Molecular Properties of 3d and 4f Coordination Compounds Deciphered by Raman Optical Activity Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
23-05378S
Czech Science Foundation
22-04669S
Czech Science Foundation
PubMed
37665573
DOI
10.1002/cplu.202300385
Knihovny.cz E-zdroje
- Klíčová slova
- Raman optical activity, circular dichroism, circularly polarized luminescence, coordination compounds, molecular chirality,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Molecular properties of coordination compounds can be efficiently studied by vibrational spectroscopy. The scope of Raman spectroscopy has been greatly enhanced by the introduction of Raman optical activity (ROA) sensitive to chirality. The present review describes some of its recent applications to study the coordination compounds. 3d and 4f metal complexes often absorb the excitation light, or exhibit luminescence. Therefore, effects caused in ROA spectra by electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) must be taken into consideration.In 3d metal complexes ECD and circularly-polarized Raman scattering compete with the resonance ROA (RROA) signal. Pure RROA spectrum can thus be obtained by subtracting the so-called ECD-Raman component. CPL is frequently encountered in 4f systems. While it can mask the ROA spectra, it is useful to study molecular structure. These electronic effects can be reduced by using near-infrared excitation although vibrational ROA signal is much weaker compared to the usual green laser excitation scenario. The ROA methodology is thus complex, but capable of providing unique information about the molecules of interests and their interaction with light.
Zobrazit více v PubMed
J. M. Martín-Durán, B. C. Vellutini, A. Hejnol, Phil. Trans. R. Soc. B 2016, 371, 20150411;
Y. Shibazaki, M. Shimizu, R. Kuroda, Curr. Biol. 2004, 14, 1462.
M. Schilthuizen, A. Davison, Naturwissenschaften 2005, 92, 504.
G. Vantomme, J. Crassous, Chirality 2021, 33, 597.
U. Knof, A. von Zelewsky, Angew. Chem. Int. Ed. 1999, 38, 302;
J. Crassous, Chem. Soc. Rev. 2009, 38, 830;
Z. Liu, W. He, Z. Guo, Chem. Soc. Rev. 2013, 42, 1568;
P. G. Lacroix, I. Malfant, C. Lepetit, Coord. Chem. Rev. 2016, 308, 381;
D. Parker, J. D. Fradgley, K.-L. Wong, Chem. Soc. Rev. 2021, 50, 8193;
W. Gong, Z. Chen, J. Dong, Y. Liu, Y. Cui, Chem. Rev. 2022, 122, 9078;
P. S. Steinlandt, L. Zhang, E. Meggers, Chem. Rev. 2023, 123, 4764.
T. Wu, X. Z. You, P. Bouř, Coord. Chem. Rev. 2015, 284, 1;
P. L. Polavarapu, Chiroptical Spectroscopy: Fundamentals and Applications, CRC Press, Boca Raton, 2016, p448;
M. Krupová, J. Kessler, P. Bouř, ChemPlusChem 2020, 85, 561;
H. Sato, Phy. Chem. Chem. Phy. 2020, 22, 7671-7679;
S. C. J. Meskers, ChemPhotoChem 2022, 6, e202100154;
S. G. Telfer, T. M. McLean, M. R. Waterland, Dalton Trans. 2011, 40, 3097.
L. A. Nafie, Chirality 2020, 32, 667;
L. D. Barron, A. D. Buckingham, Chem. Phys. Lett. 2010, 492, 199-.
L. A. Nafie in Chapter 14 - Vibrational Optical Activity: From Small Chiral Molecules to Protein Pharmaceuticals and Beyond, (Ed. J. Laane), Elsevier, 2018, pp. 421-469;
T. A. Keiderling, Chem. Rev. 2020, 120, 3381.
H. Sato, A. Yamagishi, Int. J. Mol. Sci. 2013, 14, 964.
Y. Suffren, F.-G. Rollet, C. Reber, Comment. Inorg. Chem. 2011, 32, 246;
M. Wächtler, J. Guthmuller, L. González, B. Dietzek, Coord. Chem. Rev. 2012, 256, 14798.
L. D. Barron, Biomed. Spectrosc. Imaging 2015, 4, 223;
S. Luber, Biomed. Spectrosc. Imaging 2015, 4, 255.
T. Wu, J. Kapitán, P. Bouř, J. Phys. Chem. Lett. 2022, 13, 3873;
T. Wu, G. Li, J. Kapitán, J. Kessler, Y. Xu, P. Bouř, Angew. Chem. Int. Ed. 2020, 59, 21895.
T. Wu, Phy. Chem. Chem. Phy. 2022, 24, 15672;
T. Wu, J. Kapitán, V. Andrushchenko, P. Bouř, Anal. Chem. 2017, 89, 5043;
T. Wu, J. Kapitán, V. Mašek, P. Bouř, Angew. Chem. Int. Ed. 2015, 54, 14933.
R. J. H. Clark, T. J. Dines, Angew. Chem. Int. Ed. 1986, 25, 131.
L. A. Nafie, Vibrational Optical Activity: Principles and Applications, J. Wiley & Sons, Chichester, U.K., 2011, p 378.
L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, UK, 2004, p 443.
