Explicit Expressions for a Mean Nanofibre Diameter Using Input Parameters in the Process of Electrospinning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37631427
PubMed Central
PMC10460022
DOI
10.3390/polym15163371
PII: polym15163371
Knihovny.cz E-zdroje
- Klíčová slova
- electrospinning, explicit relations, nanofibre diameter,
- Publikační typ
- časopisecké články MeSH
The process of electrospinning is subject to a variety of input parameters ranging from the characterization of polymers and solvents, the resulting solutions, the geometrical configuration of the device, including its process parameters, and ending with crucial parameters such as temperature and humidity. It is not possible to expect that functional expressions relating all these parameters can be derived in a common description. Nevertheless, it is possible to fix the majority of these parameters to derive explicit relations for a restricted number of entry parameters such that it contributes to the partial elimination of the classical trial-and-error method saving time and financial costs. However, several contributions providing such results are rather moderate. Special attention is provided to fibre diameter approximation as this parameter strongly influences the application of nanofibrous mats in various instances such as air filtration, tissue engineering, and drug delivery systems. Various difficulties connected with the derivation of these explicit relations are presented and discussed in detail.
Zobrazit více v PubMed
Taylor G.I. Disintegration of water droplets in an electric field. Proc. R. Soc. Lond. Ser. A. 1964;280:383–397. doi: 10.1098/rspa.1964.0151. DOI
Shin Y.M., Hohman M.M., Brenner M.P., Rutledge G.C. Experimental characterization of electrospinning: The electrically forced jet and instabilities. Polymer. 2001;42:9955–9967. doi: 10.1016/S0032-3861(01)00540-7. DOI
Huang Z.-H., Zhang Y.-Z., Kotakic M., Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI
Reneker D.H., Yarin A.L. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. DOI
Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325–347. doi: 10.1016/j.biotechadv.2010.01.004. PubMed DOI
Agarwal S., Greiner A., Wendorff J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013;38:963–991. doi: 10.1016/j.progpolymsci.2013.02.001. DOI
Garkal A., Kulkarni D., Musale S., Mehta T., Giram P. Electrospinning nanofiber technology: A multifaceted paradigm in biomedical applications. RSC New J. Chem. 2021;45:21508–21533. doi: 10.1039/D1NJ04159B. DOI
[(accessed on 18 July 2023)]. Available online: https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem.
Tong H.-W., Wang M. An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrate-co-hydroxyvalerate) fibers. J. Appl. Polym. Sci. 2011;120:1694–1706. doi: 10.1002/app.33302. DOI
Haider A., Haider S., Kang I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018;11:1165–1188. doi: 10.1016/j.arabjc.2015.11.015. DOI
De Gennes P.G. Scaling Concepts in Polymer Physics. Cornell University Press; Ithaca, NY, USA: 1979.
McKee M.G., Wilkes G.L., Colby R.H., Long T.E. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules. 2004;37:1760–1767. doi: 10.1021/ma035689h. DOI
Wang T., Kumar S. Electrospinning of polyacrylonitrile nanofibers. J. Appl. Polym. Sci. 2006;102:1023–1029. doi: 10.1002/app.24123. DOI
Wang C., Hsu C.-H., Lin J.-H. Scaling laws in electrospinning of polystyrene solutions. Macromolecules. 2006;39:7662–7672. doi: 10.1021/ma060866a. DOI
Wang C., Chien H.-S., Yan K.-W., Hung C.-L., Hung K.-L., Tsai S.-J., Jhang H.-J. Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers. Polymer. 2009;50:6100–6110. doi: 10.1016/j.polymer.2009.10.025. DOI
Abbasi A., Nasef M.M., Takeshi M., Faridi-Majidi R. Electrospinning of Nylon-6,6 solutions into nanofibers: Rheology and morphology relationships. Chin. J. Polym. Sci. 2014;32:793–804. doi: 10.1007/s10118-014-1451-8. DOI
Peer P., Zelenkova J., Filip P., Lovecka L. An estimate of the onset of beadless character of electrospun nanofibers using rheological characterization. Polymers. 2021;13:265. doi: 10.3390/polym13020265. PubMed DOI PMC
Kumar A., Sinha-Ray S. A review on biopolymer-based fibers via electrospinning and solution blowing and their applications. Fibers. 2018;6:45. doi: 10.3390/fib6030045. DOI
Thompson C.J., Chase G.G., Yarin A.L., Reneker D.H. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913–6922. doi: 10.1016/j.polymer.2007.09.017. DOI
