• This record comes from PubMed

Extracts of Talaromyces purpureogenus Strains from Apis mellifera Bee Bread Inhibit the Growth of Paenibacillus spp. In Vitro

. 2023 Aug 11 ; 11 (8) : . [epub] 20230811

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 37630627
PubMed Central PMC10459140
DOI 10.3390/microorganisms11082067
PII: microorganisms11082067
Knihovny.cz E-resources

Honey bees coexist with fungi that colonize hive surfaces and pollen. Some of these fungi are opportunistic pathogens, but many are beneficial species that produce antimicrobial compounds for pollen conservation and the regulation of pathogen populations. In this study, we tested the in vitro antimicrobial activity of Talaromyces purpureogenus strains isolated from bee bread against Paenibacillus alvei (associated with European foulbrood disease) and three Aspergillus species that cause stonebrood disease. We found that methanol extracts of T. purpureogenus strains B18 and B195 inhibited the growth of P. alvei at a concentration of 0.39 mg/mL. Bioactivity-guided dereplication revealed that the activity of the crude extracts correlated with the presence of diketopiperazines, a siderophore, and three unknown compounds. We propose that non-pathogenic fungi such as Talaromyces spp. and their metabolites in bee bread could be an important requirement to prevent disease. Agricultural practices involving the use of fungicides can disrupt the fungal community and thus negatively affect the health of bee colonies.

See more in PubMed

Ollerton J., Winfree R., Tarrant S. How Many Flowering Plants Are Pollinated by Animals? Oikos. 2011;120:321–326. doi: 10.1111/j.1600-0706.2010.18644.x. DOI

Klein A.M., Vaissiere B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007;274:303–313. doi: 10.1098/rspb.2006.3721. PubMed DOI PMC

Gallai N., Salles J., Settele J., Vaissière B.E., Pollinisation L., Abeilles E., Abeilles U.M.R., Cedex A., Lameta U.M.R., Cedex M. Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009;68:810–821. doi: 10.1016/j.ecolecon.2008.06.014. DOI

Lautenbach S., Seppelt R., Liebscher J., Dormann C.F. Spatial and Temporal Trends of Global Pollination Benefit. PLoS ONE. 2012;7:e35954. doi: 10.1371/journal.pone.0035954. PubMed DOI PMC

Potts S.G., Imperatriz-Fonseca V., Ngo H.T., Aizen M.A., Biesmeijer J.C., Breeze T.D., Dicks L.V., Garibaldi L.A., Hill R., Settele J., et al. Safeguarding Pollinators and Their Values to Human Well-Being. Nature. 2016;540:220–229. doi: 10.1038/nature20588. PubMed DOI

Aizen M.A., Garibaldi L.A., Cunningham S.A., Klein A.M. Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Curr. Biol. 2008;18:1572–1575. doi: 10.1016/j.cub.2008.08.066. PubMed DOI

Aizen M.A., Harder L.D. The Global Stock of Domesticated Honey Bees Is Growing Slower than Agricultural Demand for Pollination. Curr. Biol. 2009;19:915–918. doi: 10.1016/j.cub.2009.03.071. PubMed DOI

Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010;25:345–353. doi: 10.1016/j.tree.2010.01.007. PubMed DOI

Zattara E.E., Aizen M.A. Worldwide Occurrence Records Suggest a Global Decline in Bee Species Richness. One Earth. 2021;4:114–123. doi: 10.1016/j.oneear.2020.12.005. DOI

Goulson D., Nicholls E., Botías C., Rotheray E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science. 2015;347:1255957. doi: 10.1126/science.1255957. PubMed DOI

Smith K.M., Loh E.H., Rostal M.K., Zambrana-Torrelio C.M., Mendiola L., Daszak P. Pathogens, Pests, and Economics: Drivers of Honey Bee Colony Declines and Losses. Ecohealth. 2013;10:434–445. doi: 10.1007/s10393-013-0870-2. PubMed DOI

