.1016/j.heares.2019.107879. PubMed DOI PMC

Giraud A.-L., Ramus F. Neurogenetics and auditory processing in developmental dyslexia. Curr. Opin. Neurobiol. 2013;23:37–42. doi: 10.1016/j.conb.2012.09.003. PubMed DOI

Bharadwaj T., Schrauwen I., Rehman S., Liaqat K., Acharya A., Giese A.P., Nouel-Saied L.M., Nasir A., Everard J.L., Pollock L.M. ADAMTS1, MPDZ, MVD, and SEZ6: Candidate genes for autosomal recessive nonsyndromic hearing impairment. Eur. J. Hum. Genet. 2022;30:22–33. doi: 10.1038/s41431-021-00913-x. PubMed DOI PMC

Yu X., Wang Y. Peripheral Fragile X messenger ribonucleoprotein is required for the timely closure of a critical period for neuronal susceptibility in the ventral cochlear nucleus. Front. Cell. Neurosci. 2023;17:1186630. doi: 10.3389/fncel.2023.1186630. PubMed DOI PMC

Kourdougli N., Suresh A., Liu B., Juarez P., Lin A., Chung D.T., Graven Sams A., Gandal M.J., Martínez-Cerdeño V., Buonomano D.V., et al. Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period. Neuron. 2023 doi: 10.1016/j.neuron.2023.06.009. PubMed DOI PMC

Tripathi M.K., Ojha S.K., Kartawy M., Hamoudi W., Choudhary A., Stern S., Aran A., Amal H. The NO Answer for Autism Spectrum Disorder. Adv. Sci. 2023;10:e2205783. doi: 10.1002/advs.202205783. PubMed DOI PMC

Xiong Q., Oviedo H.V., Trotman L.C., Zador A.M. PTEN regulation of local and long-range connections in mouse auditory cortex. J. Neurosci. 2012;32:1643–1652. doi: 10.1523/JNEUROSCI.4480-11.2012. PubMed DOI PMC

Gandhi T., Canepa C.R., Adeyelu T.T., Adeniyi P.A., Lee C.C. Neuroanatomical Alterations in the CNTNAP2 Mouse Model of Autism Spectrum Disorder. Brain Sci. 2023;13:891. doi: 10.3390/brainsci13060891. PubMed DOI PMC

Glover J.C., Elliott K.L., Erives A., Chizhikov V.V., Fritzsch B. Wilhelm His’ lasting insights into hindbrain and cranial ganglia development and evolution. Dev. Biol. 2018;444:S14–S24. doi: 10.1016/j.ydbio.2018.02.001. PubMed DOI PMC

Manuel M., Tan K.B., Kozic Z., Molinek M., Marcos T.S., Razak M.F.A., Dobolyi D., Dobie R., Henderson B.E., Henderson N.C. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol. 2022;20:e3001563. doi: 10.1371/journal.pbio.3001563. PubMed DOI PMC

Kral A., Pallas S.L. The Auditory Cortex. Springer; Boston, MA, USA: 2011. Development of the auditory cortex; pp. 443–463.

Fritzsch B., Martin P.R. Vision and retina evolution: How to develop a retina. IBRO Neurosci. Rep. 2022;12:240–248. doi: 10.1016/j.ibneur.2022.03.008. PubMed DOI PMC

Hevner R.F. Neuroscience in the 21st Century: From Basic to Clinical. Springer; Cham, Switzerland: 2022. Neurogenesis of Cerebral Cortex Projection Neurons; pp. 275–289.

Englund C., Fink A., Lau C., Pham D., Daza R.A., Bulfone A., Kowalczyk T., Hevner R.F. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 2005;25:247–251. doi: 10.1523/JNEUROSCI.2899-04.2005. PubMed DOI PMC

Liu J., Xiao Q., Xiao J., Niu C., Li Y., Zhang X., Zhou Z., Shu G., Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022;7:3. doi: 10.1038/s41392-021-00762-6. PubMed DOI PMC

Clevers H., Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–1205. doi: 10.1016/j.cell.2012.05.012. PubMed DOI

Seib D.R., Corsini N.S., Ellwanger K., Plaas C., Mateos A., Pitzer C., Niehrs C., Celikel T., Martin-Villalba A. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell. 2013;12:204–214. doi: 10.1016/j.stem.2012.11.010. PubMed DOI

Puelles L., Martínez S., Martínez-De-La-Torre M., Rubenstein J.L. The Rat Nervous System. Elsevier; Amsterdam, The Netherlands: 2015. Gene maps and related histogenetic domains in the forebrain and midbrain; pp. 3–24.

