Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37629649
PubMed Central
PMC10456693
DOI
10.3390/medicina59081359
PII: medicina59081359
Knihovny.cz E-zdroje
- Klíčová slova
- FITT, GC, Visco Gel, adhesion, biocompatibility, denture fabrication, gelling time, phthalate-free alternatives, solubility, tissue conditioners,
- MeSH
- kostní destičky * MeSH
- lidé MeSH
- methylmetakryláty * MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- methylmetakryláty * MeSH
- phthalic acid MeSH Prohlížeč
- poly(ethylmethacrylate) MeSH Prohlížeč
- voda MeSH
Introduction: Tissue conditioners have been widely used in various clinical applications in dentistry, such as treating inflamed alveolar ridges, temporarily relining partial and complete dentures, and the acquisition of functional impressions for denture fabrication. This study aimed to investigate the mechanical properties of the most prevalent tissue conditioner materials on the market, including Tissue Conditioners (TC), Visco Gel (VG), and FITT (F). Materials and Methods: The three tissue conditioners, TC, VG, and F, were assessed based on the parameters mentioned above. The following tests were performed based on the ISO 10139-1 and ISO 10139-2 requirements: Shore A hardness, denture plate adhesion, sorption, water solubility, and contraction after 1 and 3 days in water. Additional tests are described in the literature, such as ethanol content and gelling time. The tests were carried out by storing the materials in water at 37 °C for 7 days. Results: The gel times of all tested materials exceeded 5 min (TC = 300 [s], VG = 350 [s]). In vitro, phthalate-free materials exhibited higher dissolution in water after 14 days (VG = -260.78 ± 11.31 µg/mm2) compared to F (-76.12 ± 7.11 µg/mm2) and experienced faster hardening when stored in distilled water (F = 33.4 ± 0.30 Sh. A, VG = 59.2 ± 0.60 Sh. A). They also showed greater contractions. The connection of all materials to the prosthesis plate was consistent at 0.11 MPa. The highest counterbalance after 3 days was observed in TC = 3.53 ± 1.12%. Conclusions: Materials containing plasticizers that are not phthalates have worse mechanical properties than products containing these substances. Since phthalates are not allowed to be used indefinitely in medical devices, additional research is necessary, especially in vivo, to develop safe materials with superior functional properties to newer-generation alternatives. In vitro results often do not agree fully with those of in vivo outcomes.
Zobrazit více v PubMed
Nowakowska-Toporowska A., Malecka K., Raszewski Z., Wieckiewicz W. Changes in hardness of addition-polymerizing silicone-resilient denture liners after storage in artificial saliva. J. Prosthet. Dent. 2019;121:317–321. doi: 10.1016/j.prosdent.2018.05.002. PubMed DOI
Parker S., Braden M. Effect of composition on the gelation of tissue conditioners. Biomaterials. 1996;17:1827–1832. doi: 10.1016/0142-9612(95)00340-1. PubMed DOI
Prasad D., Anupama Prasad B., Rajendra Shetty V., Shashidhara Krishna D. Tissue Conditioners: A Review. Nitte Univ. J. Health Sci. 2014;4:156–161. doi: 10.1055/s-0040-1703789. DOI
Hong G., Wang W.Q., Sun L., Han J.M., Sasaki K. The Dynamic Viscoelasticity of Dental Soft Polymer Material Containing Citrate Ester-Based Plasticizers. Materials. 2020;13:5078. doi: 10.3390/ma13225078. PubMed DOI PMC
Hejazi M., Zareshahrabadi Z., Ashayeri S., Saharkhiz M.J., Iraji A., Alishahi M., Zomorodian K. Characterization and Physical and Biological Properties of Tissue Conditioner Incorporated with Carum copticum L. Biomed. Res. Int. 2021;2021:5577760. doi: 10.1155/2021/5577760. PubMed DOI PMC