Vilcinskas A. Pathogens Associated with Invasive or Introduced Insects Threaten the Health and Diversity of Native Species. Curr. Opin. Insect Sci. 2019;33:43–48. doi: 10.1016/j.cois.2019.03.004. PubMed DOI

vanEngelsdorp D., Meixner M.D. A Historical Review of Managed Honey Bee Populations in Europe and the United States and the Factors That May Affect Them. J. Invertebr. Pathol. 2010;103:S80–S95. doi: 10.1016/j.jip.2009.06.011. PubMed DOI

Bruckner S., Wilson M., Aurell D., Rennich K., vanEngelsdorp D., Steinhauer N., Williams G.R. A National Survey of Managed Honey Bee Colony Losses in the USA: Results from the Bee Informed Partnership for 2017–2018, 2018–2019, and 2019–2020. J. Apic. Res. 2022;62:429–443. doi: 10.1080/00218839.2022.2158586. DOI

Gray A., Noureddine A., Arab A., Ballis A., Brusbardis V., Bugeja Douglas A., Cadahía L., Charrière J.D., Chlebo R., Coffey M.F., et al. Honey Bee Colony Loss Rates in 37 Countries Using the COLOSS Survey for Winter 2019–2020: The Combined Effects of Operation Size, Migration and Queen Replacement. J. Apic. Res. 2022;62:204–210. doi: 10.1080/00218839.2022.2113329. DOI

Dale C., Moran N.A. Molecular Interactions between Bacterial Symbionts and Their Hosts. Cell. 2006;126:453–465. doi: 10.1016/j.cell.2006.07.014. PubMed DOI

Schwarz R.S., Moran N.A., Evans J.D. Early Gut Colonizers Shape Parasite Susceptibility and Microbiota Composition in Honey Bee Workers. PNAS. 2016;113:9345–9350. doi: 10.1073/pnas.1606631113. PubMed DOI PMC

Kwong W.K., Mancenido A.L., Moran N.A. Immune System Stimulation by the Native Gut Microbiota of Honey Bees. R. Soc. Open Sci. 2017;4:170003. doi: 10.1098/rsos.170003. PubMed DOI PMC

Dharampal P.S., Carlson C., Currie C.R., Steffan S.A. Pollen-Borne Microbes Shape Bee Fitness. Proc. R. Soc. B. 2019;286:20182894. doi: 10.1098/rspb.2018.2894. PubMed DOI PMC

Raymann K., Moran N.A. The Role of the Gut Microbiome in Health and Disease of Adult Honey Bee Workers. Curr. Opin. Insect Sci. 2018;26:97–104. doi: 10.1016/j.cois.2018.02.012. PubMed DOI PMC

Janashia I., Alaux C. Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae) J. Econ. Entomol. 2016;109:1474–1477. doi: 10.1093/jee/tow065. PubMed DOI

Emery O., Schmidt K., Engel P. Immune System Stimulation by the Gut Symbiont Frischella perrara in the Honey Bee (Apis mellifera) Mol. Ecol. 2017;26:2576–2590. doi: 10.1111/mec.14058. PubMed DOI

Powell J.E., Martinson V.G., Urban-Mead K., Moran N.A. Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera. Appl. Environ. Microbiol. 2014;80:7378–7387. doi: 10.1128/AEM.01861-14. PubMed DOI PMC

Moran N.A., Hansen A.K., Powell J.E., Sabree Z.L. Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees. PLoS ONE. 2012;7:e36393. doi: 10.1371/journal.pone.0036393. PubMed DOI PMC

Martinson V.G., Danforth B.N., Minckley R.L., Rueppell O., Tingek S., Moran N.A. A Simple and Distinctive Microbiota Associated with Honey Bees and Bumble Bees. Mol. Ecol. 2011;20:619–628. doi: 10.1111/j.1365-294X.2010.04959.x. PubMed DOI

Ellegaard K.M., Engel P. Genomic Diversity Landscape of the Honey Bee Gut Microbiota. Nat. Commun. 2019;10:446. doi: 10.1038/s41467-019-08303-0. PubMed DOI PMC

Kwong W.K., Moran N.A. Gut Microbial Communities of Social Bees. Nat. Rev. Microbiol. 2016;14:374–384. doi: 10.1038/nrmicro.2016.43. PubMed DOI PMC