Arnold S.J., Huang G., Cheung A.F.P., Era T., Nishikawa S.I., Bikoff E.K., Molnár Z., Robertson E.J., Groszer M. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 2008;22:2479–2484. doi: 10.1101/gad.475408. PubMed DOI PMC

Dvorakova M., Macova I., Bohuslavova R., Anderova M., Fritzsch B., Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev. Biol. 2020;457:43–56. doi: 10.1016/j.ydbio.2019.09.003. PubMed DOI PMC

Malgrange B., Nguyen L. Scaling brain neurogenesis across evolution. Science. 2022;377:1155–1156. doi: 10.1126/science.ade4388. PubMed DOI

Peter I.S., Davidson E.H. Genomic Control Process: Development and Evolution. Academic Press; Cambridge, MA, USA: 2015.

Molnár Z., Luhmann H.J., Kanold P.O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science. 2020;370:eabb2153. doi: 10.1126/science.abb2153. PubMed DOI PMC

Amadei G., Handford C.E., Qiu C., De Jonghe J., Greenfeld H., Tran M., Martin B.K., Chen D.-Y., Aguilera-Castrejon A., Hanna J.H., et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature. 2022;610:143–153. doi: 10.1038/s41586-022-05246-3. PubMed DOI PMC

Taverna E., Götz M., Huttner W.B. The cell biology of neurogenesis: Toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 2014;30:465–502. doi: 10.1146/annurev-cellbio-101011-155801. PubMed DOI

Kempf J.M., Knelles K., Hersbach B.A., Petrik D., Riedemann T., Bednářová V., Janjić A., Simon-Ebert T., Enard W., Smialowski P., et al. Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Rep. 2021;36:109409. doi: 10.1016/j.celrep.2021.109409. PubMed DOI PMC

Ninkovic J., Götz M. How to make neurons--thoughts on the molecular logic of neurogenesis in the central nervous system. Cell Tissue Res. 2015;359:5–16. doi: 10.1007/s00441-014-2048-9. PubMed DOI

Scharff C., Petri J. Evo-devo, deep homology and FoxP2: Implications for the evolution of speech and language. Philos. Trans. R. Soc. B Biol. Sci. 2011;366:2124–2140. doi: 10.1098/rstb.2011.0001. PubMed DOI PMC

Benítez-Burraco A., Torres-Ruiz R., Gelabert P., Lalueza-Fox C., Rodríguez-Perales S., García-Bellido P. Human-specific changes in two functional enhancers of FOXP2. Cell. Mol. Biol. 2022;68:16–19. doi: 10.14715/cmb/2022.68.11.3. PubMed DOI

Dennis D.J., Han S., Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res. 2019;1705:48–65. doi: 10.1016/j.brainres.2018.03.013. PubMed DOI

Miyata T., Maeda T., Lee J.E. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 1999;13:1647–1652. doi: 10.1101/gad.13.13.1647. PubMed DOI PMC

Liu M., Pleasure S.J., Collins A.E., Noebels J.L., Naya F.J., Tsai M.-J., Lowenstein D.H. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl. Acad. Sci. USA. 2000;97:865–870. doi: 10.1073/pnas.97.2.865. PubMed DOI PMC

Galceran J., Miyashita-Lin E.M., Devaney E., Rubenstein J., Grosschedl R. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development. 2000;127:469–482. doi: 10.1242/dev.127.3.469. PubMed DOI

Kanold P.O., Luhmann H.J. The subplate and early cortical circuits. Annu. Rev. Neurosci. 2010;33:23–48. doi: 10.1146/annurev-neuro-060909-153244. PubMed DOI

Budinger E., Kanold P.O. The Mammalian Auditory Pathways. Springer; Berlin/Heidelberg, Germany: 2018. Auditory cortex circuits; pp. 199–233.

Luhmann H.J., Kanold P.O., Molnár Z., Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog. Neurobiol. 2022;213:102268. doi: 10.1016/j.pneurobio.2022.102268. PubMed DOI PMC

Gurung B., Fritzsch B. Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. J. Comp. Neurol. 2004;479:309–327. doi: 10.1002/cne.20328. PubMed DOI PMC

Kolb B., Whishaw I.Q. Fundamentals of Human Neuropsychology. Macmillan; New York, NY, USA: 2009.