Stepanyan R., Subbotin A.V., Cuperus L., Boonen P., Dorschu M., Oosterlinck F., Bulters M.J.H. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer. 2016;97:428–439. doi: 10.1016/j.polymer.2016.05.045. DOI
Mit-uppatham C., Nithitanakul M., Supaphol P. Ultrafine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromol. Chem. Phys. 2004;205:2327–2338. doi: 10.1002/macp.200400225. DOI
Mi H.-Y., Jing X., Jacques B.R., Turng L.-S., Peng X.-F. Characterization and properties of electrospun thermoplastic polyurethane blend fibers: Effect of solution rheological properties on fiber formation. J. Mater. Res. 2013;28:2339–2350. doi: 10.1557/jmr.2013.115. DOI
Erencia M., Cano F., Tornero J.A., Macanás J., Carrillo F. Preparation of electrospun nanofibers from solutions of different gelatin types using a benign solvent mixture composed of water/PBS/ethanol. Polym. Adv. Technol. 2016;27:382–392. doi: 10.1002/pat.3678. DOI
Tao J., Shivkumar S. Molecular weight dependent structural regimes during the electrospinning of PVA. Mater. Lett. 2007;61:2325–2328. doi: 10.1016/j.matlet.2006.09.004. DOI
Eda G., Shivkumar S. Bead-to-fiber transition in electrospun polystyrene. J. Appl. Polym. Sci. 2007;106:475–487. doi: 10.1002/app.25907. DOI
Rutledge G.C., Li Y., Fridrikh S., Warner S.B., Kalayci V.E., Patra P. National Textile Center Annual Report, Project No. M01-D22. National Textile Center; Blue Bell, PA, USA: 2001. [(accessed on 18 July 2023)]. Electrostatic Spinning and Properties of Ultrafine Fibers. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiPwqDZsNKAAxV9gf0HHWxrAR4QFnoECBMQAQ&url=https%3A%2F%2Fgooglegroups.com%2Fgroup%2Ftextiletech%2Fattach%2F93f66fab1a23d85f%2Felec2.pdf%3Fpart%3D0.2&usg=AOvVaw27bOWDcnoCiqkINW8JCEFL&opi=89978449.
Rutledge G.C., Warner S.B., Fridrikh S.V., Ugbolue S.C. National Textile Center Annual Report, Project No. M01-MD22. National Textile Center; Blue Bell, PA, USA: 2003. Electrostatic Spinning and Properties of Ultrafine Fibers.
Fridrikh S., Yu J., Brenner M., Rutledge G. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 2003;90:144502. doi: 10.1103/PhysRevLett.90.144502. PubMed DOI
Helgeson M.E., Grammatikos K.N., Deitzel J.M., Wagner N.J. Theory and kinematic measurements of the mechanics of stable electrospun polymer jets. Polymer. 2008;49:2924–2936. doi: 10.1016/j.polymer.2008.04.025. DOI
Cramariuc B., Cramariuc R., Scarlet R., Manea L.R., Lupu I.G., Cramariuc O. Fiber diameter in electrospinning process. J. Electrost. 2013;71:189–198. doi: 10.1016/j.elstat.2012.12.018. DOI
Wang C., Wang Y., Hashimoto T. Impact of entanglement density on solution electrospinning: A phenomenological model for fiber diameter. Macromolecules. 2016;49:7985–7996. doi: 10.1021/acs.macromol.6b00519. DOI
Ahmadipourroudposht M., Fallahiarezoudar E., Yusof N.M., Idris A. Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Mater. Sci. Eng. C. 2015;50:234–241. doi: 10.1016/j.msec.2015.02.008. PubMed DOI
Mirtic J., Balazic H., Zupancic S., Kristl J. Effect of solution composition variables on electrospun alginate nanofibers: Response surface analysis. Polymers. 2019;11:692. doi: 10.3390/polym11040692. PubMed DOI PMC
Barzoki P.K., Latifi M., Rezadoust A.M. Response surface methodology optimization of electrospinning process parameters to fabricate aligned polyvinyl butyral nanofibers for interlaminar toughening of phenolic-based composite laminates. J. Ind. Text. 2020;49:858–874. doi: 10.1177/1528083718798635. DOI
Ipakchi H., Rezadoust A.M., Esfandeh M., Mirshekar H. Modeling and optimization of electrospinning conditions of PVB nanofiber by RSM and PSO-LSSVM models for improved interlaminar fracture toughness of laminated composites. J. Compos. Mater. 2020;54:363–378. doi: 10.1177/0021998319863126. DOI
Kong L., Ziegler G.R. Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydr. Polym. 2013;92:1416–1422. doi: 10.1016/j.carbpol.2012.09.026. PubMed DOI
Broumand A., Emam-Djomeh Z., Khodaiyan F., Mirzakhanlouei S., Davoodi D., Moosavi-Movahedi A.A. Nano-web structures constructed with a cellulose acetate/lithium chloride/polyethylene oxide hybrid: Modeling, fabrication and characterization. Carbohydr. Polym. 2015;115:760–767. doi: 10.1016/j.carbpol.2014.06.055. PubMed DOI
Sarlak N., Nejad M.A.F., Shakhesi S., Shabani K. Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD) Chem. Eng. J. 2012;210:410–416. doi: 10.1016/j.cej.2012.08.087. DOI
Box G.E.P., Hunter W.G., Hunter W.S. Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. John Wiley and Sons; New York, NY, USA: 1978.