de Fátima Souto Maior L., Maciel P.P., Ferreira V.Y.N., de Lima Gouveia Dantas C., de Lima J.M., Castellano L.R.C., Batista A.U.D., Bonan P.R.F. Antifungal activity and Shore A hardness of a tissue conditioner incorporated with terpinen-4-ol and cinnamaldehyde. Clin. Oral. Investig. 2019;23:2837–2848. doi: 10.1007/s00784-019-02925-w. PubMed DOI
Krishnamoorthy G., Narayana A.I., Peralam P.Y., Balkrishanan D. To study the effect of Cocos nucifera oil when incorporated into tissue conditioner on its tensile strength and antifungal activity: An in vitro study. J. Indian Prosthodont. Soc. 2019;19:225–232. doi: 10.4103/jips.jips_387_18. PubMed DOI PMC
Choonharuangdej S., Srithavaj T., Chantanawilas P. Lemongrass-Incorporated Tissue Conditioner with Adjustable Inhibitory Effect Against Candida albicans: An In Vitro Study. Int. J. Prosthodont. 2022;35:338–342. doi: 10.11607/ijp.6876. PubMed DOI
Tonprasong W., Inokoshi M., Tamura M., Uo M., Wada T., Takahashi R., Hatano K., Shimizubata M., Minakuchi S. Tissue Conditioner Incorporating a Nano-Sized Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler. Materials. 2021;14:6648. doi: 10.3390/ma14216648. PubMed DOI PMC
Homsiang W., Kamonkhantikul K., Arksornnukit M., Takahashi H. Effect of zinc oxide nanoparticles incorporated into tissue conditioner on antifungal, physical, and mechanical properties. Dent. Mater. J. 2021;40:481–486. doi: 10.4012/dmj.2020-095. PubMed DOI
Mousavi S.A., Ghotaslou R., Akbarzadeh A., Azima N., Aeinfar A., Khorramdel A. Evaluation of antibacterial and antifungal properties of a tissue conditioner used in complete dentures after incorporation of ZnO–Ag nanoparticles. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019;13:11–18. doi: 10.15171/joddd.2019.002. PubMed DOI PMC
Asahara E., Abe Y., Nakamori K., Okazaki Y., Makita Y., Hasebe A., Tsuga K., Yokoyama A. Controlled release, antimicrobial activity, and oral mucosa irritation of cetylpyridinium chloride-montmorillonite incorporated in a tissue conditioner. Dent. Mater. J. 2022;41:142–149. doi: 10.4012/dmj.2021-155. PubMed DOI
Lee H.L., Wang R.S., Hsu Y.C., Chuang C.C., Chan H.R., Chiu H.C., Wang Y.B., Chen K.Y., Fu E. Antifungal effect of tissue conditioners containing poly (acryloyloxyethyltrimethyl ammonium chloride)-grafted chitosan on Candida albicans growth in vitro. J. Dent. Sci. 2018;13:160–166. doi: 10.1016/j.jds.2017.06.004. PubMed DOI PMC
Raszewski Z., Nowakowska D., Wieckiewicz W., Nowakowska-Toporowska A. Release and Recharge of Fluoride Ions from Acrylic Resin Modified with Bioactive Glass. Polymers. 2021;13:1054. doi: 10.3390/polym13071054. PubMed DOI PMC
Jones D.W., Sutow E.J., Graham B.S., Milne E.L., Johnston D.E. Influence of Plasticizer on Soft Polymer Gelation. J. Dent. Res. 1986;65:634–637. doi: 10.1177/00220345860650050101. PubMed DOI
Hashimoto Y., Tanaka J., Suzuki K., Nakamura M. Cytocompatibility of a Tissue Conditioner Containing Vinyl Ester as a Plasticizer. Dent. Mater. J. 2007;26:785–791. doi: 10.4012/dmj.26.785. PubMed DOI
Jafari A., Shadman N. Tissue conditioners in prosthodontics: A literature review. J. Dent. 2014;15:1–9.
Rokaya D., Srimaneepong V., Sapkota J., Qin J., Siraleartmukul K., Siriwongrungson V. Polymeric materials and films in dentistry: An overview. J. Adv. Res. 2018;14:25–34. doi: 10.1016/j.jare.2018.05.001. PubMed DOI PMC
Miettinen H., Kivilahti J. Biocompatibility of dental materials. In: Narhi T.O., editor. Handbook of Oral Biomaterials. CRC Press; Boca Raton, FL, USA: 1991. pp. 31–55.
Shillingburg H.T., Jr., Hobo S., Whitsett L.D., Jacobi R., Brackett S.E. Fundamentals of Fixed Prosthodontics. 3rd ed. Quintessence Publishing; Chicago, IL, USA: 1997.
Tonpraatt J.G., Varghese N.M., Correya B.A., Saheer M.K. Tissue Conditioners: A Review. J. Dent. Med. Sci. (IOSR-JDMS) 2015;14:54–57.
Ntounis A., Kamposiora P., Papavasiliou G., Divaris K., Zinelis S. Hardness Changes of Tissue Conditioners in Various Storage Media: An in Vitro Study. Eur. J. Prosthodont. Restor. Dent. 2015;23:9–15. PubMed
ISO; Geneva, Switzerland: 2018. Dentistry, Soft Lining Materials for Removable Dentures, Part 1: Materials for Short-Term Use.
Saeed A., Zahid S., Sajid M., Ud Din S., Alam M.K., Chaudhary F.A., Kaleem M., Alswairki H.J., Abutayyem H. Physico-Mechanical Properties of Commercially Available Tissue Conditioner Modified with Synthesized Chitosan Oligosaccharide. Polymers. 2022;14:1233. doi: 10.3390/polym14061233. PubMed DOI PMC
Murata H., Kawamura M., Hamada T., Saleh S., Kresnoadi U., Toki K. Dimensional stability and weight changes of tissue conditioners. J. Oral. Rehabil. 2001;28:918–923. doi: 10.1046/j.1365-2842.2001.00736.x. PubMed DOI
Tonsdek G., Żmudzki J., Kasperski J. Long-Term Soft Denture Lining Materials. Materials. 2014;7:5816–5842. doi: 10.3390/ma7085816. PubMed DOI PMC
Bosch-Reig F., Gimeno-Adelantado J.V., Bosch-Mossi F., Doménech-Carbó A. Quantification of minerals from ATR-FTIR spectra with spectral interferences using the MRC method. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2017;181:7–12. doi: 10.1016/j.saa.2017.02.012. PubMed DOI
van Vliet E.M., Reitano J.S., Bergen G.P., Whyatt R.M. A review of alternatives to di (2-ethylhexyl) phthalate-containing medical devices in the neonatal intensive care unit. J. Perinatol. 2011;31:551–560. doi: 10.1038/jp.2010.208. PubMed DOI PMC
Wyszyńska M., Białożyt-Bujak E., Chladek G., Czelakowska A., Rój R., Białożyt A., Gruca O., Nitsze-Wierzba M., Kasperski J., Skucha-Nowak M. Analysis of Changes in the Tensile Bond Strenght of Soft Relining Material with Acrylic Denture Material. Materials. 2021;14:6868. doi: 10.3390/ma14226868. PubMed DOI PMC
Pinto L., Zanatta R.F., Lima G.S., Ogliari F.A., Moraes R.R. Effect of the plasticizer’s concentration on mechanical and thermal properties of PMMA used in dentistry. J. Appl. Polym. Sci. 2017;134:45234. doi: 10.1002/app.45234. DOI
Kitagawa Y., Yoshida K., Takase K., Valanezhad A., Watanabe I., Kojio K., Murata H. Evaluation of viscoelastic properties, hardness, and glass transition temperature of soft denture liners and tissue conditioner. Odontology. 2020;108:366–375. doi: 10.1007/s10266-019-00477-9. PubMed DOI
Wilson J. Alcohol levels in tissue conditioners: High enough to fail the breathalyser? Eur. J. Prosthodont. Restor. Dent. 1994;2:137–140. PubMed
Vankadara S.K., Hallikerimath R.B., Patil V., Bhat K., Doddamani M.H. Effect of Melaleuca alternifolia Mixed with Tissue Conditioners in Varying Doses on Colonization and Inhibition of Candida albicans: An In Vitro Study. Contemp. Clin. Dent. 2017;8:446–450. doi: 10.4103/ccd.ccd_542_17. PubMed DOI PMC
Mori T., Takaset K., Yoshida K., Okazaki H., Murata H. Influence of monomer type, plasticizer content, and powder/liquid ratio on setting characteristics of acrylic permanent soft denture liners based on poly(ethyl methacrylate/butyl methacrylate) and acetyl tributyl citrate. Dent. Mater. J. 2021;40:918–927. doi: 10.4012/dmj.2020-319. PubMed DOI