Stiebler I., Neulist R., Fichtel I., Ehret G. The auditory cortex of the house mouse: Left-right differences, tonotopic organization and quantitative analysis of frequency representation. J. Comp. Physiol. A. 1997;181:559–571. doi: 10.1007/s003590050140. PubMed DOI

Steinschneider M., Nourski K.V., Fishman Y.I. Representation of speech in human auditory cortex: Is it special? Hear. Res. 2013;305:57–73. doi: 10.1016/j.heares.2013.05.013. PubMed DOI PMC

Savage P.E., Loui P., Tarr B., Schachner A., Glowacki L., Mithen S., Fitch W.T. Music as a coevolved system for social bonding. Behav. Brain Sci. 2020;44:e59. doi: 10.1017/S0140525X20000333. PubMed DOI

Groman S.M., Thompson S.L., Lee D., Taylor J.R. Reinforcement learning detuned in addiction: Integrative and translational approaches. Trends Neurosci. 2022;45:96–105. doi: 10.1016/j.tins.2021.11.007. PubMed DOI PMC

Keren-Portnoy T., Majorano M., Vihman M.M. From phonetics to phonology: The emergence of first words in Italian. J. Child Lang. 2009;36:235–267. doi: 10.1017/S0305000908008933. PubMed DOI

Daffern H., Keren-Portnoy T., DePaolis R.A., Brown K.I. BabblePlay: An app for infants, controlled by infants, to improve early language outcomes. Appl. Acoust. 2020;162:107183. doi: 10.1016/j.apacoust.2019.107183. PubMed DOI PMC

Mehr S.A., Krasnow M.M., Bryant G.A., Hagen E.H. Origins of music in credible signaling. Behav. Brain Sci. 2020;44:e60. doi: 10.1017/S0140525X20000345. PubMed DOI PMC

Kucker S.C., McMurray B., Samuelson L.K. Slowing down fast mapping: Redefining the dynamics of word learning. Child Dev. Perspect. 2015;9:74–78. doi: 10.1111/cdep.12110. PubMed DOI PMC

McMurray B., Horst J.S., Samuelson L.K. Word learning emerges from the interaction of online referent selection and slow associative learning. Psychol. Rev. 2012;119:831. doi: 10.1037/a0029872. PubMed DOI PMC

Busse V., Hennies C., Kreutz G., Roden I. Learning grammar through singing? An intervention with EFL primary school learners. Learn. Instr. 2021;71:101372. doi: 10.1016/j.learninstruc.2020.101372. DOI

Graven S.N., Browne J.V. Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. 2008;8:187–193. doi: 10.1053/j.nainr.2008.10.010. DOI

Cox C., Bergmann C., Fowler E., Keren-Portnoy T., Roepstorff A., Bryant G., Fusaroli R. A systematic review and Bayesian meta-analysis of the acoustic features of infant-directed speech. Nat. Hum. Behav. 2023;7:114–133. doi: 10.1038/s41562-022-01452-1. PubMed DOI

Jirout J.J., Eisen S., Sargent Z., Evans T.M. Mother-child synchrony is high across child executive function levels for both physical and digital spatial play. Trends Neurosci. Educ. 2022;29:100183. doi: 10.1016/j.tine.2022.100183. PubMed DOI

Criscuolo A., Schwartze M., Kotz S.A. Cognition through the lens of a body–brain dynamic system. Trends Neurosci. 2022;45:667–677. doi: 10.1016/j.tins.2022.06.004. PubMed DOI

Tomblin J.B., Records N.L., Buckwalter P., Zhang X., Smith E., O’Brien M. Prevalence of specific language impairment in kindergarten children. J. Speech Lang. Hear. Res. 1997;40:1245–1260. doi: 10.1044/jslhr.4006.1245. PubMed DOI PMC

Bishop D.V., Snowling M.J., Thompson P.A., Greenhalgh T., Consortium C., Adams C., Archibald L., Baird G., Bauer A., Bellair J. Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J. Child Psychol. Psychiatry. 2017;58:1068–1080. doi: 10.1111/jcpp.12721. PubMed DOI PMC

Budinger E. Primary Auditory Cortex and the Thalamo-Cortico-Thalamic Circuitry I. Anatomy. In: Fritzsch B., editor. The Senses: A Comprehensive Reference. 2nd ed. Elsevier; Oxford, UK: 2020. pp. 623–656.

Polley D.B., Takesian A.E. The Thalamus, Halassa, M.M., Ed. Cambridge University Press; Cambridge, UK: 2022. Thalamocortical Circuits for Auditory Processing, Plasticity, and Perception; pp. 237–268.