M. Dudek, G. Zajac, A. Kaczor, M. Baranska, J. Phys. Chem. B 2016, 120, 7807;
G. Zajac, P. Bour, J. Phys. Chem. B 2022, 126, 355;
L. Nafie, Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011, p 378.
L. A. Nafie, Chem. Phys. 1996, 205, 309;
M. Vargek, T. B. Freedman, E. Lee, L. A. Nafie, Chem. Phys. Lett. 1998, 287, 359.
S. Luber, J. Neugebauer, M. Reiher, J. Chem. Phys. 2010, 132;
C. Merten, H. G. Li, L. A. Nafie, J. Phys. Chem. A 2012, 116, 7329.
M. Ziegler, A. von Zelewsky, Coord. Chem. Rev. 1998, 177, 257.
G. Li, M. Alshalalfeh, W. Yang, J. R. Cheeseman, P. Bouř, Y. Xu, Angew. Chem. Int. Ed. 2021, 60, 22004;
E. Machalska, G. Zajac, A. J. Wierzba, J. Kapitán, T. Andruniów, M. Spiegel, D. Gryko, P. Bouř, M. Baranska, Angew. Chem. Int. Ed. 2021, 60, 21205.
J. Sebestik, F. Teply, I. Cisarova, J. Vavra, D. Koval, P. Bour, Chem. Commun. 2016, 52, 6257;
E. Machalska, G. Zajac, M. Baranska, D. Kaczorek, R. Kawęcki, P. F. J. Lipiński, J. E. Rode, J. C. Dobrowolski, Chem. Sci. 2021, 12, 911;
G. Li, J. Kessler, J. Cheramy, T. Wu, M. R. Poopari, P. Bouř, Y. Xu, Angew. Chem. Int. Ed. 2019, 58, 16495.
G. Li, M. Alshalalfeh, J. Kapitán, P. Bouř, Y. Xu, Chem. Eur. J. 2022, 28, e202104302.
K. Binnemans, Coord. Chem. Rev. 2015, 295, 1.
W. Hug, Appl. Spectrosc. 2003, 57, 1.
E. Castiglioni, S. Abbate, F. Lebon, G. Longhi, Methods Appl. Fluoresc. 2014, 2, 024006.
C. Merten, H. G. Li, X. F. Lu, A. Hartwig, L. A. Nafie, J. Raman Spectrosc. 2010, 41, 1563.
S. Yamamoto, P. Bouř, Angew. Chem. Int. Ed. 2012, 51, 11058.
T. Wu, J. Hudecová, X. Z. You, M. Urbanová, P. Bouř, Chem. Eur. J. 2015, 21, 5807.
J. L. Lunkley, D. Shirotani, K. Yamanari, S. Kaizaki, G. Muller, J. Am. Chem. Soc. 2008, 130, 13814.
S. Di Pietro, L. Di Bari, Inorg. Chem. 2012, 51, 12007.
W. Hug, G. Hangartner, J. Raman Spectrosc. 1999, 30, 841.
J. C. G. Bunzli, Chem. Rev. 2010, 110, 2729.
P. N. Hazin, J. W. Bruno, H. G. Brittain, Organometallics 1987, 6, 913;
Y. Liu, X. Wu, C. He, Y. Jiao, C. Y. Duan, Chem. Commun. 2009, 45, 7554;
P. N. Hazin, C. Lakshminarayan, L. S. Brinen, J. L. Knee, J. W. Bruno, W. E. Streib, K. Folting, Inorg. Chem. 1988, 27, 1393.
T. Wu, J. Průša, J. Kessler, D. Dračínský, J. Valenta, P. Bouř, Anal. Chem. 2016, 88, 8878.
P. Michal, R. Čelechovský, M. Dudka, J. Kapitán, M. Vůjtek, M. Berešová, J. Šebestík, K. Thangavel, P. Bouř, J. Phys. Chem. B 2019, 123, 2147.
L. A. Nafie, B. E. Brinson, X. L. Cao, D. A. Rice, O. M. Rahim, R. K. Dukor, N. J. Halas, Appl. Spectrosc. 2007, 61, 1103;
S. Haraguchi, M. Hara, T. Shingae, M. Kumauchi, W. D. Hoff, M. Unno, Angew. Chem. Int. Ed. 2015, 54, 11555;
J. Matsuo, T. Kikukawa, T. Fujisawa, W. D. Hoff, M. Unno, J. Phys. Chem. Lett. 2020, 11, 8579.
Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity