Crude Extracts of Talaromyces Strains (Ascomycota) Affect Honey Bee (Apis mellifera) Resistance to Chronic Bee Paralysis Virus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36851556
PubMed Central
PMC9958978
DOI
10.3390/v15020343
PII: v15020343
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, CBPV, Talaromyces, antiviral activity, fungal extracts, mycotoxins,
- MeSH
- antivirové látky farmakologie MeSH
- Ascomycota * MeSH
- kočky MeSH
- koronavirus koček * MeSH
- paralýza MeSH
- RNA-viry * MeSH
- savci MeSH
- Talaromyces * MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.
OncoRa s r o Nemanicka 2722 37001 Ceske Budejovice Czech Republic
Retorta s r o Tresnova 316 37382 Borsov nad Vltavou Czech Republic
Zobrazit více v PubMed
Klein A.M., Vaissiere B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007;274:303–313. doi: 10.1098/rspb.2006.3721. PubMed DOI PMC
Ollerton J., Winfree R., Tarrant S. How Many Flowering Plants Are Pollinated by Animals? Oikos. 2011;120:321–326. doi: 10.1111/j.1600-0706.2010.18644.x. DOI
Wagner D.L., Grames E.M., Forister M.L., Berenbaum M.R., Stopak D. Insect Decline in the Anthropocene: Death by a Thousand Cuts. Proc. Natl. Acad. Sci. USA. 2021;118:e2023989118. doi: 10.1073/pnas.2023989118. PubMed DOI PMC
Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010;25:345–353. doi: 10.1016/j.tree.2010.01.007. PubMed DOI
Klatt B.K., Holzschuh A., Westphal C., Clough Y., Smit I., Pawelzik E., Tscharntke T. Bee Pollination Improves Crop Quality, Shelf Life and Commercial Value. Proc. R. Soc. B Biol. Sci. 2013;281:20132440. doi: 10.1098/rspb.2013.2440. PubMed DOI PMC
Garibaldi L.A., Aizen M.A., Cunningham S.A., Klein A.M. Pollinator Shortage and Global Crop Yield: Looking at the Whole Spectrum of Pollinator Dependency. Commun. Integr. Biol. 2009;2:37–39. doi: 10.4161/cib.2.1.7425. PubMed DOI PMC
Steinhauer N., Kulhanek K., Antúnez K., Human H., Chantawannakul P., Chauzat M.-P., VanEngelsdorp D. Drivers of Colony Losses. Curr. Opin. Insect Sci. 2018;26:142–148. doi: 10.1016/j.cois.2018.02.004. PubMed DOI
Ravoet J., Maharramov J., Meeus I., De Smet L., Wenseleers T., Smagghe G., de Graaf D.C. Comprehensive Bee Pathogen Screening in Belgium Reveals Crithidia Mellificae as a New Contributory Factor to Winter Mortality. PLoS ONE. 2013;8:e72443. doi: 10.1371/journal.pone.0072443. PubMed DOI PMC
Fünfhaus A., Ebeling J., Genersch E. Bacterial Pathogens of Bees. Curr. Opin. Insect Sci. 2018;26:89–96. doi: 10.1016/j.cois.2018.02.008. PubMed DOI
Quintana L. Fungal Infections In Honey Bees. Fungal Genom. Biol. 2015;05:1000118. doi: 10.4172/2165-8056.1000118. DOI
Genersch E., Aubert M. Emerging and Re-Emerging Viruses of the Honey Bee (Apis Mellifera L.) Vet. Res. 2010;41:54. doi: 10.1051/vetres/2010027. PubMed DOI PMC
Budge G.E., Simcock N.K., Holder P.J., Shirley M.D.F., Brown M.A., Van Weymers P.S.M., Evans D.J., Rushton S.P. Chronic Bee Paralysis as a Serious Emerging Threat to Honey Bees. Nat. Commun. 2020;11:2164. doi: 10.1038/s41467-020-15919-0. PubMed DOI PMC
Teixeira E.W., Chen Y., Message D., Pettis J., Evans J.D. Virus Infections in Brazilian Honey Bees. J. Invertebr. Pathol. 2008;99:117–119. doi: 10.1016/j.jip.2008.03.014. PubMed DOI
Noël A., Le Conte Y., Mondet F. Varroa Destructor: How Does It Harm Apis Mellifera Honey Bees and What Can Be Done about It? Emerg. Top. Life Sci. 2020;4:45–57. doi: 10.1042/ETLS20190125. PubMed DOI PMC
Ramsey S.D., Ochoa R., Bauchan G., Gulbronson C., Mowery J.D., Cohen A., Lim D., Joklik J., Cicero J.M., Ellis J.D., et al. Varroa Destructor Feeds Primarily on Honey Bee Fat Body Tissue and Not Hemolymph. Proc. Natl. Acad. Sci. USA. 2019;116:1792–1801. doi: 10.1073/pnas.1818371116. PubMed DOI PMC
Forgách P., Bakonyi T., Tapaszti Z., Nowotny N., Rusvai M. Prevalence of Pathogenic Bee Viruses in Hungarian Apiaries: Situation before Joining the European Union. J. Invertebr. Pathol. 2008;98:235–238. doi: 10.1016/j.jip.2007.11.002. PubMed DOI
Neumann P., Yañez O., Fries I., De Miranda J.R. Varroa Invasion and Virus Adaptation. Trends Parasitol. 2012;28:353–354. doi: 10.1016/j.pt.2012.06.004. PubMed DOI
Wilfert L., Long G., Leggett H.C., Schmid-Hempel P., Butlin R., Martin S.J.M., Boots M. Honeybee Disease: Deformed Wing Virus Is a Recent Global Epidemic in Honeybees Driven by Varroa Mites. Science. 2016;351:594–597. doi: 10.1126/science.aac9976. PubMed DOI
Kulhanek K., Steinhauer N., Rennich K., Caron D.M., Sagili R.R., Pettis J.S., Ellis J.D., Wilson M.E., Wilkes J.T., Tarpy D.R., et al. Encuesta Nacional 2015–2016 Sobre Pérdidas Anuales de Colonias de La Abeja de La Miel Manejada En Los EE.UU. J. Apic. Res. 2017;56:328–340. doi: 10.1080/00218839.2017.1344496. DOI
Lee K.V., Steinhauer N., Rennich K., Wilson M.E., Tarpy D.R., Caron D.M., Rose R., Delaplane K.S., Baylis K., Lengerich E.J., et al. A National Survey of Managed Honey Bee 2013-2014 Annual Colony Losses in the USA. Apidologie. 2015;46:292–305. doi: 10.1007/s13592-015-0356-z. DOI
Seitz N., Traynor K.S., Steinhauer N., Rennich K., Wilson M.E., Ellis J.D., Rose R., Tarpy D.R., Sagili R.R., Caron D.M., et al. Encuesta Nacional Sobre La Pérdida Anual de Colmenas de Abejas Manejadas Durante 2014–2015 En Los EEUU. J. Apic. Res. 2015;54:292–304. doi: 10.1080/00218839.2016.1153294. DOI
Steinhauer N.A., Rennich K., Wilson M.E., Caron D.M., Lengerich E.J., Pettis J.S., Rose R., Skinner J.A., Tarpy D.R., Wilkes J.T., et al. A National Survey of Managed Honey Bee 2012-2013 Annual Colony Losses in the USA: Results from the Bee Informed Partnership. J. Apic. Res. 2014;53:1–18. doi: 10.3896/IBRA.1.53.1.01. DOI
Jacques A., Laurent M., Ribière-Chabert M., Saussac M., Bougeard S., Budge G.E., Hendrikx P., Chauzat M.P. A Pan-European Epidemiological Study Reveals Honey Bee Colony Survival Depends on Beekeeper Education and Disease Control. PLoS ONE. 2017;12:e0172591. doi: 10.1371/journal.pone.0172591. PubMed DOI PMC
Brodschneider R., Gray A., Adjlane N., Ballis A., Brusbardis V., Charrière J.D., Chlebo R., Coffey M.F., Dahle B., de Graaf D.C., et al. Multi-Country Loss Rates of Honey Bee Colonies during Winter 2016/2017 from the COLOSS Survey. J. Apic. Res. 2018;57:452–457. doi: 10.1080/00218839.2018.1460911. DOI
