Ultrafast Laser Pulse Induced Transient Ferrimagnetic State and Spin Relaxation Dynamics in Two-Dimensional Antiferromagnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37642209
PubMed Central
PMC10510573
DOI
10.1021/acs.nanolett.3c02727
Knihovny.cz E-zdroje
- Klíčová slova
- 2D magnetism, antiferromagnetism, nonadiabatic MD, real-time TDDFT, spin dynamics, spin relaxation,
- Publikační typ
- časopisecké články MeSH
We employ real-time time-dependent density functional theory (rt-TDDFT) and ab initio nonadiabatic molecular dynamics (NAMD) to systematically investigate the ultrafast laser pulses induced spin transfer and relaxation dynamics of two-dimensional (2D) antiferromagnetic-ferromagnetic (AFM/FM) MnPS3/MnSe2 van der Waals heterostructures. We demonstrate that laser pulses can induce a ferrimagnetic (FiM) state in the AFM MnPS3 layer within tens of femtoseconds and maintain it for subpicosecond time scale before reverting to the AFM state. We identify the mechanism in which the asymmetric optical intersite spin transfer (OISTR) effect occurring within the sublattices of the AFM and FM layers drives the interlayer spin-selective charge transfer, leading to the transition from AFM to FiM state. Furthermore, the unequal electron-phonon coupling of spin-up and spin-down channels of AFM spin sublattice causes an inequivalent spin relaxation, in turn extending the time scale of the FiM state. These findings are essential for designing novel optical-driven ultrafast 2D magnetic switches.
Bremen Center for Computational Materials Science University of Bremen Bremen 28359 Germany
Institute of Advanced Study Chengdu University Chengdu 610100 China
School of Science Constructor University Bremen 28759 Germany
Zobrazit více v PubMed
Kirilyuk A.; Kimel A. V.; Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010, 82, 2731.10.1103/RevModPhys.82.2731. DOI
Baltz V.; et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 01500510.1103/RevModPhys.90.015005. DOI
Jungwirth T.; Marti X.; Wadley P.; Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241. 10.1038/nnano.2016.18. PubMed DOI
Thielemann-Kühn N.; et al. Ultrafast and energy-efficient quenching of spin order: antiferromagnetism beats ferromagnetism. Phys. Rev. Lett. 2017, 119, 197202.10.1103/PhysRevLett.119.197202. PubMed DOI
Ju G.; et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 2004, 93, 197403.10.1103/PhysRevLett.93.197403. PubMed DOI
Thiele J. U.; Buess M.; Back C. H. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale. Appl. Phys. Lett. 2004, 85, 2857–2859. 10.1063/1.1799244. DOI
Golias E. I.; et al. Ultrafast optically induced ferromagnetic state in an elemental antiferromagnet. Phys. Rev. Lett. 2021, 126, 107202.10.1103/PhysRevLett.126.107202. PubMed DOI
Lee J. U.; et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016, 16, 7433–7438. 10.1021/acs.nanolett.6b03052. PubMed DOI
Kim K.; Lim S. Y.; Lee J.-U.; Lee S.; Kim T. Y.; Park K.; Jeon G. S.; Park C.-H.; Park J.-G.; Cheong H.; et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345.10.1038/s41467-018-08284-6. PubMed DOI PMC
Long G.; et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 2017, 11, 11330–11336. 10.1021/acsnano.7b05856. PubMed DOI
Deng Y.; et al. Gate tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. 10.1038/s41586-018-0626-9. PubMed DOI
Huang B.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. 10.1038/nature22391. PubMed DOI
Gong C.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. 10.1038/nature22060. PubMed DOI
Li D.; Li S.; Zhong C.; He J. Tuning magnetism at the two-dimensional limit: A theoretical perspective. Nanoscale 2021, 13, 19812–19827. 10.1039/D1NR06835K. PubMed DOI
Li D.; Haldar S.; Heinze S. Strain-Driven Zero-Field Near-10 nm Skyrmions in Two-Dimensional van der Waals Heterostructures. Nano Lett. 2022, 22, 7706–7713. 10.1021/acs.nanolett.2c03287. PubMed DOI
