Extracts of Talaromyces purpureogenus Strains from Apis mellifera Bee Bread Inhibit the Growth of Paenibacillus spp. In Vitro
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37630627
PubMed Central
PMC10459140
DOI
10.3390/microorganisms11082067
PII: microorganisms11082067
Knihovny.cz E-resources
- Keywords
- Apis mellifera, Talaromyces, antimicrobial activity, bee bread, biocontrol, fungi, honey bee, natural product,
- Publication type
- Journal Article MeSH
Honey bees coexist with fungi that colonize hive surfaces and pollen. Some of these fungi are opportunistic pathogens, but many are beneficial species that produce antimicrobial compounds for pollen conservation and the regulation of pathogen populations. In this study, we tested the in vitro antimicrobial activity of Talaromyces purpureogenus strains isolated from bee bread against Paenibacillus alvei (associated with European foulbrood disease) and three Aspergillus species that cause stonebrood disease. We found that methanol extracts of T. purpureogenus strains B18 and B195 inhibited the growth of P. alvei at a concentration of 0.39 mg/mL. Bioactivity-guided dereplication revealed that the activity of the crude extracts correlated with the presence of diketopiperazines, a siderophore, and three unknown compounds. We propose that non-pathogenic fungi such as Talaromyces spp. and their metabolites in bee bread could be an important requirement to prevent disease. Agricultural practices involving the use of fungicides can disrupt the fungal community and thus negatively affect the health of bee colonies.
LOEWE Centre for Translational Biodiversity Genomics 60325 Frankfurt Germany
OncoRa s r o Nemanicka 2722 37001 Ceske Budejovice Czech Republic
Retorta s r o Tresnova 316 37382 Borsov nad Vltavou Czech Republic
See more in PubMed
Ollerton J., Winfree R., Tarrant S. How Many Flowering Plants Are Pollinated by Animals? Oikos. 2011;120:321–326. doi: 10.1111/j.1600-0706.2010.18644.x. DOI
Klein A.M., Vaissiere B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007;274:303–313. doi: 10.1098/rspb.2006.3721. PubMed DOI PMC
Gallai N., Salles J., Settele J., Vaissière B.E., Pollinisation L., Abeilles E., Abeilles U.M.R., Cedex A., Lameta U.M.R., Cedex M. Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009;68:810–821. doi: 10.1016/j.ecolecon.2008.06.014. DOI
Lautenbach S., Seppelt R., Liebscher J., Dormann C.F. Spatial and Temporal Trends of Global Pollination Benefit. PLoS ONE. 2012;7:e35954. doi: 10.1371/journal.pone.0035954. PubMed DOI PMC
Potts S.G., Imperatriz-Fonseca V., Ngo H.T., Aizen M.A., Biesmeijer J.C., Breeze T.D., Dicks L.V., Garibaldi L.A., Hill R., Settele J., et al. Safeguarding Pollinators and Their Values to Human Well-Being. Nature. 2016;540:220–229. doi: 10.1038/nature20588. PubMed DOI
Aizen M.A., Garibaldi L.A., Cunningham S.A., Klein A.M. Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Curr. Biol. 2008;18:1572–1575. doi: 10.1016/j.cub.2008.08.066. PubMed DOI
Aizen M.A., Harder L.D. The Global Stock of Domesticated Honey Bees Is Growing Slower than Agricultural Demand for Pollination. Curr. Biol. 2009;19:915–918. doi: 10.1016/j.cub.2009.03.071. PubMed DOI
Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010;25:345–353. doi: 10.1016/j.tree.2010.01.007. PubMed DOI
Zattara E.E., Aizen M.A. Worldwide Occurrence Records Suggest a Global Decline in Bee Species Richness. One Earth. 2021;4:114–123. doi: 10.1016/j.oneear.2020.12.005. DOI