Brodschneider R., Gray A., van der Zee R., Adjlane N., Brusbardis V., Charrière J.D., Chlebo R., Coffey M.F., Crailsheim K., Dahle B., et al. Preliminary Analysis of Loss Rates of Honey Bee Colonies during Winter 2015/16 from the COLOSS Survey. J. Apic. Res. 2016;55:375–378. doi: 10.1080/00218839.2016.1260240. DOI
Gisder S., Genersch E. Special Issue: Honey Bee Viruses. Viruses. 2015;7:5603–5608. doi: 10.3390/v7102885. PubMed DOI PMC
Rosenkranz P., Aumeier P., Ziegelmann B. Biology and Control of Varroa Destructor. J. Invertebr. Pathol. 2010;103:S96–S119. doi: 10.1016/j.jip.2009.07.016. PubMed DOI
Traynor K.S., Mondet F., de Miranda J.R., Techer M., Kowallik V., Oddie M.A.Y., Chantawannakul P., McAfee A. Varroa Destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 2020;36:592–606. doi: 10.1016/j.pt.2020.04.004. PubMed DOI
Yang D., Xu X., Zhao H., Yang S., Wang X., Zhao D., Diao Q., Hou C. Diverse Factors Affecting Efficiency of RNAi in Honey Bee Viruses. Front. Genet. 2018;9:384. doi: 10.3389/fgene.2018.00384. PubMed DOI PMC
Simone-Finstrom M., Aronstein K., Goblirsch M., Rinkevich F., de Guzman L. Gamma Irradiation Inactivates Honey Bee Fungal, Microsporidian, and Viral Pathogens and Parasites. J. Invertebr. Pathol. 2018;153:57–64. doi: 10.1016/j.jip.2018.02.011. PubMed DOI
Sumpter D.J.T., Martin S.J. The Dynamics of Virus Epidemics in Varroa-Infested Honey Bee Colonies. J. Anim. Ecol. 2004;73:51–63. doi: 10.1111/j.1365-2656.2004.00776.x. DOI
Le Conte Y., Ellis M., Ritter W. Varroa Mites and Honey Bee Health: Can Varroa Explain Part of the Colony Losses? Apidologie. 2010;41:353–363. doi: 10.1051/apido/2010017. DOI
Locke B., Forsgren E., Fries I., de Miranda J.R. Acaricide Treatment Affects Viral Dynamics in Varroa Destructor-Infested Honey Bee Colonies via Both Host Physiology and Mite Control. Appl. Environ. Microbiol. 2012;78:227–235. doi: 10.1128/AEM.06094-11. PubMed DOI PMC
Eichberg J., Maiworm E., Oberpaul M., Czudai-matwich V., Lüddecke T., Vilcinskas A., Hardes K. Virus Infections. Viruses. 2022;14:2452. doi: 10.3390/v14112452. PubMed DOI PMC
Palmer-Young E.C., Tozkar C.O., Schwarz R.S., Chen Y., Irwin R.E., Adler L.S., Evans J.D. Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. J. Econ. Entomol. 2017;110:1959–1972. doi: 10.1093/jee/tox193. PubMed DOI
Hsieh E.M., Berenbaum M.R., Dolezal A.G. Ameliorative Effects of Phytochemical Ingestion on Viral Infection in Honey Bees. Insects. 2020;11:698. doi: 10.3390/insects11100698. PubMed DOI PMC
Parekh F., Daughenbaugh K.F., Flenniken M.L. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees (Apis Mellifera) Front. Immunol. 2021;12:747848. doi: 10.3389/fimmu.2021.747848. PubMed DOI PMC
Stamets P.E., Naeger N.L., Evans J.D., Han J.O., Hopkins B.K., Lopez D., Moershel H.M., Nally R., Sumerlin D., Taylor A.W., et al. Extracts of Polypore Mushroom Mycelia Reduce Viruses in Honey Bees. Sci. Rep. 2018;8:13936. doi: 10.1038/s41598-018-32194-8. PubMed DOI PMC
Gilliam M., Prest D.B., Lorenz B.J. Microbiology of Pollen and Bee Bread: Taxonomy and Enzymology of Molds. Apidologie. 1989;20:53–68. doi: 10.1051/apido:19890106. DOI
Sinpoo C., Williams G.R., Chantawannakul P. Dynamics of Fungal Communities in Corbicular Pollen and Bee Bread. Chiang Mai J. Sci. 2017;44:1235–1247.