Smutin D., Lebedev E., Selitskiy M., Panyushev N., Adonin L. Micro”bee”ota: Honey Bee Normal Microbiota as a Part of Superorganism. Microorganisms. 2022;10:2359. doi: 10.3390/microorganisms10122359. PubMed DOI PMC

Dimov S.G., Zagorchev L., Iliev M., Dekova T., Ilieva R., Kitanova M., Georgieva-Miteva D., Dimitrov M., Peykov S. A Snapshot Picture of the Fungal Composition of Bee Bread in Four Locations in Bulgaria, Differing in Anthropogenic Influence. J. Fungi. 2021;109:1474–1477. doi: 10.3390/jof7100845. PubMed DOI PMC

Gilliam M., Prest D.B., Lorenz B.J. Microbiology of Pollen and Bee Bread: Taxonomy and Enzymology of Molds. Apidologie. 1989;20:53–68. doi: 10.1051/apido:19890106. DOI

Berenbaum M.R., Johnson R.M. Xenobiotic Detoxification Pathways in Honey Bees. Curr. Opin. Insect Sci. 2015;10:51–58. doi: 10.1016/j.cois.2015.03.005. PubMed DOI

Gilliam M. Identication and Roles of Non-Pathogenic Microflora Associated with Honey Bees. 1997, 155, 1–10. DOI

Gilliam M., Taber S., Lorenz B.J., Prest D.B. Factors Affecting Development of Chalkbrood Disease in Colonies of Honey Bees, Apis Mellifera, Fed Pollen Contaminated with Ascosphaera Apis. J. Invertebr. Pathol. 1988;52:314–325. doi: 10.1016/0022-2011(88)90141-3. DOI

Disayathanoowat T., Li H., Supapimon N., Suwannarach N., Lumyong S., Chantawannakul P., Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms. 2020;8:264. doi: 10.3390/microorganisms8020264. PubMed DOI PMC

Stamets P.E., Naeger N.L., Evans J.D., Han J.O., Hopkins B.K., Lopez D., Moershel H.M., Nally R., Sumerlin D., Taylor A.W., et al. Extracts of Polypore Mushroom Mycelia Reduce Viruses in Honey Bees. Sci. Rep. 2018;8:508. doi: 10.1038/s41598-018-32194-8. PubMed DOI PMC

Vocadlova K., Lamp B., Benes K., Matha V., Lee K.-Z., Vilcinskas A. Crude Extracts of Talaromyces Strains (Ascomycota) Affect. Viruses. 2023;15:343. doi: 10.3390/v15020343. PubMed DOI PMC

Hsu C.K., Wang D.Y., Wu M.C. A Potential Fungal Probiotic Aureobasidium melanogenum Ck-Csc for the Western Honey Bee, Apis Mellifera. J. Fungi. 2021;7:508. doi: 10.3390/jof7070508. PubMed DOI PMC

Zhai M.M., Li J., Jiang C.X., Shi Y.P., Di D.L., Crews P., Wu Q.X. The Bioactive Secondary Metabolites from Talaromyces Species. Nat. Products Bioprospect. 2016;6:1–24. doi: 10.1007/s13659-015-0081-3. PubMed DOI PMC

Nicoletti R., Salvatore M.M., Andolfi A. Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Mar. Drugs. 2018;16:12. doi: 10.3390/md16010012. PubMed DOI PMC

Mizuno K., Yagi A., Takada M., Matsuura K., Yamaguchi K. Letter: A New Antibiotic, Talaron. J. Antibiot. 1974;27:560–563. doi: 10.7164/antibiotics.27.560. PubMed DOI

Mapari S.A.S., Meyer A.S., Thrane U., Frisvad J.C. Identification of Potentially Safe Promising Fungal Cell Factories for the Production of Polyketide Natural Food Colorants Using Chemotaxonomic Rationale. Microb. Cell Fact. 2009;8:24. doi: 10.1186/1475-2859-8-24. PubMed DOI PMC

Nicoletti R. Talaromyces—Insect Relationships. Microorganisms. 2022;10:45. doi: 10.3390/microorganisms10010045. PubMed DOI PMC

Sandeepani H.P., Ratnaweera P.B. Antibacterial Activity of Entomopathogenic Fungi Isolated from Vespa affinis and Apis dorsata in Sri Lanka; Proceedings of 1st International Conference on Frontiers in Chemical Technology; Colombo, Sri Lanka. 20–22 July 2020; p. 29.