Goulson D., Nicholls E., Botías C., Rotheray E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science. 2015;347:1255957. doi: 10.1126/science.1255957. PubMed DOI
Smith K.M., Loh E.H., Rostal M.K., Zambrana-Torrelio C.M., Mendiola L., Daszak P. Pathogens, Pests, and Economics: Drivers of Honey Bee Colony Declines and Losses. Ecohealth. 2013;10:434–445. doi: 10.1007/s10393-013-0870-2. PubMed DOI
Vilcinskas A. Pathogens Associated with Invasive or Introduced Insects Threaten the Health and Diversity of Native Species. Curr. Opin. Insect Sci. 2019;33:43–48. doi: 10.1016/j.cois.2019.03.004. PubMed DOI
vanEngelsdorp D., Meixner M.D. A Historical Review of Managed Honey Bee Populations in Europe and the United States and the Factors That May Affect Them. J. Invertebr. Pathol. 2010;103:S80–S95. doi: 10.1016/j.jip.2009.06.011. PubMed DOI
Bruckner S., Wilson M., Aurell D., Rennich K., vanEngelsdorp D., Steinhauer N., Williams G.R. A National Survey of Managed Honey Bee Colony Losses in the USA: Results from the Bee Informed Partnership for 2017–2018, 2018–2019, and 2019–2020. J. Apic. Res. 2022;62:429–443. doi: 10.1080/00218839.2022.2158586. DOI
Gray A., Noureddine A., Arab A., Ballis A., Brusbardis V., Bugeja Douglas A., Cadahía L., Charrière J.D., Chlebo R., Coffey M.F., et al. Honey Bee Colony Loss Rates in 37 Countries Using the COLOSS Survey for Winter 2019–2020: The Combined Effects of Operation Size, Migration and Queen Replacement. J. Apic. Res. 2022;62:204–210. doi: 10.1080/00218839.2022.2113329. DOI
Dale C., Moran N.A. Molecular Interactions between Bacterial Symbionts and Their Hosts. Cell. 2006;126:453–465. doi: 10.1016/j.cell.2006.07.014. PubMed DOI
Schwarz R.S., Moran N.A., Evans J.D. Early Gut Colonizers Shape Parasite Susceptibility and Microbiota Composition in Honey Bee Workers. PNAS. 2016;113:9345–9350. doi: 10.1073/pnas.1606631113. PubMed DOI PMC
Kwong W.K., Mancenido A.L., Moran N.A. Immune System Stimulation by the Native Gut Microbiota of Honey Bees. R. Soc. Open Sci. 2017;4:170003. doi: 10.1098/rsos.170003. PubMed DOI PMC
Dharampal P.S., Carlson C., Currie C.R., Steffan S.A. Pollen-Borne Microbes Shape Bee Fitness. Proc. R. Soc. B. 2019;286:20182894. doi: 10.1098/rspb.2018.2894. PubMed DOI PMC
Raymann K., Moran N.A. The Role of the Gut Microbiome in Health and Disease of Adult Honey Bee Workers. Curr. Opin. Insect Sci. 2018;26:97–104. doi: 10.1016/j.cois.2018.02.012. PubMed DOI PMC
Janashia I., Alaux C. Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae) J. Econ. Entomol. 2016;109:1474–1477. doi: 10.1093/jee/tow065. PubMed DOI
Emery O., Schmidt K., Engel P. Immune System Stimulation by the Gut Symbiont Frischella perrara in the Honey Bee (Apis mellifera) Mol. Ecol. 2017;26:2576–2590. doi: 10.1111/mec.14058. PubMed DOI
Powell J.E., Martinson V.G., Urban-Mead K., Moran N.A. Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera. Appl. Environ. Microbiol. 2014;80:7378–7387. doi: 10.1128/AEM.01861-14. PubMed DOI PMC
Moran N.A., Hansen A.K., Powell J.E., Sabree Z.L. Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees. PLoS ONE. 2012;7:e36393. doi: 10.1371/journal.pone.0036393. PubMed DOI PMC
Martinson V.G., Danforth B.N., Minckley R.L., Rueppell O., Tingek S., Moran N.A. A Simple and Distinctive Microbiota Associated with Honey Bees and Bumble Bees. Mol. Ecol. 2011;20:619–628. doi: 10.1111/j.1365-294X.2010.04959.x. PubMed DOI
Ellegaard K.M., Engel P. Genomic Diversity Landscape of the Honey Bee Gut Microbiota. Nat. Commun. 2019;10:446. doi: 10.1038/s41467-019-08303-0. PubMed DOI PMC
Kwong W.K., Moran N.A. Gut Microbial Communities of Social Bees. Nat. Rev. Microbiol. 2016;14:374–384. doi: 10.1038/nrmicro.2016.43. PubMed DOI PMC
Smutin D., Lebedev E., Selitskiy M., Panyushev N., Adonin L. Micro”bee”ota: Honey Bee Normal Microbiota as a Part of Superorganism. Microorganisms. 2022;10:2359. doi: 10.3390/microorganisms10122359. PubMed DOI PMC
Dimov S.G., Zagorchev L., Iliev M., Dekova T., Ilieva R., Kitanova M., Georgieva-Miteva D., Dimitrov M., Peykov S. A Snapshot Picture of the Fungal Composition of Bee Bread in Four Locations in Bulgaria, Differing in Anthropogenic Influence. J. Fungi. 2021;109:1474–1477. doi: 10.3390/jof7100845. PubMed DOI PMC
Gilliam M., Prest D.B., Lorenz B.J. Microbiology of Pollen and Bee Bread: Taxonomy and Enzymology of Molds. Apidologie. 1989;20:53–68. doi: 10.1051/apido:19890106. DOI
Berenbaum M.R., Johnson R.M. Xenobiotic Detoxification Pathways in Honey Bees. Curr. Opin. Insect Sci. 2015;10:51–58. doi: 10.1016/j.cois.2015.03.005. PubMed DOI
Gilliam M. Identication and Roles of Non-Pathogenic Microflora Associated with Honey Bees. 1997, 155, 1–10. DOI
Gilliam M., Taber S., Lorenz B.J., Prest D.B. Factors Affecting Development of Chalkbrood Disease in Colonies of Honey Bees, Apis Mellifera, Fed Pollen Contaminated with Ascosphaera Apis. J. Invertebr. Pathol. 1988;52:314–325. doi: 10.1016/0022-2011(88)90141-3. DOI
Disayathanoowat T., Li H., Supapimon N., Suwannarach N., Lumyong S., Chantawannakul P., Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms. 2020;8:264. doi: 10.3390/microorganisms8020264. PubMed DOI PMC
Stamets P.E., Naeger N.L., Evans J.D., Han J.O., Hopkins B.K., Lopez D., Moershel H.M., Nally R., Sumerlin D., Taylor A.W., et al. Extracts of Polypore Mushroom Mycelia Reduce Viruses in Honey Bees. Sci. Rep. 2018;8:508. doi: 10.1038/s41598-018-32194-8. PubMed DOI PMC
Vocadlova K., Lamp B., Benes K., Matha V., Lee K.-Z., Vilcinskas A. Crude Extracts of Talaromyces Strains (Ascomycota) Affect. Viruses. 2023;15:343. doi: 10.3390/v15020343. PubMed DOI PMC
Hsu C.K., Wang D.Y., Wu M.C. A Potential Fungal Probiotic Aureobasidium melanogenum Ck-Csc for the Western Honey Bee, Apis Mellifera. J. Fungi. 2021;7:508. doi: 10.3390/jof7070508. PubMed DOI PMC
Zhai M.M., Li J., Jiang C.X., Shi Y.P., Di D.L., Crews P., Wu Q.X. The Bioactive Secondary Metabolites from Talaromyces Species. Nat. Products Bioprospect. 2016;6:1–24. doi: 10.1007/s13659-015-0081-3. PubMed DOI PMC
Nicoletti R., Salvatore M.M., Andolfi A. Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Mar. Drugs. 2018;16:12. doi: 10.3390/md16010012. PubMed DOI PMC
Mizuno K., Yagi A., Takada M., Matsuura K., Yamaguchi K. Letter: A New Antibiotic, Talaron. J. Antibiot. 1974;27:560–563. doi: 10.7164/antibiotics.27.560. PubMed DOI
Mapari S.A.S., Meyer A.S., Thrane U., Frisvad J.C. Identification of Potentially Safe Promising Fungal Cell Factories for the Production of Polyketide Natural Food Colorants Using Chemotaxonomic Rationale. Microb. Cell Fact. 2009;8:24. doi: 10.1186/1475-2859-8-24. PubMed DOI PMC
Nicoletti R. Talaromyces—Insect Relationships. Microorganisms. 2022;10:45. doi: 10.3390/microorganisms10010045. PubMed DOI PMC
Sandeepani H.P., Ratnaweera P.B. Antibacterial Activity of Entomopathogenic Fungi Isolated from Vespa affinis and Apis dorsata in Sri Lanka; Proceedings of 1st International Conference on Frontiers in Chemical Technology; Colombo, Sri Lanka. 20–22 July 2020; p. 29.
Lopes L.Q.S., Quatrin P.M., De Souza M.E., Vaucher R.D.A., Santos R.C.V. Fungal Infections In Honey Bees. Fungal Genom. Biol. 2015;5:1000118. doi: 10.4172/2165-8056.1000118. DOI
Djordjevic S.P., Forbes W.A., Smith L.A., Hornitzky M.A. Genetic and Biochemical Diversity among Isolates of Paenibacillus alvei Cultured from Australian Honeybee (Apis mellifera) Colonies. Appl. Environ. Microbiol. 2000;66:1098–1106. doi: 10.1128/AEM.66.3.1098-1106.2000. PubMed DOI PMC
WOAH . OIE Terrestrial Manual. WOAH; Paris, France: 2018. European Foulbrood of Honey Bees (Infection of Honey Bees with Melissococcus plutonius). In OIE Terrestrial Manual; WOAH: Paris, France, 2018; pp. 736–743.plutonius) pp. 736–743.
Jensen A.B., Hughes W.O.H., Foley K. The Distribution of Aspergillus Spp. Opportunistic Parasites in Hives and Their Pathogenicity to Honey Bees. Veter Microbiol. 2014;169:203–210. doi: 10.1016/j.vetmic.2013.11.029. PubMed DOI
Roetschi A., Berthoud H., Kuhn R., Imdorf A. Infection Rate Based on Quantitative Real-Time PCR of Melissococcus plutonius, the Causal Agent of European Foulbrood, in Honeybee Colonies before and after Apiary Sanitation. Apidologie. 2008;39:362–371. doi: 10.1051/apido:200819. DOI
Richards E.D., Tell L.A., Davis J.L., Baynes R.E., Lin Z., Maunsell F.P., Riviere J.E., Jaberi-Douraki M., Martin K.L., Davidson G. Honey Bee Medicine for Veterinarians and Guidance for Avoiding Violative Chemical Residues in Honey. J. Am. Vet. Med. Assoc. 2021;259:860–873. doi: 10.2460/javma.259.8.860. PubMed DOI
Wilkins S., Brown M.A., Cuthbertson A.G.S. The Incidence of Honey Bee Pests and Diseases in England and Wales. Pest Manag. Sci. 2007;63:1062–1068. doi: 10.1002/ps.1461. PubMed DOI
Seyedmousavi S., Guillot J., Arné P., De Hoog G.S., Mouton J.W., Melchers W.J.G., Verweij P.E. Aspergillus and Aspergilloses in Wild and Domestic Animals: A Global Health Concern with Parallels to Human Disease. Med. Mycol. 2015;53:765–797. doi: 10.1093/mmy/myv067. PubMed DOI
Samson R.A., Houbraken J., Thrane U., Frisvad J.C., Andersen B. Food and Indoor Fungi. 2nd ed. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2010.
GIMP The GIMP Develompment Team. [(accessed on 15 December 2020)]. Available online: https://www.gimp.org.
Yilmaz N., Visagie C.M., Houbraken J., Frisvad J.C., Samson R.A. Polyphasic Taxonomy of the Genus Talaromyces. Stud. Mycol. 2014;78:175–341. doi: 10.1016/j.simyco.2014.08.001. PubMed DOI PMC
Glass N.L., Donaldson G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995;61:1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995. PubMed DOI PMC
Gardes M., Bruns T.D. ITS Primers with Enhanced Specificity for Basidiomycetes-Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI
White T.J., Bruns S., Lee S., Taylor J. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics; pp. 315–322.