Anderson K.E., Carroll M.J., Sheehan T.I.M., Mott B.M. Hive-Stored Pollen of Honey Bees: Many Lines of Evidence Are Consistent with Pollen Preservation, Not Nutrient Conversion. Mol. Ecol. 2014;23:5904–5917. doi: 10.1111/mec.12966. PubMed DOI PMC
Gilliam M., Taber S., Lorenz B.J., Prest D.B. Factors Affecting Development of Chalkbrood Disease in Colonies of Honey Bees, Apis Mellifera, Fed Pollen Contaminated with Ascosphaera Apis. J. Invertebr. Pathol. 1988;52:314–325. doi: 10.1016/0022-2011(88)90141-3. DOI
Disayathanoowat T., Li H., Supapimon N., Suwannarach N., Lumyong S., Chantawannakul P., Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms. 2020;8:264. doi: 10.3390/microorganisms8020264. PubMed DOI PMC
Paludo C.R., Pishchany G., Andrade-Dominguez A., Silva-Junior E.A., Menezes C., Nascimento F.S., Currie C.R., Kolter R., Clardy J., Pupo M.T. Microbial Community Modulates Growth of Symbiotic Fungus Required for Stingless Bee Metamorphosis. PLoS ONE. 2019;14:e0219696. doi: 10.1371/journal.pone.0219696. PubMed DOI PMC
Zhai M.M., Li J., Jiang C.X., Shi Y.P., Di D.L., Crews P., Wu Q.X. The Bioactive Secondary Metabolites from Talaromyces Species. Nat. Prod. Bioprospect. 2016;6:1–24. doi: 10.1007/s13659-015-0081-3. PubMed DOI PMC
Rodríguez-Andrade E., Stchigel A.M., Terrab A., Guarro J., Cano-Lira J.F. Diversity of Xerotolerant and Xerophilic Fungi in Honey. IMA Fungus. 2019;10:20. doi: 10.1186/s43008-019-0021-7. PubMed DOI PMC
Sandeepani H.P., Ratnaweera P.B. Antibacterial Activity of Entomopathogenic Fungi Isolated from Vespa Affinis and Apis Dorsata in Sri Lanka; Proceedings of the International Conference on Frontiers in Chemical Technology 2020; Colombo, Sri Lanka. 20–22 July 2020.
Barbosa R.N., Bezerra J.D.P., Souza-Motta C.M., Frisvad J.C., Samson R.A., Oliveira N.T., Houbraken J. New Penicillium and Talaromyces Species from Honey, Pollen and Nests of Stingless Bees. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 2018;111:1883–1912. doi: 10.1007/s10482-018-1081-1. PubMed DOI PMC
Lan D., Wu B. Chemistry and Bioactivities of Secondary Metabolites from the Genus Talaromyces. Chem. Biodivers. 2020;17:e2000229. doi: 10.1002/cbdv.202000229. PubMed DOI
Yilmaz N., Houbraken J., Hoekstra E.S., Frisvad J.C., Visagie C.M., Samson R.A. Delimitation and Characterisation of Talaromyces Purpurogenus and Related Species. Persoonia Mol. Phylogeny Evol. Fungi. 2012;29:39–54. doi: 10.3767/003158512X659500. PubMed DOI PMC
Matsunaga H., Kamisuki S., Kaneko M., Yamaguchi Y., Takeuchi T., Watashi K., Sugawara F. Isolation and Structure of Vanitaracin A, a Novel Anti-Hepatitis B Virus Compound from Talaromyces Sp. Bioorganic Med. Chem. Lett. 2015;25:4325–4328. doi: 10.1016/j.bmcl.2015.07.067. PubMed DOI
Olivier V., Blanchard P., Chaouch S., Lallemand P., Schurr F., Celle O., Dubois E., Tordo N., Thiéry R., Houlgatte R., et al. Molecular Characterisation and Phylogenetic Analysis of Chronic Bee Paralysis Virus, a Honey Bee Virus. Virus Res. 2008;132:59–68. doi: 10.1016/j.virusres.2007.10.014. PubMed DOI
Bailey L., Gibbs A.J., Woods R.D. Two Viruses from Adult Honey Bees (Apis Mellifera Linnaeus) Virology. 1963;21:390–395. doi: 10.1016/0042-6822(63)90200-9. PubMed DOI
Bailey L. The Occurrence of Chronic and Acute Bee Paralysis Viruses in Bees Outside Britain. J. Invertebr. Pathol. 1965;7:167–169. doi: 10.1016/0022-2011(65)90031-5. PubMed DOI
Bailey L. Paralysis of the Honey Bee, Apis Mellifera Linnaeus. J. Invertebr. Pathol. 1965;7:132–140. doi: 10.1016/0022-2011(65)90024-8. PubMed DOI