Rolls E.T., Rauschecker J.P., Deco G., Huang C.-C., Feng J. Auditory cortical connectivity in humans. Cereb. Cortex. 2023;33:6207–6227. doi: 10.1093/cercor/bhac496. PubMed DOI PMC

King A.J. Feedback Systems: Descending Pathways and Adaptive Coding in the Auditory System. In: Fritzsch B., editor. The Senses: A Comprehensive Reference. 2nd ed. Elsevier; Oxford, UK: 2020. pp. 732–748.

Simmons D., Duncan J., de Caprona D.C., Fritzsch B. Auditory and Vestibular Efferents. Springer; New York, NY, USA: 2011. Development of the inner ear efferent system; pp. 187–216.

Malmierca M.S. The Rat Nervous System. Elsevier; Amsterdam, The Netherlands: 2015. Auditory system; pp. 865–946.

Pheasant R.J., Fisher M.N., Watts G.R., Whitaker D.J., Horoshenkov K.V. The importance of auditory-visual interaction in the construction of ‘tranquil space’. J. Environ. Psychol. 2010;30:501–509. doi: 10.1016/j.jenvp.2010.03.006. DOI

Zhao J., Xu W., Ye L. Effects of auditory-visual combinations on perceived restorative potential of urban green space. Appl. Acoust. 2018;141:169–177. doi: 10.1016/j.apacoust.2018.07.001. DOI

McGurk H., MacDonald J. Hearing lips and seeing voices. Nature. 1976;264:746–748. doi: 10.1038/264746a0. PubMed DOI

Spence C., Soto-Faraco S. The Oxford Handbook of Auditory Science: Hearing. Volume 3. Oxford University Press; Oxford, UK: 2010. Auditory perception: Interactions with vision; pp. 271–296.

Plass J., Brang D., Suzuki S., Grabowecky M. Vision perceptually restores auditory spectral dynamics in speech. Proc. Natl. Acad. Sci. USA. 2020;117:16920–16927. doi: 10.1073/pnas.2002887117. PubMed DOI PMC

O’Sullivan A.E., Crosse M.J., Di Liberto G.M., de Cheveigné A., Lalor E.C. Neurophysiological indices of audiovisual speech processing reveal a hierarchy of multisensory integration effects. J. Neurosci. 2021;41:4991–5003. doi: 10.1523/JNEUROSCI.0906-20.2021. PubMed DOI PMC

Fritzsch B., Elliott K.L., Yamoah E.N. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front. Neural Circuits. 2022;16:913480. doi: 10.3389/fncir.2022.913480. PubMed DOI PMC

Elliott K.L., Fritzsch B., Yamoah E.N., Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front. Aging Neurosci. 2022;14:814528. doi: 10.3389/fnagi.2022.814528. PubMed DOI PMC

Haile L.M., Kamenov K., Briant P.S., Orji A.U., Steinmetz J.D., Abdoli A., Abdollahi M., Abu-Gharbieh E., Afshin A., Ahmed H. Hearing loss prevalence and years lived with disability, 1990–2019: Findings from the Global Burden of Disease Study 2019. Lancet. 2021;397:996–1009. doi: 10.1016/S0140-6736(21)00516-X. PubMed DOI PMC

Michalski N., Petit C. Central auditory deficits associated with genetic forms of peripheral deafness. Hum. Genet. 2022;141:335–345. doi: 10.1007/s00439-021-02339-3. PubMed DOI PMC

Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., Brayne C., Burns A., Cohen-Mansfield J., Cooper C. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. doi: 10.1016/S0140-6736(20)30367-6. PubMed DOI PMC

Griffiths T.D., Lad M., Kumar S., Holmes E., McMurray B., Maguire E.A., Billig A.J., Sedley W. How can hearing loss cause dementia? Neuron. 2020;108:401–412. doi: 10.1016/j.neuron.2020.08.003. PubMed DOI PMC

Uchida Y., Nishita Y., Otsuka R., Sugiura S., Sone M., Yamasoba T., Kato T., Iwata K., Nakamura A. Aging brain and hearing: A mini-review. Front. Aging Neurosci. 2022;13:991. doi: 10.3389/fnagi.2021.791604. PubMed DOI PMC

Johnson J.C., Marshall C.R., Weil R.S., Bamiou D.-E., Hardy C.J., Warren J.D. Hearing and dementia: From ears to brain. Brain. 2021;144:391–401. doi: 10.1093/brain/awaa429. PubMed DOI PMC

