Cysteine conjugates of acetaminophen and p-aminophenol are potent inducers of cellular impairment in human proximal tubular kidney HK-2 cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-11867S
Grantová Agentura České Republiky
2208/2022-2023
Univerzita Hradec Králové
PubMed
37639014
PubMed Central
PMC10504157
DOI
10.1007/s00204-023-03569-2
PII: 10.1007/s00204-023-03569-2
Knihovny.cz E-zdroje
- Klíčová slova
- Aminophenol, Cell toxicity, Cysteine conjugates, Glutathione conjugation, Kidney injury,
- MeSH
- aminofenoly * toxicita MeSH
- cystein MeSH
- glutathion MeSH
- ledviny MeSH
- lidé MeSH
- paracetamol * toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-aminophenol MeSH Prohlížeč
- aminofenoly * MeSH
- cystein MeSH
- glutathion MeSH
- paracetamol * MeSH
Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.
Zobrazit více v PubMed
Anders MW, Dekant W. Glutathione-dependent bioactivation of haloalkenes. Annu Rev Pharmacol. 1998;38:501–537. doi: 10.1146/annurev.pharmtox.38.1.501. PubMed DOI
Asghari A, Ameri M, Taghipour S, Ghaderi O. Facile and clean electrochemical synthesis of new acetaminophen derivatives through electrochemical oxidation of acetaminophen in the presence of thiouracil derivatives. J Sulfur Chem. 2017;38(2):163–172. doi: 10.1080/17415993.2016.1262372. DOI
Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol. 2001;31(1):55–138. doi: 10.1080/20014091111677. PubMed DOI
Brune K, Renner B, Tiegs G. Acetaminophen/paracetamol: a history of errors, failures and false decisions. Eur J Pain. 2015;19(7):953–965. doi: 10.1002/ejp.621. PubMed DOI
Capek J, Hauschke M, Bruckova L, Rousar T. Comparison of glutathione levels measured using optimized monochlorobimane assay with those from ortho-phthalaldehyde assay in intact cells. J Pharmacol Toxicol Methods. 2017;88(Pt 1):40–45. doi: 10.1016/j.vascn.2017.06.001. PubMed DOI
Chen Q, Jones TW, Brown PC, Stevens JL. The Mechanism of Cysteine Conjugate Cytotoxicity in Renal Epithelial-Cells - Covalent Binding Leads to Thiol Depletion and Lipid-Peroxidation. J Biol Chem. 1990;265(35):21603–21611. doi: 10.1016/S0021-9258(18)45783-3. PubMed DOI
Cho S, Yu SL, Kang J, et al. (2019) NADPH oxidase 4 mediates TGF-beta1/Smad signaling pathway induced acute kidney injury in hypoxia. PLoS One 14(7):e0219483. 10.1371/journal.pone.0219483 PubMed PMC
Clissold SP. Paracetamol and phenacetin. Drugs. 1986;32(Suppl 4):46–59. doi: 10.2165/00003495-198600324-00005. PubMed DOI
Correia MJ, Pimpao AB, Fernandes DGF, et al. Cysteine as a multifaceted player in kidney, the cysteine-related thiolome and its implications for precision medicine. Molecules. 2022;27(4):1416. doi: 10.3390/Molecules27041416. PubMed DOI PMC
Curry SC, Padilla-Jones A, O'Connor AD, et al. Prolonged Acetaminophen-Protein Adduct Elimination During Renal Failure, Lack of Adduct Removal by Hemodiafiltration, and Urinary Adduct Concentrations After Acetaminophen Overdose. J Med Toxicol. 2015;11(2):169–178. doi: 10.1007/s13181-014-0431-2. PubMed DOI PMC
Dekant W. Chemical-induced nephrotoxicity mediated by glutathione S-conjugate formation. Toxicol Lett. 2001;124(1–3):21–36. doi: 10.1016/S0378-4274(00)00285-X. PubMed DOI
Dekant W. Biosynthesis of toxic glutathione conjugates from halogenated alkenes. Toxicol Lett. 2003;144(1):49–54. doi: 10.1016/S0378-4274(02)00338-7. PubMed DOI
Foreman BD, Tarloff JB. Contribution of reactive oxygen species to para-aminophenol toxicity in LLC-PK1 cells. Toxicol Appl Pharmacol. 2008;230(2):144–149. doi: 10.1016/j.taap.2008.02.014. PubMed DOI PMC
Fowler LM, Moore RB, Foster JR, Lock EA. Nephrotoxicity of 4-aminophenol glutathione conjugate. Hum Exp Toxicol. 1991;10(6):451–459. doi: 10.1177/096032719101000615. PubMed DOI
Fowler LM, Foster JR, Lock EA. Effect of ascorbic acid, acivicin and probenecid on the nephrotoxicity of 4-aminophenol in the Fischer 344 rat. Arch Toxicol. 1993;67(9):613–621. doi: 10.1007/BF01974068. PubMed DOI