Sampaio F.N., Pinto J.R., Turssi C.P., Basting R.T. Effect of sealant application and thermal cycling on bond strength of tissue conditioners to acrylic resin. Braz. Dent. J. 2013;24:247–252. doi: 10.1590/0103-6440201302118. PubMed DOI
Monzavi A., Siadat H., Atai M., Alikhasi M., Nazari V., Sheikhzadeh S. Comparative evaluation of physical properties of four tissue conditioners relined to modeling plastic material. J. Dent. (Tehran) 2013;10:506–515. PubMed PMC
Dorocka-Bobkowska B., Medyński D., Pryliński M. Recent advances in tissue conditioners for prosthetic treatment: A review. Adv. Clin. Exp. Med. 2017;26:723–728. doi: 10.17219/acem/62634. PubMed DOI
Wang W.T., Yang T.C., Wang T.M., Lin L.D. Evaluation of the Bond Strength of New Tissue Conditioner with Addition of PMMA Resin. J. Indian. Prosthodont. Soc. 2018;18((Suppl. S1)):S21. doi: 10.4103/0972-4052.244622. PubMed DOI PMC
Murata H., Chimori H., Hong G., Hamada T., Nikawa H. Compatibility of tissue conditioners and denture cleansers: Influence on surface conditions. Dent. Mater. J. 2010;29:446–453. doi: 10.4012/dmj.2009-135. PubMed DOI
Murata H., Narasaki Y., Hamada T., Mc Cabe J.F. An alcohol-free tissue conditioner--a laboratory evaluation. J. Dent. 2006;34:307–315. doi: 10.1016/j.jdent.2005.07.005. PubMed DOI
Murata H., Hamada T., Harshini Toki K., Nikawa H. Effect of addition of ethyl alcohol on gelation and viscoelasticity of tissue conditioners. J. Oral. Rehabil. 2001;28:48–54. doi: 10.1046/j.1365-2842.2001.00638.x. PubMed DOI
Hashimoto Y., Kawaguchi M., Miyazaki K., Nakamura M. Estrogenic activity of tissue conditioners in vitro. Dent. Mater. 2003;19:341–346. doi: 10.1016/S0109-5641(02)00064-7. PubMed DOI
Chow C.K., Matear D.W., Lawrence H.P. Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology. 1999;16:110–118. doi: 10.1111/j.1741-2358.1999.00110.x. PubMed DOI
Abe Y., Ueshige M., Takeuchi M., Ishii M., Akagawa Y. Cytotoxicity of antimicrobial tissue conditioners containing silver-zeolite. Int. J. Prosthodont. 2003;16:141–144. PubMed
Catalán A., Pacheco J.G., Martínez A., Mondaca M.A. In vitro and in vivo activity of Melaleuca alternifolia mixed with tissue conditioner on Candida albicans. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2008;105:327–332. doi: 10.1016/j.tripleo.2007.08.025. PubMed DOI
Kolawole O.M., Cook M.T. In situ gelling drug delivery systems for topical drug delivery. Eur. J. Pharm. Biopharm. 2023;184:36–49. doi: 10.1016/j.ejpb.2023.01.007. PubMed DOI
Urban A.M., Morikava F.S., Schoeffel A.C., Novatski A., Moraes G.S., Cachoeira V.S., Matioli G., Sanches Ito C.A., Ferrari P.C., Neppelenbroek K.H., et al. Characterization, antifungal evaluation against Candida spp. strains, and application of nystatin:β-cyclodextrin inclusion complexes. Curr. Drug Deliv. 2022;20:1533–1546. doi: 10.2174/1567201820666221017103119. PubMed DOI
Zahid I., Zafar M.S. Role of antifungal medicaments added to tissue conditioners: A systematic review. J. Prosthodont. Res. 2016;60:231–239. PubMed
Sivakumar I., Aras M.A., Madhavan R., Karthigeyan S. Use of tissue conditioners in prosthodontics. Int. J. Biol. Med. Res. 2015;5:4564–4567.
Maciel J.G., Sugio C.Y.C., de Campos Chaves G., Procópio A.L.F., Urban V.M., Neppelenbroek K.H. Determining acceptable limits for water sorption and solubility of interim denture resilient liners. J. Prosthet. Dent. 2019;121:311–316. doi: 10.1016/j.prosdent.2018.03.007. PubMed DOI