Ultrafast Laser Pulse Induced Transient Ferrimagnetic State and Spin Relaxation Dynamics in Two-Dimensional Antiferromagnets

. 2023 Sep 13 ; 23 (17) : 8348-8354. [epub] 20230829

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37642209

We employ real-time time-dependent density functional theory (rt-TDDFT) and ab initio nonadiabatic molecular dynamics (NAMD) to systematically investigate the ultrafast laser pulses induced spin transfer and relaxation dynamics of two-dimensional (2D) antiferromagnetic-ferromagnetic (AFM/FM) MnPS3/MnSe2 van der Waals heterostructures. We demonstrate that laser pulses can induce a ferrimagnetic (FiM) state in the AFM MnPS3 layer within tens of femtoseconds and maintain it for subpicosecond time scale before reverting to the AFM state. We identify the mechanism in which the asymmetric optical intersite spin transfer (OISTR) effect occurring within the sublattices of the AFM and FM layers drives the interlayer spin-selective charge transfer, leading to the transition from AFM to FiM state. Furthermore, the unequal electron-phonon coupling of spin-up and spin-down channels of AFM spin sublattice causes an inequivalent spin relaxation, in turn extending the time scale of the FiM state. These findings are essential for designing novel optical-driven ultrafast 2D magnetic switches.

Zobrazit více v PubMed

Kirilyuk A.; Kimel A. V.; Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010, 82, 2731.10.1103/RevModPhys.82.2731. DOI

Baltz V.; et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 01500510.1103/RevModPhys.90.015005. DOI

Jungwirth T.; Marti X.; Wadley P.; Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241. 10.1038/nnano.2016.18. PubMed DOI

Thielemann-Kühn N.; et al. Ultrafast and energy-efficient quenching of spin order: antiferromagnetism beats ferromagnetism. Phys. Rev. Lett. 2017, 119, 197202.10.1103/PhysRevLett.119.197202. PubMed DOI

Ju G.; et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 2004, 93, 197403.10.1103/PhysRevLett.93.197403. PubMed DOI

Thiele J. U.; Buess M.; Back C. H. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale. Appl. Phys. Lett. 2004, 85, 2857–2859. 10.1063/1.1799244. DOI

Golias E. I.; et al. Ultrafast optically induced ferromagnetic state in an elemental antiferromagnet. Phys. Rev. Lett. 2021, 126, 107202.10.1103/PhysRevLett.126.107202. PubMed DOI

Lee J. U.; et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016, 16, 7433–7438. 10.1021/acs.nanolett.6b03052. PubMed DOI

Kim K.; Lim S. Y.; Lee J.-U.; Lee S.; Kim T. Y.; Park K.; Jeon G. S.; Park C.-H.; Park J.-G.; Cheong H.; et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345.10.1038/s41467-018-08284-6. PubMed DOI PMC

Long G.; et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 2017, 11, 11330–11336. 10.1021/acsnano.7b05856. PubMed DOI

Deng Y.; et al. Gate tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. 10.1038/s41586-018-0626-9. PubMed DOI

Huang B.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. 10.1038/nature22391. PubMed DOI

Gong C.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. 10.1038/nature22060. PubMed DOI

Li D.; Li S.; Zhong C.; He J. Tuning magnetism at the two-dimensional limit: A theoretical perspective. Nanoscale 2021, 13, 19812–19827. 10.1039/D1NR06835K. PubMed DOI

Li D.; Haldar S.; Heinze S. Strain-Driven Zero-Field Near-10 nm Skyrmions in Two-Dimensional van der Waals Heterostructures. Nano Lett. 2022, 22, 7706–7713. 10.1021/acs.nanolett.2c03287. PubMed DOI

Zhong D.; Seyler K. L.; Linpeng X.; Cheng R.; Sivadas N.; Huang B.; Schmidgall E.; Taniguchi T.; Watanabe K.; McGuire M. A.; et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 2017, 3, e160311310.1126/sciadv.1603113. PubMed DOI PMC

Zhang P.; et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 2022, 21, 1373–1378. 10.1038/s41563-022-01354-7. PubMed DOI

Liu B.; Liu S.; Yang L.; Chen Z.; Zhang E.; Li Z.; Wu J.; Ruan X.; Xiu F.; Liu W.; et al. Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse. Phys. Rev. Lett. 2020, 125, 267205.10.1103/PhysRevLett.125.267205. PubMed DOI