Fu X, Chen TS, Ray MB, Nagasawa HT, Williams WM. p-Aminophenol-induced hepatotoxicity in hamsters: role of glutathione. J Biochem Mol Toxicol. 2004;18(3):154–161. doi: 10.1002/jbt.20021. PubMed DOI
Garcia-Pastor C, Blazquez-Serra R, Bosch RJ, Lucio Cazana FJ. Fernandez-Martinez AB (2019) Apoptosis and cell proliferation in proximal tubular cells exposed to apoptotic bodies. Novel pathophysiological implications in cisplatin-induced renal injury. Biochim Biophys Acta Mol Basis Dis. 1865;9:2504–2515. doi: 10.1016/j.bbadis.2019.06.008. PubMed DOI
Gildea JJ, Shah I, Weiss R, et al. HK-2 human renal proximal tubule cells as a model for G protein-coupled receptor kinase type 4-mediated dopamine 1 receptor uncoupling. Hypertension. 2010;56(3):505–511. doi: 10.1161/HYPERTENSIONAHA.110.152256. PubMed DOI PMC
Hallman MA, Tchao R, Tarloff JB. Effect of antioxidants on para-aminophenol-induced toxicity in LLC-PK1 cells. Toxicology. 2000;156(1):37–45. doi: 10.1016/S0300-483x(00)00326-7. PubMed DOI
Handl J, Capek J, Majtnerova P, et al. Transient increase in cellular dehydrogenase activity after cadmium treatment precedes enhanced production of reactive oxygen species in human proximal tubular kidney cells. Physiol Res. 2019;68(3):481–490. doi: 10.33549/physiolres.934121. PubMed DOI
Hauschke M, Rousarova E, Flidr P, Capek J, Libra A, Rousar T. Neutrophil gelatinase-associated lipocalin production negatively correlates with HK-2 cell impairment: Evaluation of NGAL as a marker of toxicity in HK-2 cells. Toxicol in Vitro. 2017;39:52–57. doi: 10.1016/j.tiv.2016.11.012. PubMed DOI
Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 2006;89(1):31–41. doi: 10.1093/toxsci/kfi336. PubMed DOI
Jaeschke H, Adelusi OB, Akakpo JY, et al. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharmaceutica Sinica B. 2021;11(12):3740–3755. doi: 10.1016/j.apsb.2021.09.023. PubMed DOI PMC
Jaeschke H, Adelusi OB, Akakpo JY, et al. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B. 2021;11(12):3740–3755. doi: 10.1016/j.apsb.2021.09.023. PubMed DOI PMC
James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos. 2003;31(12):1499–1506. doi: 10.1124/dmd.31.12.1499. PubMed DOI
Kalyanaraman B, Darley-Usmar V, Davies KJA, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Bio Med. 2012;52(1):1–6. doi: 10.1016/j.freeradbiomed.2011.09.030. PubMed DOI PMC
Kennon-McGill S, McGill MR. Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms. J Clin Transl Res. 2018;3(3):297–310. doi: 10.18053/jctres.03.201703.005. PubMed DOI PMC
Kim SJ, Lee MY, Kwon DY, Kim SY, Kim YC. Alteration in Metabolism and Toxicity of Acetaminophen Upon Repeated Administration in Rats. J Pharmacol Sci. 2009;111(2):175–181. doi: 10.1254/jphs.09151FP. PubMed DOI
Klos C, Koob M, Kramer C, Dekant W. p-aminophenol nephrotoxicity: biosynthesis of toxic glutathione conjugates. Toxicol Appl Pharmacol. 1992;115(1):98–106. doi: 10.1016/0041-008x(92)90372-y. PubMed DOI
Koob M, Dekant W. Bioactivation of Xenobiotics by Formation of Toxic Glutathione Conjugates. Chem-Biol Interact. 1991;77(2):107–136. doi: 10.1016/0009-2797(91)90068-I. PubMed DOI
Li Y, Bentzley CM, Tarloff JB. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes. Toxicology. 2005;209(1):69–76. doi: 10.1016/j.tox.2004.12.008. PubMed DOI
Lohmann W, Karst U. Simulation of the detoxification of paracetamol using on-line electrochemistry/liquid chromatography/mass spectrometry. Anal Bioanal Chem. 2006;386(6):1701–1708. doi: 10.1007/s00216-006-0801-y. PubMed DOI
Lorz C, Justo P, Sanz AB, Egido J, Ortiz A. Role of Bcl-xL in paracetamol-induced tubular epithelial cell death. Kidney Int. 2005;67(2):592–601. doi: 10.1111/j.1523-1755.2005.67115.x. PubMed DOI
Miyakawa K, Albee R, Letzig LG, et al. A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes. J Pharmacol Exp Ther. 2015;354(2):230–237. doi: 10.1124/jpet.115.223537. PubMed DOI PMC
Mossoba ME, Sprando RL. In Vitro to In Vivo Concordance of Toxicity Using the Human Proximal Tubule Cell Line HK-2. Int J Toxicol. 2020;39(5):452–464. doi: 10.1177/1091581820942534. PubMed DOI