Peterson S.W., Vega F.E., Posada F., Nagai C. Penicillium coffeae, a New Endophytic Species Isolated from a Coffee Plant and Its Phylogenetic Relationship to P. Fellutanum, P. Thiersii and P. Brocae Based on Parsimony Analysis of Multilocus DNA Sequences. Mycologia. 2005;97:659–666. doi: 10.3852/mycologia.97.3.65. PubMed DOI
Liu Y.J., Whelen S., Hall B.D. Phylogenetic Relationships among Ascomycetes: Evidence from an RNA Polymerse II Subunit. Mol. Biol. Evol. 1999;16:1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Raja H.A., Miller A.N., Pearce C.J., Oberlies N.H. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. J. Nat. Prod. 2017;80:756–770. doi: 10.1021/acs.jnatprod.6b01085. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Minh B.Q., Nguyen M.A.T., Von Haeseler A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Talavera G., Castresana J. Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI
Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees; Proceedings of the 2010 gateway computing environments workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8.
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian Phylogenetic Inference under Mixed Models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Letunic I., Bork P. Interactive Tree of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Marner M., Hartwig C., Patras M.A., Wodi S.I.M., Rieuwpassa F.J., Ijong F.G., Balansa W. Sustainable Low-Volume Analysis of Environmental Samples by Semi-Automated Prioritization of Extracts for Natural Product Research (SeaPEPR) Mar. Drugs. 2020;18:649. doi: 10.3390/md18120649. PubMed DOI PMC
Espinel-Ingroff A., Cantón E., Pemán J. Antifungal Susceptibility Testing of Filamentous Fungi. Curr. Fungal Infect. Rep. 2012;6:41–50. doi: 10.1007/s12281-011-0079-1. DOI
Petrikkou E., Rodríguez-Tudela J.L., Cuenca-Estrella M., Gómez A., Molleja A., Mellado E. Inoculum Standardization for Antifungal Susceptibility Testing of Filamentous Fungi Pathogenic for Humans. J. Clin. Microbiol. 2001;39:1345–1347. doi: 10.1128/JCM.39.4.1345-1347.2001. PubMed DOI PMC
Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
Kresna I.D.M., Wuisan Z.G., Pohl J.M., Mettal U., Otoya V.L., Gand M., Marner M., Otoya L.L., Bohringer N., Vilcinskas A., et al. Genome-Mining-Guided Discovery and Characterization of the PKS-NRPS-Hybrid Polyoxyperuin Produced by a Marine-Derived Streptomycete. J. Nat. Prod. 2022;85:888–898. doi: 10.1021/acs.jnatprod.1c01018. PubMed DOI
Marner M., Patras M.A., Kurz M., Zubeil F., Forster F., Schuler S., Bauer A., Hammann P., Vilcinskas A., Schaberle T.F., et al. Molecular Networking-Guided Discovery and Characterization of Stechlisins, a Group of Cyclic Lipopeptides from a Pseudomonas Sp. J. Nat. Prod. 2020;83:2607–2617. doi: 10.1021/acs.jnatprod.0c00263. PubMed DOI
Wang L., Linares-Otoya V., Liu Y., Mettal U., Marner M., Armas-Mantilla L., Willbold S., Kurtan T., Linares-Otoya L., Schaberle T.F. Discovery and Biosynthesis of Antimicrobial Phenethylamine Alkaloids from the Marine Flavobacterium Tenacibaculum discolor sv11. J. Nat. Prod. 2022;85:1039–1051. doi: 10.1021/acs.jnatprod.1c01173. PubMed DOI
Fox J.L. Fraunhofer to Mine Sanofi Microbial Collection. Nat. Biotechnol. 2014;32:305. doi: 10.1038/nbt0414-305a. PubMed DOI
Bhagobaty R.K., Joshi S.R. Multi-Loci Molecular Characterisation of Endophytic Fungi Isolated from Five Medicinal Plants of Meghalaya, India. Mycobiology. 2011;39:71–78. doi: 10.4489/MYCO.2011.39.2.071. PubMed DOI PMC