Padmanabhan P.; Buessen F. L.; Tutchton R.; Kwock K. W. C.; Gilinsky S.; Lee M. C.; McGuire M. A.; Singamaneni S. R.; Yarotski D. A.; Paramekanti A.; et al. Coherent helicity-dependent spin-phonon oscillations in the ferromagnetic van der Waals crystal CrI3. Nat. Commun. 2022, 13, 4473.10.1038/s41467-022-31786-3. PubMed DOI PMC

Mertens F.; Monkebuscher D.; Parlak U.; Boix-Constant C.; Manas-Valero S.; Matzer M.; Adhikari R.; Bonanni A.; Coronado E.; Kalashnikova A. M.; et al. Ultrafast coherent THz lattice dynamics coupled to spins in the van der Waals antiferromagnet FePS3. Adv. Mater. 2023, 35, 2208355.10.1002/adma.202208355. PubMed DOI PMC

Khela M.; Dabrowski M.; Khan S.; Keatley P. S.; Verzhbitskiy I.; Eda G.; Hicken R. J.; Kurebayashi H.; Santos E. J. G.; et al. Laser-induced topological spin switching in a 2D van der Waals magnet. Nat. Commun. 2023, 14, 1378.10.1038/s41467-023-37082-y. PubMed DOI PMC

Seyler K. L.; et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 2018, 18, 3823–3828. 10.1021/acs.nanolett.8b01105. PubMed DOI

Dewhurst J. K.; Elliott P.; Shallcross S.; Gross E. K.; Sharma S. Laser-induced intersite spin transfer. Nano Lett. 2018, 18, 1842–1848. 10.1021/acs.nanolett.7b05118. PubMed DOI

Elliott P.; Muller T.; Dewhurst J. K.; Sharma S.; Gross E. K. U.; et al. Ultrafast laser induced local magnetization dynamics in Heusler compounds. Sci. Rep. 2016, 6, 38911.10.1038/srep38911. PubMed DOI PMC

Willems F.; von Korff Schmising C.; Struber C.; Schick D.; Engel D. W.; Dewhurst J. K.; Elliott P.; Sharma S.; Eisebitt S.; et al. Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy. Nature Communi. 2020, 11, 1–7. 10.1038/s41467-020-14691-5. PubMed DOI PMC

Hofherr M.; Hauser S.; Dewhurst J. K.; Tengdin P.; Sakshath S.; Nembach H. T.; Weber S. T.; Shaw J. M.; Silva T. J.; Kapteyn H. C.; et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 2020, 6, eaay871710.1126/sciadv.aay8717. PubMed DOI PMC

Tengdin P.; Gentry C.; Blonsky A.; Zusin D.; Gerrity M.; Hellbruck L.; Hofherr M.; Shaw J.; Kvashnin Y.; Delczeg-Czirjak E. K.; et al. Direct light–induced spin transfer between different elements in a spintronic Heusler material via femtosecond laser excitation. Sci. Adv. 2020, 6, eaaz110010.1126/sciadv.aaz1100. PubMed DOI PMC

Siegrist F.; et al. Light-wave dynamic control of magnetism. Nature 2019, 571, 240–244. 10.1038/s41586-019-1333-x. PubMed DOI

Steil D.; et al. Efficiency of ultrafast optically induced spin transfer in Heusler compounds. Phys. Rev. Res. 2020, 2, 02319910.1103/PhysRevResearch.2.023199. DOI

Jiang M.; Xu K.; Liao N.; Zhou H. DFT investigation on highly selective NO2 sensing properties of MnPS3. Appl. Surf. Sci. 2021, 543, 148846.10.1016/j.apsusc.2020.148846. DOI

Kan M.; Adhikari S.; Sun Q. Ferromagnetism in MnX2 (X= S, Se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990–4994. 10.1039/c3cp55146f. PubMed DOI

Zheng Z.; Zheng Q.; Zhao J. Spin-orbit coupling induced demagnetization in Ni: Ab initio nonadiabatic molecular dynamics perspective. Phys. Rev. B 2022, 105, 08514210.1103/PhysRevB.105.085142. DOI

Lei Y.; et al. Enhanced Electron Transfer and Spin Flip through Spin-Orbital Couplings in Organic/Inorganic Heterojunctions: A Nonadiabatic Surface Hopping Simulation. J. Phys. Chem. Lett. 2022, 13, 4840–4848. 10.1021/acs.jpclett.2c01177. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...