Murphy RA, Stafford RM, Petrasovits BA, Boone MA, Valentovic MA. Establishment of HK-2 cells as a relevant model to study tenofovir-induced cytotoxicity. Int J Mol Sci. 2017;18(3):531. doi: 10.3390/Ijms18030531. PubMed DOI PMC
Naud J, Michaud J, Beauchemin S, et al. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos. 2011;39(8):1363–1369. doi: 10.1124/dmd.111.039115. PubMed DOI
Nydlova E, Vrbova M, Cesla P, Jankovicova B, Ventura K, Rousar T. Comparison of inhibitory effects between acetaminophen-glutathione conjugate and reduced glutathione in human glutathione reductase. J Appl Toxicol. 2014;34(9):968–973. doi: 10.1002/jat.2914. PubMed DOI
Rousar T, Nydlova E, Cesla P, et al. Purified Acetaminophen-Glutathione Conjugate Is Able To Induce Oxidative Stress in Rat Liver Mitochondria. Physiol Res. 2012;61:S103–S109. doi: 10.33549/physiolres.932427. PubMed DOI
Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994;45(1):48–57. doi: 10.1038/ki.1994.6. PubMed DOI
Satirapoj B, Wongchinsri J, Youngprang N, et al. Predictors of renal involvement in patients with systemic lupus erythematosus. Asian Pac J Allergy Immunol. 2007;25(1):17–25. PubMed
Shen YL, Jin X, Chen W, et al. Interleukin-22 ameliorated acetaminophen-induced kidney injury by inhibiting mitochondrial dysfunction and inflammatory responses. Appl Microbiol Biot. 2020;104(13):5889–5898. doi: 10.1007/s00253-020-10638-4. PubMed DOI
Stern ST, Bruno MK, Hennig GE, Horton RA, Roberts JC, Cohen SD (2005a) Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity in CD-1 mice: I. Enhancement of acetaminophen nephrotoxicity by acetaminophen-cysteine. Toxicol Appl Pharmacol 202(2):151–9. doi:10.1016/j.taap.2004.06.030 PubMed
Stern ST, Bruno MK, Horton RA, Hill DW, Roberts JC, Cohen SD (2005b) Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity II. Possible involvement of the gamma-glutamyl cycle. Toxicol Appl Pharmacol 202(2):160–71. 10.1016/j.taap.2004.06.029 PubMed
Vanova J, Malinak D, Andrys R, et al. (2022) Optimization of gradient reversed phase high performance liquid chromatography analysis of acetaminophen oxidation metabolites using linear and non-linear retention model. J Chromatogr A 1669:462956. 10.1016/J.Chroma.2022.462956 PubMed
Vrbova M, Rousarova E, Bruckova L, Cesla P, Rousar T. Characterization of acetaminophen toxicity in human Kidney HK-2 cells. Physiol Res. 2016;65(4):627–635. doi: 10.33549/physiolres.933158. PubMed DOI
Wang Q, Lu Y, Yuan M, Darling IM, Repasky EA, Morris ME. Characterization of monocarboxylate transport in human kidney HK-2 cells. Mol Pharmaceut. 2006;3(6):675–685. doi: 10.1021/mp060037b. PubMed DOI
Wu Y, Connors D, Barber L, Jayachandra S, Hanumegowda UM, Adams SP. Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of renal proximal tubule injury potential of compounds. Toxicol in Vitro. 2009;23(6):1170–1178. doi: 10.1016/j.tiv.2009.06.003. PubMed DOI
Yang KJ, Kim JH, Chang YK, Park CW, Kim SY, Hong YA. Inhibition of xanthine oxidoreductase protects against contrast-induced renal tubular injury by activating adenosine monophosphate-activated protein kinase. Free Radic Biol Med. 2019;145:209–220. doi: 10.1016/j.freeradbiomed.2019.09.027. PubMed DOI
Newton JF, Kuo CH, Gemborys MW, Mudge GH, Hook JB. Nephrotoxicity of p-aminophenol, a metabolite ofacetaminophen, in the fischer 344 rat. Toxicol Appl Pharmacol. 1982;65(2):336–344. doi: 10.1016/0041-008X(82)90017-5. PubMed DOI
Newton JF, Yoshimoto M, Bernstein J, Rush GF, Hook JB. Acetaminophen nephrotoxicity in the rat. I. Strain differences in nephrotoxicity and metabolism. Toxicol Appl Pharmacol. 1983;69(2):291–306. doi: 10.1016/0041-008X(83)90311-3. PubMed DOI
Newton JF, Yoshimoto M, Bernstein J, Rush GF, Hook JB. Acetaminophen nephrotoxicity in the rat. II. Strain differences in nephrotoxicity and metabolism of p-aminophenol, a metabolite of acetaminophen. Toxicol Appl Pharmacol. 1983;69(2):307–318. doi: 10.1016/0041-008x(83)90312-5. PubMed DOI