Lopes L.Q.S., Quatrin P.M., De Souza M.E., Vaucher R.D.A., Santos R.C.V. Fungal Infections In Honey Bees. Fungal Genom. Biol. 2015;5:1000118. doi: 10.4172/2165-8056.1000118. DOI

Djordjevic S.P., Forbes W.A., Smith L.A., Hornitzky M.A. Genetic and Biochemical Diversity among Isolates of Paenibacillus alvei Cultured from Australian Honeybee (Apis mellifera) Colonies. Appl. Environ. Microbiol. 2000;66:1098–1106. doi: 10.1128/AEM.66.3.1098-1106.2000. PubMed DOI PMC

WOAH . OIE Terrestrial Manual. WOAH; Paris, France: 2018. European Foulbrood of Honey Bees (Infection of Honey Bees with Melissococcus plutonius). In OIE Terrestrial Manual; WOAH: Paris, France, 2018; pp. 736–743.plutonius) pp. 736–743.

Jensen A.B., Hughes W.O.H., Foley K. The Distribution of Aspergillus Spp. Opportunistic Parasites in Hives and Their Pathogenicity to Honey Bees. Veter Microbiol. 2014;169:203–210. doi: 10.1016/j.vetmic.2013.11.029. PubMed DOI

Roetschi A., Berthoud H., Kuhn R., Imdorf A. Infection Rate Based on Quantitative Real-Time PCR of Melissococcus plutonius, the Causal Agent of European Foulbrood, in Honeybee Colonies before and after Apiary Sanitation. Apidologie. 2008;39:362–371. doi: 10.1051/apido:200819. DOI

Richards E.D., Tell L.A., Davis J.L., Baynes R.E., Lin Z., Maunsell F.P., Riviere J.E., Jaberi-Douraki M., Martin K.L., Davidson G. Honey Bee Medicine for Veterinarians and Guidance for Avoiding Violative Chemical Residues in Honey. J. Am. Vet. Med. Assoc. 2021;259:860–873. doi: 10.2460/javma.259.8.860. PubMed DOI

Wilkins S., Brown M.A., Cuthbertson A.G.S. The Incidence of Honey Bee Pests and Diseases in England and Wales. Pest Manag. Sci. 2007;63:1062–1068. doi: 10.1002/ps.1461. PubMed DOI

Seyedmousavi S., Guillot J., Arné P., De Hoog G.S., Mouton J.W., Melchers W.J.G., Verweij P.E. Aspergillus and Aspergilloses in Wild and Domestic Animals: A Global Health Concern with Parallels to Human Disease. Med. Mycol. 2015;53:765–797. doi: 10.1093/mmy/myv067. PubMed DOI

Samson R.A., Houbraken J., Thrane U., Frisvad J.C., Andersen B. Food and Indoor Fungi. 2nd ed. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2010.

GIMP The GIMP Develompment Team. [(accessed on 15 December 2020)]. Available online: https://www.gimp.org.

Yilmaz N., Visagie C.M., Houbraken J., Frisvad J.C., Samson R.A. Polyphasic Taxonomy of the Genus Talaromyces. Stud. Mycol. 2014;78:175–341. doi: 10.1016/j.simyco.2014.08.001. PubMed DOI PMC

Glass N.L., Donaldson G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995;61:1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995. PubMed DOI PMC

Gardes M., Bruns T.D. ITS Primers with Enhanced Specificity for Basidiomycetes-Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI

White T.J., Bruns S., Lee S., Taylor J. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics; pp. 315–322.