Khuri A.I., Cornell J.A. Response Surfaces: Designs and Analyses. 2nd ed. Marcel Dekker Inc.; New York, NY, USA: 1996.
Katti D.S., Robinson K.W., Ko F.K., Laurencin C.T. Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. J. Biomed. Mater. Res. B. 2004;70:286–296. doi: 10.1002/jbm.b.30041. PubMed DOI
Subramanian C., Weiss R.A., Shaw M.T. Electrospinning and characterization of highly sulfonated polystyrene fibers. Polymer. 2010;51:1983–1989. doi: 10.1016/j.polymer.2010.02.052. DOI
Filip P., Peer P. Characterization of poly(ethylene oxide) nanofibers—Mutual relations between mean diameter of electrospun nanofibres and solution characteristics. Processes. 2019;7:948. doi: 10.3390/pr7120948. DOI
Filip P., Peer P., Zelenkova J. Dependence of poly(vinyl butyral) electrospun fibres diameter on molecular weight and concentration. J. Ind. Text. 2022;51:1612S–1626S. doi: 10.1177/1528083720974038. DOI
Theron S.A., Zussman E., Yarin A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer. 2004;45:2017–2030. doi: 10.1016/j.polymer.2004.01.024. DOI
David J., Filip P. Phenomenological Modelling of Non-Monotonous Shear Viscosity Functions. Appl. Rheol. 2004;14:82–88. doi: 10.1515/arh-2004-0004. DOI
Araujo E.S., Nascimento M.L.F., de Oliveira H.P. Electrospinning of polymeric fibres: An unconventional view on the influence of surface tension on fibre diameter. Fibres Text East. Eur. 2016;24:22–29. doi: 10.5604/12303666.1172083. DOI
Filip P., Zelenkova J., Peer P. Electrospinning of a copolymer PVDF-co-HFP solved in DMF/acetone—Explicit relations among viscosity, polymer concentration, DMF/acetone ratio and mean nanofiber diameter. Polymers. 2021;13:3418. doi: 10.3390/polym13193418. PubMed DOI PMC
Maurya A.K., Narayana P.L., Geetha Bhavani A., Hong J.-K., Jong-Taek Y., Reddy N.S. Modeling the relationship between electrospinning process parameters and ferrofluid/polyvinyl alcohol magnetic nanofiber diameter by artificial neural networks. J. Electrost. 2020;104:103425. doi: 10.1016/j.elstat.2020.103425. DOI
Espinoza-Montero P.J., Montero-Jiménez M., Rojas-Quishpe S., Alcívar León C.D., Heredia-Moya J., Rosero-Chanalata A., Orbea-Hinojosa C., Piñeiros J.L. Nude and modified electrospun nanofibers, Application to Air Purification. Nanomaterials. 2023;13:593. doi: 10.3390/nano13030593. PubMed DOI PMC
Zhu M., Han J., Wang F., Shao W., Xiong R., Zhang Q., Pan H., Yang Y., Samal S.K., Zhang F., et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017;302:1600353. doi: 10.1002/mame.201600353. DOI
Ghobeira R., Asadian M., Vercruysse C., Declercq H., De Geyter N., Morent R. Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer. 2018;157:19–31. doi: 10.1016/j.polymer.2018.10.022. DOI
Guerrini L.M., Oliveira M.P., Stapait C.C., Maric M., Santos A.M., Demarquette N.R. Evaluation of different solvents and solubility parameters on the morphology and diameter of electrospun pullulan nanofibers for curcumin entrapment. Carbohydr. Polym. 2021;251:117127. doi: 10.1016/j.carbpol.2020.117127. PubMed DOI
Lasprilla-Botero J., Álvarez-Láinez M., Lagaron J.M. The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Mater. Today Commun. 2018;14:1–9. doi: 10.1016/j.mtcomm.2017.12.003. DOI
O’Connor R.A., Cahill P.A., McGuinness G.B. Effect of electrospinning parameters on the mechanical and morphological characteristics of small diameter PCL tissue engineered blood vessel scaffolds having distinct micro and nano fibre populations—A DOE approach. Polym. Test. 2021;96:107119. doi: 10.1016/j.polymertesting.2021.107119. DOI
Sauter T., Kratz K., Heuchel M., Lendlein A. Fiber diameter as design parameter for tailoring the macroscopic shape-memory performance of electrospun meshes. Mater. Des. 2021;202:109546. doi: 10.1016/j.matdes.2021.109546. DOI