Rodríguez-Andrade E., Stchigel A.M., Terrab A., Guarro J., Cano-Lira J.F. Diversity of Xerotolerant and Xerophilic Fungi in Honey. IMA Fungus. 2019;10:20. doi: 10.1186/s43008-019-0021-7. PubMed DOI PMC
Barbosa R.N., Bezerra J.D.P., Souza-Motta C.M., Frisvad J.C., Samson R.A., Oliveira N.T., Houbraken J. New Penicillium and Talaromyces Species from Honey, Pollen and Nests of Stingless Bees. Antonie van Leeuwenhoek. 2018;111:1883–1912. doi: 10.1007/s10482-018-1081-1. PubMed DOI PMC
Parish J.B., Scott E.S., Hogendoorn K. Collection of Conidia of Podosphaera xanthii by Honey Bee Workers. Australas. Plant Pathol. 2020;49:245–247. doi: 10.1007/s13313-020-00698-5. DOI
Shaw D.E. The Incidental Collection of Fungal Spores by Bees and the Collection of Spores in Lieu of Pollen. Bee World. 1990;71:158–176. doi: 10.1080/0005772X.1990.11099059. DOI
Friedle C., D’Alvise P., Schweikert K., Wallner K., Hasselmann M. Changes of Microorganism Composition in Fresh and Stored Bee Pollen from Southern Germany. Environ. Sci. Pollut. Res. 2021;28:47251–47261. doi: 10.1007/s11356-021-13932-4. PubMed DOI PMC
Waddington K.D., Herbert T.J., Visscher P.K., Richter M.R. Comparisons of Forager Distributions from Matched Honey Bee Colonies in Suburban Environments. Behav. Ecol. Sociobiol. 1994;35:423–429. doi: 10.1007/BF00165845. DOI
Beekman M., Ratnieks F.L.W. Long-Range Foraging by the Honey-Bee, Apis mellifera L. Funct. Ecol. 2000;14:490–496. doi: 10.1046/j.1365-2435.2000.00443.x. DOI
Yoder J.A., Jajack A.J., Rosselot A.E., Smith T.J., Yerke M.C., Sammataro D. Fungicide Contamination Reduces Beneficial Fungi in Bee Bread Based on an Area-Wide Field Study in Honey Bee, Apis mellifera, Colonies. J. Toxicol. Environ. Health Part A Curr. Issues. 2013;76:587–600. doi: 10.1080/15287394.2013.798846. PubMed DOI
Kurth C., Kage H., Nett M. Siderophores as Molecular Tools in Medical and Environmental Applications. Org. Biomol. Chem. 2016;14:8212–8227. doi: 10.1039/C6OB01400C. PubMed DOI
Haas H. Molecular Genetics of Fungal Siderophore Biosynthesis and Uptake: The Role of Siderophores in Iron Uptake and Storage. Appl. Microbiol. Biotechnol. 2003;62:316–330. doi: 10.1007/s00253-003-1335-2. PubMed DOI
Kalansuriya P., Quezada M., Espósito B.P., Capon R.J. Talarazines A-E: Noncytotoxic Iron(III) Chelators from an Australian Mud Dauber Wasp-Associated Fungus, Talaromyces Sp. (CMB-W045) J. Nat. Prod. 2017;80:609–615. doi: 10.1021/acs.jnatprod.6b00889. PubMed DOI
Haas H. Fungal Siderophore Metabolism with a Focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC
Paludo C.R., Pishchany G., Andrade-Dominguez A., Silva-Junior E.A., Menezes C., Nascimento F.S., Currie C.R., Kolter R., Clardy J., Pupo M.T. Microbial Community Modulates Growth of Symbiotic Fungus Required for Stingless Bee Metamorphosis. PLoS ONE. 2019;14:e0219696. doi: 10.1371/journal.pone.0219696. PubMed DOI PMC
Becchimanzi A., Nicoletti R. Aspergillus-Bees: A Dynamic Symbiotic Association. Front. Microbiol. 2022;13:968963. doi: 10.3389/fmicb.2022.968963. PubMed DOI PMC
Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. Mycotoxins, Drugs and Other Extrolites Produced by Species in Penicillium subgenus Penicillium. Stud. Mycol. 2004;49:201–241.
Lou J., Fu L., Peng Y., Zhou L. Metabolites from Alternaria Fungi and Their Bioactivities. Molecules. 2013;18:5891–5935. doi: 10.3390/molecules18055891. PubMed DOI PMC