Igarashi K.M. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023;46:124–136. doi: 10.1016/j.tins.2022.11.006. PubMed DOI PMC

Yamamoto K., Tanei Z.-i., Hashimoto T., Wakabayashi T., Okuno H., Naka Y., Yizhar O., Fenno L.E., Fukayama M., Bito H. Chronic optogenetic activation augments Aβ pathology in a mouse model of Alzheimer disease. Cell Rep. 2015;11:859–865. doi: 10.1016/j.celrep.2015.04.017. PubMed DOI

van Dyck C.H., Swanson C.J., Aisen P., Bateman R.J., Chen C., Gee M., Kanekiyo M., Li D., Reyderman L., Cohen S. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023;388:9–21. doi: 10.1056/NEJMoa2212948. PubMed DOI

Billig A.J., Lad M., Sedley W., Griffiths T.D. The hearing hippocampus. Prog. Neurobiol. 2022;218:102326. doi: 10.1016/j.pneurobio.2022.102326. PubMed DOI PMC

Bottes S., Jaeger B.N., Pilz G.A., Jörg D.J., Cole J.D., Kruse M., Harris L., Korobeynyk V.I., Mallona I., Helmchen F., et al. Long-term self-renewing stem cells in the adult mouse hippocampus identified by intravital imaging. Nat. Neurosci. 2021;24:225–233. doi: 10.1038/s41593-020-00759-4. PubMed DOI PMC

Frangou S., Modabbernia A., Williams S.C.R., Papachristou E., Doucet G.E., Agartz I., Aghajani M., Akudjedu T.N., Albajes-Eizagirre A., Alnaes D., et al. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Hum. Brain Mapp. 2022;43:431–451. doi: 10.1002/hbm.25364. PubMed DOI PMC

Kozareva D.A., Cryan J.F., Nolan Y.M. Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell. 2019;18:e13007. doi: 10.1111/acel.13007. PubMed DOI PMC

Overstreet-Wadiche L.S., Bensen A.L., Westbrook G.L. Delayed development of adult-generated granule cells in dentate gyrus. J. Neurosci. 2006;26:2326–2334. doi: 10.1523/JNEUROSCI.4111-05.2006. PubMed DOI PMC

Ash A.M., Regele-Blasco E., Seib D.R., Chahley E., Skelton P.D., Luikart B.W., Snyder J.S. Adult-born neurons inhibit developmentally-born neurons during spatial learning. Neurobiol. Learn. Mem. 2023;198:107710. doi: 10.1016/j.nlm.2022.107710. PubMed DOI

Harris L., Rigo P., Stiehl T., Gaber Z.B., Austin S.H., del Mar Masdeu M., Edwards A., Urbán N., Marciniak-Czochra A., Guillemot F. Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. Cell Stem Cell. 2021;28:863–876.e6. doi: 10.1016/j.stem.2021.01.003. PubMed DOI PMC

Babcock K.R., Page J.S., Fallon J.R., Webb A.E. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Rep. 2021;16:681–693. doi: 10.1016/j.stemcr.2021.01.019. PubMed DOI PMC

Kumar S., Gander P.E., Berger J.I., Billig A.J., Nourski K.V., Oya H., Kawasaki H., Howard III M.A., Griffiths T.D. Oscillatory correlates of auditory working memory examined with human electrocorticography. Neuropsychologia. 2021;150:107691. doi: 10.1016/j.neuropsychologia.2020.107691. PubMed DOI PMC

Cheung V.K., Harrison P.M., Meyer L., Pearce M.T., Haynes J.-D., Koelsch S. Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Curr. Biol. 2019;29:4084–4092.e4. doi: 10.1016/j.cub.2019.09.067. PubMed DOI

Stopschinski B.E., Del Tredici K., Estill-Terpack S.-J., Ghebremdehin E., Yu F.F., Braak H., Diamond M.I. Anatomic survey of seeding in Alzheimer’s disease brains reveals unexpected patterns. Acta Neuropathol. Commun. 2021;9:164. doi: 10.1186/s40478-021-01255-x. PubMed DOI PMC

Wang H.-F., Zhang W., Rolls E.T., Li Y., Wang L., Ma Y.-H., Kang J., Feng J., Yu J.-T., Cheng W. Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology. eBioMedicine. 2022;86:104336. doi: 10.1016/j.ebiom.2022.104336. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...