Invasive parasites and global change: Evidence for the recent and rapid spillover of a potential pathogen of tilapias with a complex, three-host life cycle
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37674833
PubMed Central
PMC10477445
DOI
10.1016/j.heliyon.2023.e18831
PII: S2405-8440(23)06039-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biological invasions, Cormorants, Fish parasites, Israel, Tapeworms, Tilapia, Wild cichlids,
- Publikační typ
- časopisecké články MeSH
Biological invasions pose a serious threat to local flora and fauna and have negative impacts on ecosystems. Invasive parasites can also cause severe losses in aquaculture. In this article, we provide evidence of the recent spillover of an African parasite with a complex, three-host life cycle that has rapidly and successfully established itself in the Middle East, most likely due to the recent migration of its final hosts (great cormorant) from Africa. This case of parasite introduction into a country with intensive aquaculture is also important from an economic point of view, since large (up to 2 cm long) larvae of this parasite, the cyclophyllidean tapeworm Amirthalingamia macracantha (Cestoda) localised in the liver, can be pathogenic to their fish hosts, including farmed and wild fish, as shown by our histopathological examination of heavily infected fish. Since its first detection in Israel in November 2020, the parasite has spread rapidly and is currently found in both migratory (great cormorant, Phalacrocorax carbo) and non-migratory birds (pygmy cormorant, Microcarbo pygmaeus), as well as in fish intermediate hosts, including farmed tilapia in several farms in Israel and wild cichlids. There are numerous examples of the spillover of introduced parasites, including those that parasitise fish of commercial importance, but have a direct life cycle or use only a single intermediate host. Tilapines are the second most important group of farmed fish in the world after carps and are produced mainly in Southeast Asia, Central and South America. The global spread of great cormorants and the early evidence that pygmy cormorant may also harbour A. macracantha pose the risk of further spread of this invasive parasite to other countries and areas. In addition, global warming and reductions in foraging and resting areas near these waters may allow the parasite to complete its life cycle in new hosts.
Israeli Veterinary Services and Animal Health Fish Health Bet Dagan 5025001 Israel
Kimron Veterinary Institute Division of Parasitology Bet Dagan 5025001 Israel
Pretto Tobia Istituto Zooprofilattico Sperimentale delle Venezie Legnaro Italy
Zobrazit více v PubMed
Lymbery A.J., Morine M., Kanani H.G., Beatty S.J., Morgan D.L. Co-invaders: the effects of alien parasites on native hosts. Int. J. Parasitol.: Parasites and Wildlife. 2014;3:171–177. PubMed PMC
Chalkowski K., Lepczyk C.A., Zohdy S. Parasite ecology of invasive species: conceptual framework and new hypotheses. Trends Parasitol. 2018;34:655–663. PubMed
Daszak P., Cunningham A.A., Hyatt A.D. Emerging infectious diseases of wildlife - threats to biodiversity and human health. Science. 2000;287:443–449. PubMed
Prenter J., MacNeil C., Dick J.T.A., Dunn A.M. Roles of parasites in animal invasions. Trends Ecol. Evol. 2004;19:385–390. PubMed
Goedknegt M.A., Feis M.E., Wegner K.M., Luttikhuizen P.C., Buschbaum C., Camphuysen K., Thieltges D.W. Parasites and marine invasions: ecological and evolutionary perspectives. J. Sea Res. 2016;113:11–27.
Costa A.P.L., Takemoto R.M., Vitule J.R.S. Metazoan parasites of Micropterus salmoides (Lacépède 1802) (Perciformes, Centrarchidae): a review with evidences of spillover and spillback. Parasitol. Res. 2018;117:1671–1681. PubMed
Miller M.A., Kinsella J.M., Snow R.W., et al. Parasite spillover: indirect effects of invasive Burmese pythons. Ecol. Evol. 2018;8:830–840. PubMed PMC
Lowry E., Rollinson E.J., Laybourn A.J., Scott T.E., Aiello-Lammens M.E., Gray S.M., Mickley J., Gurevitch J. Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol. Evol. 2013;3:182–196. PubMed PMC
Bray R.A. A new genus of dilepidid cestode in Tilapia nilotica (L., 1758) and Phalacrocorax carbo (L., 1758) in Sudan. J. Nat. Hist. 1974;8:589–596.
Scholz T., Tavakol S., Uhrová L., Brabec J., Přikrylová I., Mašová Š., Šimková A., Halajian A., Luus-Powell W.J. An annotated list and molecular data on larvae of gryporhynchid tapeworms (Cestoda: Cyclophyllidea) from freshwater fishes in Africa. Syst. Parasitol. 2018;95:567–590. PubMed
Scholz T., Davidovich N., Aflalo O., Hadar S., Mazuz M.L., Yasur-Landau D. Invasive Amirthalingamia macracantha (Cestoda: Cyclophyllidea) larvae infecting tilapia hybrids in Israel: a potential threat for aquaculture. Dis. Aquat. Org. 2021;145:185–190. PubMed
Israeli Veterinary Services [Pre-marketing control of locally grown edible fish: procedure.] 2017. https://www.sciencedirect.com/science/article/pii/S240567662200004X (In Hebrew.)
Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997;83:575–583. PubMed
Brabec J., Scholz T., Králová-Hromadová I., Bazsalovicsová E., Olson P.D. Substitution saturation and nuclear paralogs of commonly employed phylogenetic markers in the Caryophyllidea, an unusual group of non-segmented tapeworms (Platyhelminthes) Int. J. Parasitol. 2012;42:259–267. PubMed
Scholz T., de Chambrier A., Kuchta R., Littlewood D.T.J., Waeschenbach A. Macrobothriotaenia ficta (Cestoda: proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): example of convergent evolution. Zootaxa. 2013;3640:485–499. PubMed
Tamura K., Stecher G., Kumar S. Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. MEGA11. PubMed PMC
Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., Claverie J.M., Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucl. Acids Res. 2008;36:W465–W469. PubMed PMC
Dunn A.M., Hatcher M.J. Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol. 2015;31:189–199. PubMed
Kennedy C.R. In: Parasitic Diseases of Fish. Pike A.W., Lewis J.W., editors. Samara Publishing Limited; 1994. Ecology of introductions; pp. 189–208.
Taraschewski H. Hosts and parasites as aliens. J. Helminthol. 2006;80:99–128. PubMed
Lafferty K.D., Torchin M.E., Kuris A.M. In: The Biogeography of Host–Parasite Interactions. Morand S., Krasnov B.R., editors. Oxford University Press; New York: 2010. The geography of host and parasite invasions; pp. 191–203.
Poulin R., Paterson R.A., Townsend C.R., Tomkins D.M., Kelly D.W. Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. Freshw. Biol. 2011;56:676–688.
Roy H.E., Handley L.J.L., Schönrogge K., et al. Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids? BioControl. 2011;56:451–468.
Blackburn T.M., Ewen J.G. Parasites as drivers and passengers of human-mediated biological invasions. EcoHealth. 2016;14:61–73. PubMed PMC
Joyeux C., Baer J.G. Notices helminthologiques. Bull. Soc. Zool. Fr. 1935;60:482–501.
Gophen M. Tilapia stock suppression by the great cormorant (Phalacrocorax carbo) in Lake Kinneret, Israel. Open J. Mod. Hydrol. 2017;7:153–164.
Paperna I. Parasitic helminths of inland-water fishes in Israel. Isr. J. Zool. 1964;13:1–20.
Paperna I. The metazoan parasite fauna of Israel inland water fishes. Bulletin of Fish Culture, Israel. 1964;16:3–66.
Paperna I., Lahav M. New records and further data on fish parasites in Israel. Bamidgeh, Bulletin of Fish Culture, Israel. 1971;23:43–52.
Gibson D.I., Bray R.A., Harris E.A., compilers) World Wide Web electronic publication; London: 2005. Host-parasite Database of the Natural History Museum.http://www.nhm.ac.uk/research-curation/scientific-resources/taxonomy-systematics/host-parasites/ Available.
Shinn A.P., Avenant-Oldewage A., Bondad-Reantaso M.G., et al. A global review of problematic and pathogenic parasites of farmed tilapia. Rev. Aquacult. 2023
Jarecka L. Life cycle of Valipora campylancristrota (Wedl, 1855) Baer and Bona 1958–1960 (Cestoda–Dilepididae) and the description of cercoscolex – a new type of cestode larva. Bull. Acad. Polon. Sci. 1970;28:99–102. PubMed
Jarecka L. On the life cycles of Paradilepis scolecina (Rud., 1819) Hsü, 1935, and Neogryporhynchus cheilancriistrotus (Wedl, 1855) Baer and Bona, 1958–1960 (Cestoda–Dilepididae) Bull. Acad. Polon. Sci. 1970;15:159–163. PubMed
Elsner N.O., Jacobsen S., Thieltges D.W., Reise K. Alien parasitic copepods in mussels and oysters of the Wadden Sea. Helgol. Mar. Res. 2011;65:299–307.
Dubinina M.N. Nauka; Moscow: 1980. Tapeworms (Cestoda, Ligulidae) of the Fauna of the USSR; p. 320.
Arme C., Pappas P.W., Hoole D. In: Arme C., Pappas P.W., editors. vol. 2. Academic Press; 1983. Pathology of cestode infections in the vertebrate host; pp. 499–538. (Biology of the Eucestoda).
Williams H., Jones A. Taylor and Francis; 1994. Parasitic Worms of Fish.
Dick T.A., Chambers C., Isinguzo I. In: Woo P.T.K., editor. vol. 1. CAB International; 2006. Cestoidea (phylum Platyhelminthes) pp. 391–416. (Fish Diseases and Disorders).
Scholz T., Kuchta R., Oros M. Tapeworms as pathogens of fish: a review. J. Fish. Dis. 2021;44:1883–1900. PubMed
Rosen R., Dick T.A. Experimental infections of rainbow trout, Salmo gairdneri Richardson, with plerocercoids of Triaenophorus crassus Forel. J. Wildl. Dis. 1984;20:34–48. PubMed
Dezfuli B.S., Pironi F., Simoni E., Shinn A.P., Giari L. Selected pathological, immunohistochemical and ultrastructural changes associated with an infection by Diphyllobothrium dendriticum (Nitzsch, 1824) (Cestoda) plerocercoids in Coregonus lavaretus (L.) (Coregonidae) J. Fish. Dis. 2007;30:471–482. PubMed
Bauer O.N., Musselius V.A., Strelkov YuA. second ed. Light and Food Industry; Moscow: 1981. Diseases of Pond Fishes. (in Russian)
Kabata Z. Taylor & Francis; 1985. Parasite and Diseases of Fish Cultured in the Tropics.