Influence of Agronomic Practices on the Antioxidant Compounds of Pigmented Wheat (Triticum aestivum spp. aestivum L.) and Tritordeum (× Tritordeum martinii A. Pujadas, nothosp. nov.) Genotypes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37641979
PubMed Central
PMC10510394
DOI
10.1021/acs.jafc.3c02592
Knihovny.cz E-zdroje
- Klíčová slova
- Triticum aestivum, anthocyanins, antioxidant capacity, carotenoids, nitrogen, phenolic acids, pigmented cereals, technological quality, × Tritordeum martinii,
- MeSH
- anthokyaniny MeSH
- antioxidancia * MeSH
- genotyp MeSH
- lipnicovité MeSH
- pšenice * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthokyaniny MeSH
- antioxidancia * MeSH
- phenolic acid MeSH Prohlížeč
Twelve pigmented wheat genotypes, one tritordeum, and one common wheat were grown in three field experiments under varying nitrogen (N) fertilization rates to investigate the contributions of genotype, environment, and fertilization on the levels of phenolic acids, anthocyanins, carotenoids and antioxidant capacity of the grains. Soluble phenolic acids increased significantly (+16%) in the environment with high soil N content, while bound phenolic acids and anthocyanins decreased (-16 and -57%). N fertilization affected the agronomic and qualitative traits but had limited effects on some bioactive compounds (bound phenolic acids and anthocyanins). The greatest differences appeared among the color groups and within the same color types, with the black group showing the most anthocyanins and phenolic acids (34.4 and 1207 mg·kg-1) and the highest antioxidant capacity. Some of the cultivars could be promising for the development of innovative supply chains and the production of functional foods, as they showed good yield and quality performances, and good antioxidant features.
Zobrazit více v PubMed
Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?. Nutr. Res. Rev. 2010, 23, 65–134. 10.1017/S0954422410000041. PubMed DOI
Garg M.; Kaur S.; Sharma A.; Kumari A.; Tiwari V.; Sharma S.; Kapoor P.; Sheoran B.; Goyal A.; Krishania M. Rising demand for healthy foods-Anthocyanin biofortified colored wheat is a new research trend. Front. Nutr. 2022, 9, 87822110.3389/fnut.2022.878221. PubMed DOI PMC
Lachman J.; Martinek P.; Kotíková Z.; Orsák M.; Šulc M. Genetics and chemistry of pigments in wheat grain – A review. J. Cereal Sci. 2017, 74, 145–154. 10.1016/j.jcs.2017.02.007. DOI
Leong H. Y.; Show P. L.; Lim M. H.; Ooi C. W.; Ling T. C. Natural red pigments from plants and their health benefits: A review. Food Rev. Int. 2018, 34, 463–482. 10.1080/87559129.2017.1326935. DOI
Li W.; Shan F.; Sun S.; Corke H.; Beta T. Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem. 2005, 53, 8533–8536. 10.1021/jf051634y. PubMed DOI
Atienza S. G.; Ballesteros J.; Martín A.; Hornero-Méndez D. Genetic variability of carotenoid concentration and degree of esterification among tritordeum (× Tritordeum Ascherson et Graebner) and durum wheat accessions. J. Agric. Food Chem. 2007, 55, 4244–4251. 10.1021/jf070342p. PubMed DOI
Martín A.; Alvarez J. B.; Martín L. M.; Barro F.; Ballesteros J. The development of tritordeum: a novel cereal for food processing. J. Cereal Sci. 1999, 30, 85–95. 10.1006/jcrs.1998.0235. DOI
Stracke B. A.; Eitel J.; Watzl B.; Mäder P.; Rüfer C. E. Influence of the production method on phytochemical concentrations in whole wheat (Triticum aestivum L.): a comparative study. J. Agric. Food Chem. 2009, 57, 10116–10121. 10.1021/jf901267z. PubMed DOI
Tian W.; Wilson T. L.; Chen G.; Guttieri M. J.; Nelson N. O.; Fritz A.; Smith G.; Li Y. Effects of environment, nitrogen, and sulfur on total phenolic content and phenolic acid composition of winter wheat grain. Cereal Chem. 2021, 98, 903–911. 10.1002/cche.10432. DOI
Fratianni A.; Giuzio L.; Di Criscio T.; Zina F.; Panfili G. Response of carotenoids and tocols of durum wheat in relation to water stress and sulfur fertilization. J. Agric. Food Chem. 2013, 61, 2583–2590. 10.1021/jf304168r. PubMed DOI
Tian W.; Wang F.; Xu K.; Zhang Z.; Yan J.; Yan J.; Tian Y.; Liu J.; Zhang Y.; Zhang Y.; He Z. Accumulation of wheat phenolic acids under different nitrogen rates and growing environments. Plants 2022, 11, 2237.10.3390/plants11172237. PubMed DOI PMC