Zhong D.; Seyler K. L.; Linpeng X.; Cheng R.; Sivadas N.; Huang B.; Schmidgall E.; Taniguchi T.; Watanabe K.; McGuire M. A.; et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 2017, 3, e160311310.1126/sciadv.1603113. PubMed DOI PMC
Zhang P.; et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 2022, 21, 1373–1378. 10.1038/s41563-022-01354-7. PubMed DOI
Liu B.; Liu S.; Yang L.; Chen Z.; Zhang E.; Li Z.; Wu J.; Ruan X.; Xiu F.; Liu W.; et al. Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse. Phys. Rev. Lett. 2020, 125, 267205.10.1103/PhysRevLett.125.267205. PubMed DOI
Padmanabhan P.; Buessen F. L.; Tutchton R.; Kwock K. W. C.; Gilinsky S.; Lee M. C.; McGuire M. A.; Singamaneni S. R.; Yarotski D. A.; Paramekanti A.; et al. Coherent helicity-dependent spin-phonon oscillations in the ferromagnetic van der Waals crystal CrI3. Nat. Commun. 2022, 13, 4473.10.1038/s41467-022-31786-3. PubMed DOI PMC
Mertens F.; Monkebuscher D.; Parlak U.; Boix-Constant C.; Manas-Valero S.; Matzer M.; Adhikari R.; Bonanni A.; Coronado E.; Kalashnikova A. M.; et al. Ultrafast coherent THz lattice dynamics coupled to spins in the van der Waals antiferromagnet FePS3. Adv. Mater. 2023, 35, 2208355.10.1002/adma.202208355. PubMed DOI PMC
Khela M.; Dabrowski M.; Khan S.; Keatley P. S.; Verzhbitskiy I.; Eda G.; Hicken R. J.; Kurebayashi H.; Santos E. J. G.; et al. Laser-induced topological spin switching in a 2D van der Waals magnet. Nat. Commun. 2023, 14, 1378.10.1038/s41467-023-37082-y. PubMed DOI PMC
Seyler K. L.; et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 2018, 18, 3823–3828. 10.1021/acs.nanolett.8b01105. PubMed DOI
Dewhurst J. K.; Elliott P.; Shallcross S.; Gross E. K.; Sharma S. Laser-induced intersite spin transfer. Nano Lett. 2018, 18, 1842–1848. 10.1021/acs.nanolett.7b05118. PubMed DOI
Elliott P.; Muller T.; Dewhurst J. K.; Sharma S.; Gross E. K. U.; et al. Ultrafast laser induced local magnetization dynamics in Heusler compounds. Sci. Rep. 2016, 6, 38911.10.1038/srep38911. PubMed DOI PMC
Willems F.; von Korff Schmising C.; Struber C.; Schick D.; Engel D. W.; Dewhurst J. K.; Elliott P.; Sharma S.; Eisebitt S.; et al. Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy. Nature Communi. 2020, 11, 1–7. 10.1038/s41467-020-14691-5. PubMed DOI PMC
Hofherr M.; Hauser S.; Dewhurst J. K.; Tengdin P.; Sakshath S.; Nembach H. T.; Weber S. T.; Shaw J. M.; Silva T. J.; Kapteyn H. C.; et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 2020, 6, eaay871710.1126/sciadv.aay8717. PubMed DOI PMC
Tengdin P.; Gentry C.; Blonsky A.; Zusin D.; Gerrity M.; Hellbruck L.; Hofherr M.; Shaw J.; Kvashnin Y.; Delczeg-Czirjak E. K.; et al. Direct light–induced spin transfer between different elements in a spintronic Heusler material via femtosecond laser excitation. Sci. Adv. 2020, 6, eaaz110010.1126/sciadv.aaz1100. PubMed DOI PMC
Siegrist F.; et al. Light-wave dynamic control of magnetism. Nature 2019, 571, 240–244. 10.1038/s41586-019-1333-x. PubMed DOI
Steil D.; et al. Efficiency of ultrafast optically induced spin transfer in Heusler compounds. Phys. Rev. Res. 2020, 2, 02319910.1103/PhysRevResearch.2.023199. DOI
Jiang M.; Xu K.; Liao N.; Zhou H. DFT investigation on highly selective NO2 sensing properties of MnPS3. Appl. Surf. Sci. 2021, 543, 148846.10.1016/j.apsusc.2020.148846. DOI
Kan M.; Adhikari S.; Sun Q. Ferromagnetism in MnX2 (X= S, Se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990–4994. 10.1039/c3cp55146f. PubMed DOI
Zheng Z.; Zheng Q.; Zhao J. Spin-orbit coupling induced demagnetization in Ni: Ab initio nonadiabatic molecular dynamics perspective. Phys. Rev. B 2022, 105, 08514210.1103/PhysRevB.105.085142. DOI
Lei Y.; et al. Enhanced Electron Transfer and Spin Flip through Spin-Orbital Couplings in Organic/Inorganic Heterojunctions: A Nonadiabatic Surface Hopping Simulation. J. Phys. Chem. Lett. 2022, 13, 4840–4848. 10.1021/acs.jpclett.2c01177. PubMed DOI