Seitz K., Buczolich K., Dikunová A., Plevka P., Power K., Rümenapf T., Lamp B. A Molecular Clone of Chronic Bee Paralysis Virus (CBPV) Causes Mortality in Honey Bee Pupae (Apis Mellifera) Sci. Rep. 2019;9:16274. doi: 10.1038/s41598-019-52822-1. PubMed DOI PMC
Lawson J.S., Syme H.M., Wheeler-Jones C.P.D., Elliott J. Characterisation of Crandell-Rees Feline Kidney (CRFK) Cells as Mesenchymal in Phenotype. Res. Vet. Sci. 2019;127:99–102. doi: 10.1016/j.rvsc.2019.10.012. PubMed DOI PMC
Marner M., Hartwig C., Patras M.A., Wodi S.I.M., Rieuwpassa F.J., Ijong F.G., Balansa W. Sustainable Low-Volume Analysis of Environmental Samples by Semi-Automated Prioritization of Extracts for Natural Product Research (SeaPEPR) Mar. Drugs. 2020;18:649. doi: 10.3390/md18120649. PubMed DOI PMC
Chambers M.C., Maclean B., Burke R., Amodei D., Ruderman D.L., Neumann S., Gatto L., Fischer B., Pratt B., Egertson J., et al. A Cross-Platform Toolkit for Mass Spectrometry and Proteomics. Nat. Biotechnol. 2012;30:918–920. doi: 10.1038/nbt.2377. PubMed DOI PMC
Yang B., Peng G., Li T., Kadowaki T. Molecular and Phylogenetic Characterization of Honey Bee Viruses, Nosema Microsporidia, Protozoan Parasites, and Parasitic Mites in China. Ecol. Evol. 2013;3:298–311. doi: 10.1002/ece3.464. PubMed DOI PMC
Allen F., Greiner R., Wishart D. Competitive Fragmentation Modeling of ESI-MS/MS Spectra for Putative Metabolite Identification. Metabolomics. 2015;11:98–110. doi: 10.1007/s11306-014-0676-4. DOI
Laatsch H. AntiBase: The Natural Compound Identifier. Wiley; New York, NY, USA: 2017.
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Kraus A.A., Priemer C., Heider H., Krüger D.H., Ulrich R. Inactivation of Hantaan Virus-Containing Samples for Subsequent Investigations Outside Biosafety Level 3 Facilities. Intervirology. 2005;48:255–261. doi: 10.1159/000084603. PubMed DOI
Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC
Hristov P., Shumkova R., Palova N., Neov B. Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci. 2020;7:166. doi: 10.3390/vetsci7040166. PubMed DOI PMC
Goulson D., Nicholls E., Botías C., Rotheray E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science. 2015;347:1255957. doi: 10.1126/science.1255957. PubMed DOI
Nicoletti R. Talaromyces–Insect Relationships. Microorganisms. 2022;10:45. doi: 10.3390/microorganisms10010045. PubMed DOI PMC
Nonaka K., Chiba T., Suga T., Asami Y., Iwatsuki M., Masuma R., Omura S., Shiomi K. Coculnol, a New Penicillic Acid Produced by a Coculture of Fusarium Solani FKI-6853 and Talaromyces Sp. FKA-65. J. Antibiot. 2015;68:530–532. doi: 10.1038/ja.2015.15. PubMed DOI
Yue Y., Jiang M., Hu H., Wu J., Sun H., Jin H., Hou T., Tao K. Isolation, Identification and Insecticidal Activity of the Secondary Metabolites of Talaromyces Purpureogenus BS5. J. Fungi. 2022;8:288. doi: 10.3390/jof8030288. PubMed DOI PMC
Kostić A., Milinčić D.D., Petrović T.S., Krnjaja V.S., Stanojević S.P., Barać M.B., Tešić Ž.L., Pešić M.B. Mycotoxins and Mycotoxin Producing Fungi in Pollen: Review. Toxins. 2019;11:64. doi: 10.3390/toxins11020064. PubMed DOI PMC
Beuchat L.R. Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds. J. Food Prot. 1983;46:135–141. doi: 10.4315/0362-028X-46.2.135. PubMed DOI
Mannaa M., Kim K.D. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology. 2017;45:240–254. doi: 10.5941/MYCO.2017.45.4.240. PubMed DOI PMC
Feofilova E.P., Ivashechkin A.A., Alekhin A.I., Sergeeva Y.E. Fungal Spores: Dormancy, Germination, Chemical Composition, and Role in Biotechnology (Review) Appl. Biochem. Microbiol. 2012;48:1–11. doi: 10.1134/S0003683812010048. PubMed DOI
Moore D., Robson G.D., Trinci A.P.J. 21st Century Guidebook to Fungi. 2nd ed. Cambridge University Press; Cambridge, UK: 2020. 4.2 Spore Germination and Dormancy E.