Guarda G.; Padovan S.; Delogu G. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur. J. Agron. 2004, 21, 181–192. 10.1016/j.eja.2003.08.001. DOI
Stumpf B.; Yan F.; Honermeier B. Influence of nitrogen fertilization on yield and phenolic compounds in wheat grains (Triticum aestivum L. ssp. aestivum). J. Plant Nutr. Soil Sci. 2019, 182, 111–118. 10.1002/jpln.201800342. DOI
Giordano D.; Beta T.; Vanara F.; Blandino M. Influence of agricultural management on phytochemicals of colored corn genotypes (Zea mays L.). Part 1: nitrogen fertilization. J. Agric. Food Chem. 2018, 66, 4300–4308. 10.1021/acs.jafc.8b00325. PubMed DOI
Hidalgo A.; Brandolini A. Nitrogen fertilisation effects on technological parameters and carotenoid, tocol and phenolic acid content of einkorn (Triticum monococcum L. subsp. monococcum): A two-year evaluation. J. Cereal Sci. 2017, 73, 18–24. 10.1016/j.jcs.2016.11.002. DOI
Zadoks J. C.; Chang T. T.; Konzak C. F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. 10.1111/j.1365-3180.1974.tb01084.x. DOI
De Santis M. A.; Giuliani M. M.; Flagella Z.; Reyneri A.; Blandino M. Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crop. Res. 2020, 254, 10782910.1016/j.fcr.2020.107829. DOI
AACC International .Approved Methods of the American Association of Cereal Chemists, 11th Edn.; St. Paul, MN, USA: American Association of Cereal Chemists, 2008.
Giordano D.; Reyneri A.; Locatelli M.; Coïsson J. D.; Blandino M. Distribution of bioactive compounds in pearled fractions of tritordeum. Food Chem. 2019, 301, 12522810.1016/j.foodchem.2019.125228. PubMed DOI
Paznocht L.; Kotíková Z.; Orsák M.; Lachman J.; Martinek P. Carotenoid changes of colored-grain wheat flours during bun-making. Food Chem. 2019, 277, 725–734. 10.1016/j.foodchem.2018.11.019. PubMed DOI
Ficco D. B. M.; De Simone V.; Colecchia S. A.; Pecorella I.; Platani C.; Nigro F.; Finocchiaro F.; Papa R.; De Vita P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric. Food Chem. 2014, 62, 8686–8695. 10.1021/jf5003683. PubMed DOI
Giusti M. M.; Rodríguez-Saona L. E.; Wrolstad R. E. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J. Agric. Food Chem. 1999, 47, 4631–4637. 10.1021/jf981271k. PubMed DOI
Serpen A.; Gökmen V.; Pellegrini N.; Fogliano V. Direct measurement of the total antioxidant capacity of cereal products. J. Cereal Sci. 2008, 48, 816–820. 10.1016/j.jcs.2008.06.002. DOI
Serpen A.; Gökmen V.; Fogliano V. Solvent effects on total antioxidant capacity of foods measured by direct QUENCHER procedure. J. Food Compos. Anal. 2012, 26, 52–57. 10.1016/j.jfca.2012.02.005. DOI
Grignani C.; Bassanino M.; Sacco D.; Zavattaro L. Il bilancio degli elementi nutritivi per la redazione dei piani di concimazione (Nutrient balance as a tool for creating fertilization plans). Riv. Agron. 2003, 37, 155–172.
Fan X.; Xu Z.; Wang F.; Feng B.; Zhou Q.; Cao J.; Ji G.; Yu Q.; Liu X.; Liao S.; Wang T. Identification of colored wheat genotypes with suitable quality and yield traits in response to low nitrogen input. PLoS One 2020, 15, e022953510.1371/journal.pone.0229535. PubMed DOI PMC
Sharma S.; Chunduri V.; Kumar A.; Kumar R.; Khare P.; Kondepudi K. K.; Bishnoi M.; Garg M. Anthocyanin bio-fortified colored wheat: nutritional and functional characterization. PLoS One 2018, 13, e019436710.1371/journal.pone.0194367. PubMed DOI PMC
Li L.; Shewry P. R.; Ward J. L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9732–9739. 10.1021/jf801069s. PubMed DOI
Adom K. K.; Liu R. H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. 10.1021/jf0205099. PubMed DOI
Paznocht L.; Kotíková Z.; Burešová B.; Lachman J.; Martinek P. Phenolic acids in kernels of different coloured-grain wheat genotypes. Plant Soil Environ. 2020, 66, 57–64. 10.17221/380/2019-PSE. DOI
Martini D.; Taddei F.; Ciccoritti R.; Pasquini M.; Nicoletti I.; Corradini D.; D’Egidio M. G. Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. J. Cereal Sci. 2015, 65, 175–185. 10.1016/j.jcs.2015.06.012. DOI