Peterson S.W., Vega F.E., Posada F., Nagai C. Penicillium coffeae, a New Endophytic Species Isolated from a Coffee Plant and Its Phylogenetic Relationship to P. Fellutanum, P. Thiersii and P. Brocae Based on Parsimony Analysis of Multilocus DNA Sequences. Mycologia. 2005;97:659–666. doi: 10.3852/mycologia.97.3.65. PubMed DOI

Liu Y.J., Whelen S., Hall B.D. Phylogenetic Relationships among Ascomycetes: Evidence from an RNA Polymerse II Subunit. Mol. Biol. Evol. 1999;16:1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092. PubMed DOI

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Raja H.A., Miller A.N., Pearce C.J., Oberlies N.H. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. J. Nat. Prod. 2017;80:756–770. doi: 10.1021/acs.jnatprod.6b01085. PubMed DOI PMC

Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Minh B.Q., Nguyen M.A.T., Von Haeseler A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC

Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI

Talavera G., Castresana J. Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI

Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees; Proceedings of the 2010 gateway computing environments workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8.

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian Phylogenetic Inference under Mixed Models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Letunic I., Bork P. Interactive Tree of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC

Marner M., Hartwig C., Patras M.A., Wodi S.I.M., Rieuwpassa F.J., Ijong F.G., Balansa W. Sustainable Low-Volume Analysis of Environmental Samples by Semi-Automated Prioritization of Extracts for Natural Product Research (SeaPEPR) Mar. Drugs. 2020;18:649. doi: 10.3390/md18120649. PubMed DOI PMC

Espinel-Ingroff A., Cantón E., Pemán J. Antifungal Susceptibility Testing of Filamentous Fungi. Curr. Fungal Infect. Rep. 2012;6:41–50. doi: 10.1007/s12281-011-0079-1. DOI

Petrikkou E., Rodríguez-Tudela J.L., Cuenca-Estrella M., Gómez A., Molleja A., Mellado E. Inoculum Standardization for Antifungal Susceptibility Testing of Filamentous Fungi Pathogenic for Humans. J. Clin. Microbiol. 2001;39:1345–1347. doi: 10.1128/JCM.39.4.1345-1347.2001. PubMed DOI PMC

Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Kresna I.D.M., Wuisan Z.G., Pohl J.M., Mettal U., Otoya V.L., Gand M., Marner M., Otoya L.L., Bohringer N., Vilcinskas A., et al. Genome-Mining-Guided Discovery and Characterization of the PKS-NRPS-Hybrid Polyoxyperuin Produced by a Marine-Derived Streptomycete. J. Nat. Prod. 2022;85:888–898. doi: 10.1021/acs.jnatprod.1c01018. PubMed DOI

Marner M., Patras M.A., Kurz M., Zubeil F., Forster F., Schuler S., Bauer A., Hammann P., Vilcinskas A., Schaberle T.F., et al. Molecular Networking-Guided Discovery and Characterization of Stechlisins, a Group of Cyclic Lipopeptides from a Pseudomonas Sp. J. Nat. Prod. 2020;83:2607–2617. doi: 10.1021/acs.jnatprod.0c00263. PubMed DOI

Wang L., Linares-Otoya V., Liu Y., Mettal U., Marner M., Armas-Mantilla L., Willbold S., Kurtan T., Linares-Otoya L., Schaberle T.F. Discovery and Biosynthesis of Antimicrobial Phenethylamine Alkaloids from the Marine Flavobacterium Tenacibaculum discolor sv11. J. Nat. Prod. 2022;85:1039–1051. doi: 10.1021/acs.jnatprod.1c01173. PubMed DOI

Fox J.L. Fraunhofer to Mine Sanofi Microbial Collection. Nat. Biotechnol. 2014;32:305. doi: 10.1038/nbt0414-305a. PubMed DOI

Bhagobaty R.K., Joshi S.R. Multi-Loci Molecular Characterisation of Endophytic Fungi Isolated from Five Medicinal Plants of Meghalaya, India. Mycobiology. 2011;39:71–78. doi: 10.4489/MYCO.2011.39.2.071. PubMed DOI PMC

Rodríguez-Andrade E., Stchigel A.M., Terrab A., Guarro J., Cano-Lira J.F. Diversity of Xerotolerant and Xerophilic Fungi in Honey. IMA Fungus. 2019;10:20. doi: 10.1186/s43008-019-0021-7. PubMed DOI PMC

Barbosa R.N., Bezerra J.D.P., Souza-Motta C.M., Frisvad J.C., Samson R.A., Oliveira N.T., Houbraken J. New Penicillium and Talaromyces Species from Honey, Pollen and Nests of Stingless Bees. Antonie van Leeuwenhoek. 2018;111:1883–1912. doi: 10.1007/s10482-018-1081-1. PubMed DOI PMC

Parish J.B., Scott E.S., Hogendoorn K. Collection of Conidia of Podosphaera xanthii by Honey Bee Workers. Australas. Plant Pathol. 2020;49:245–247. doi: 10.1007/s13313-020-00698-5. DOI

Shaw D.E. The Incidental Collection of Fungal Spores by Bees and the Collection of Spores in Lieu of Pollen. Bee World. 1990;71:158–176. doi: 10.1080/0005772X.1990.11099059. DOI

Friedle C., D’Alvise P., Schweikert K., Wallner K., Hasselmann M. Changes of Microorganism Composition in Fresh and Stored Bee Pollen from Southern Germany. Environ. Sci. Pollut. Res. 2021;28:47251–47261. doi: 10.1007/s11356-021-13932-4. PubMed DOI PMC

Waddington K.D., Herbert T.J., Visscher P.K., Richter M.R. Comparisons of Forager Distributions from Matched Honey Bee Colonies in Suburban Environments. Behav. Ecol. Sociobiol. 1994;35:423–429. doi: 10.1007/BF00165845. DOI

Beekman M., Ratnieks F.L.W. Long-Range Foraging by the Honey-Bee, Apis mellifera L. Funct. Ecol. 2000;14:490–496. doi: 10.1046/j.1365-2435.2000.00443.x. DOI

Yoder J.A., Jajack A.J., Rosselot A.E., Smith T.J., Yerke M.C., Sammataro D. Fungicide Contamination Reduces Beneficial Fungi in Bee Bread Based on an Area-Wide Field Study in Honey Bee, Apis mellifera, Colonies. J. Toxicol. Environ. Health Part A Curr. Issues. 2013;76:587–600. doi: 10.1080/15287394.2013.798846. PubMed DOI

Kurth C., Kage H., Nett M. Siderophores as Molecular Tools in Medical and Environmental Applications. Org. Biomol. Chem. 2016;14:8212–8227. doi: 10.1039/C6OB01400C. PubMed DOI

Haas H. Molecular Genetics of Fungal Siderophore Biosynthesis and Uptake: The Role of Siderophores in Iron Uptake and Storage. Appl. Microbiol. Biotechnol. 2003;62:316–330. doi: 10.1007/s00253-003-1335-2. PubMed DOI

Kalansuriya P., Quezada M., Espósito B.P., Capon R.J. Talarazines A-E: Noncytotoxic Iron(III) Chelators from an Australian Mud Dauber Wasp-Associated Fungus, Talaromyces Sp. (CMB-W045) J. Nat. Prod. 2017;80:609–615. doi: 10.1021/acs.jnatprod.6b00889. PubMed DOI

Haas H. Fungal Siderophore Metabolism with a Focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC

Paludo C.R., Pishchany G., Andrade-Dominguez A., Silva-Junior E.A., Menezes C., Nascimento F.S., Currie C.R., Kolter R., Clardy J., Pupo M.T. Microbial Community Modulates Growth of Symbiotic Fungus Required for Stingless Bee Metamorphosis. PLoS ONE. 2019;14:e0219696. doi: 10.1371/journal.pone.0219696. PubMed DOI PMC

Becchimanzi A., Nicoletti R. Aspergillus-Bees: A Dynamic Symbiotic Association. Front. Microbiol. 2022;13:968963. doi: 10.3389/fmicb.2022.968963. PubMed DOI PMC

Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. Mycotoxins, Drugs and Other Extrolites Produced by Species in Penicillium subgenus Penicillium. Stud. Mycol. 2004;49:201–241.

Lou J., Fu L., Peng Y., Zhou L. Metabolites from Alternaria Fungi and Their Bioactivities. Molecules. 2013;18:5891–5935. doi: 10.3390/molecules18055891. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...