Santos M. C. B.; da Silva Lima L. R.; Nascimento F. R.; do Nascimento T. P.; Cameron L. C.; Ferreira M. S. L. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Res. Int. 2019, 124, 118–128. 10.1016/j.foodres.2018.08.034. PubMed DOI
Navas-Lopez J. F.; Ostos-Garrido F. J.; Castillo A.; Martín A.; Gimenez M. J.; Pistón F. Phenolic content variability and its chromosome location in tritordeum. Front. Plant Sci. 2014, 5, 10.10.3389/fpls.2014.00010. PubMed DOI PMC
Ma D.; Li Y.; Zhang J.; Wang C.; Qin H.; Ding H.; Xie Y.; Guo T. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front. Plant Sci. 2016, 7, 528.10.3389/fpls.2016.00528. PubMed DOI PMC
Wang X.; Zhang X.; Hou H.; Ma X.; Sun S.; Wang H.; Kong L. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res. Int. 2020, 138, 10971110.1016/j.foodres.2020.109711. PubMed DOI
Giorgi A.; Mingozzi M.; Madeo M.; Speranza G.; Cocucci M. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chem. 2009, 114, 204–211. 10.1016/j.foodchem.2008.09.039. DOI
Razal R. A.; Ellis S.; Singh S.; Lewis N. G.; Towers G. H. N. Nitrogen recycling in phenylpropanoid metabolism. Phytochemistry 1996, 41, 31–35. 10.1016/0031-9422(95)00628-1. DOI
Peng M.; Hudson D.; Schofield A.; Tsao R.; Yang R.; Gu H.; Bi Y.-M.; Rothstein S. J. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J. Exp. Bot. 2008, 59, 2933–2944. 10.1093/jxb/ern148. PubMed DOI PMC
Zrcková M.; Capouchová I.; Eliášová M.; Paznocht L.; Pazderů K.; Dvořák P.; Konvalina P.; Orsák M.; Štěrba Z. The effect of genotype, weather conditions and cropping system on antioxidant activity and content of selected antioxidant compounds in wheat with coloured grain. Plant Soil Environ. 2018, 64, 530–538. 10.17221/430/2018-PSE. DOI
Ma D.; Zhang J.; Hou J.; Li Y.; Huang X.; Wang C.; Lu H.; Zhu Y.; Guo T. Evaluation of yield, processing quality, and nutritional quality in different-colored wheat grains under nitrogen and phosphorus fertilizer application. Crop Sci. 2018, 58, 402–415. 10.2135/cropsci2017.03.0152. DOI
Hosseinian F. S.; Li W.; Beta T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008, 109, 916–924. 10.1016/j.foodchem.2007.12.083. PubMed DOI
Abdel-Aal E.-S. M.; Young J. C.; Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. 10.1021/jf0606609. PubMed DOI
Abdel-Aal E.-S. M.; Hucl P.; Shipp J.; Rabalski I. Compositional differences in anthocyanins from blue- and purple-grained spring wheat grown in four environments in Central Saskatchewan. Cereal Chem. 2016, 93, 32–38. 10.1094/CCHEM-03-15-0058-R. DOI
Escribano-Bailón M. T.; Santos-Buelga C.; Rivas-Gonzalo J. C. Anthocyanins in cereals. J. Chromatogr. A 2004, 1054, 129–141. 10.1016/j.chroma.2004.08.152. PubMed DOI
Giordano D.; Locatelli M.; Travaglia F.; Bordiga M.; Reyneri A.; Coïsson J. D.; Blandino M. Bioactive compound and antioxidant activity distribution in roller-milled and pearled fractions of conventional and pigmented wheat varieties. Food Chem. 2017, 233, 483–491. 10.1016/j.foodchem.2017.04.065. PubMed DOI
Jezek M.; Zörb C.; Merkt N.; Geilfus C.-M. Anthocyanin management in fruits by fertilization. J. Agric. Food Chem. 2018, 66, 753–764. 10.1021/acs.jafc.7b03813. PubMed DOI
Humphries J. M.; Khachik F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J. Agric. Food Chem. 2003, 51, 1322–1327. 10.1021/jf026073e. PubMed DOI
Paznocht L.; Kotíková Z.; Šulc M.; Lachman J.; Orsák M.; Eliášová M.; Martinek P. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chem. 2018, 240, 670–678. 10.1016/j.foodchem.2017.07.151. PubMed DOI
Serpen A.; Capuano E.; Fogliano V.; Gökmen V. A new procedure to measure the antioxidant activity of insoluble food components. J. Agric. Food Chem. 2007, 55, 7676–7681. 10.1021/jf071291z. PubMed DOI
Müller L.; Fröhlich K.; Böhm V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. 10.1016/j.foodchem.2011.04.045. DOI
Boon C. S.; McClements D. J.; Weiss J.; Decker E. A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. 10.1080/10408390802565889. PubMed DOI
Güngör N.; Özyürek M.; Güçlü K.; Çekiç S. D.; Apak R. Comparative evaluation of antioxidant capacities of thiol-based antioxidants measured by different in vitro methods. Talanta 2011, 83, 1650–1658. 10.1016/j.talanta.2010.11.048. PubMed DOI