Invasive parasites and global change: Evidence for the recent and rapid spillover of a potential pathogen of tilapias with a complex, three-host life cycle

. 2023 Sep ; 9 (9) : e18831. [epub] 20230805

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37674833
Odkazy

PubMed 37674833
PubMed Central PMC10477445
DOI 10.1016/j.heliyon.2023.e18831
PII: S2405-8440(23)06039-5
Knihovny.cz E-zdroje

Biological invasions pose a serious threat to local flora and fauna and have negative impacts on ecosystems. Invasive parasites can also cause severe losses in aquaculture. In this article, we provide evidence of the recent spillover of an African parasite with a complex, three-host life cycle that has rapidly and successfully established itself in the Middle East, most likely due to the recent migration of its final hosts (great cormorant) from Africa. This case of parasite introduction into a country with intensive aquaculture is also important from an economic point of view, since large (up to 2 cm long) larvae of this parasite, the cyclophyllidean tapeworm Amirthalingamia macracantha (Cestoda) localised in the liver, can be pathogenic to their fish hosts, including farmed and wild fish, as shown by our histopathological examination of heavily infected fish. Since its first detection in Israel in November 2020, the parasite has spread rapidly and is currently found in both migratory (great cormorant, Phalacrocorax carbo) and non-migratory birds (pygmy cormorant, Microcarbo pygmaeus), as well as in fish intermediate hosts, including farmed tilapia in several farms in Israel and wild cichlids. There are numerous examples of the spillover of introduced parasites, including those that parasitise fish of commercial importance, but have a direct life cycle or use only a single intermediate host. Tilapines are the second most important group of farmed fish in the world after carps and are produced mainly in Southeast Asia, Central and South America. The global spread of great cormorants and the early evidence that pygmy cormorant may also harbour A. macracantha pose the risk of further spread of this invasive parasite to other countries and areas. In addition, global warming and reductions in foraging and resting areas near these waters may allow the parasite to complete its life cycle in new hosts.

Zobrazit více v PubMed

Lymbery A.J., Morine M., Kanani H.G., Beatty S.J., Morgan D.L. Co-invaders: the effects of alien parasites on native hosts. Int. J. Parasitol.: Parasites and Wildlife. 2014;3:171–177. PubMed PMC

Chalkowski K., Lepczyk C.A., Zohdy S. Parasite ecology of invasive species: conceptual framework and new hypotheses. Trends Parasitol. 2018;34:655–663. PubMed

Daszak P., Cunningham A.A., Hyatt A.D. Emerging infectious diseases of wildlife - threats to biodiversity and human health. Science. 2000;287:443–449. PubMed

Prenter J., MacNeil C., Dick J.T.A., Dunn A.M. Roles of parasites in animal invasions. Trends Ecol. Evol. 2004;19:385–390. PubMed

Goedknegt M.A., Feis M.E., Wegner K.M., Luttikhuizen P.C., Buschbaum C., Camphuysen K., Thieltges D.W. Parasites and marine invasions: ecological and evolutionary perspectives. J. Sea Res. 2016;113:11–27.

Costa A.P.L., Takemoto R.M., Vitule J.R.S. Metazoan parasites of Micropterus salmoides (Lacépède 1802) (Perciformes, Centrarchidae): a review with evidences of spillover and spillback. Parasitol. Res. 2018;117:1671–1681. PubMed

Miller M.A., Kinsella J.M., Snow R.W., et al. Parasite spillover: indirect effects of invasive Burmese pythons. Ecol. Evol. 2018;8:830–840. PubMed PMC

Lowry E., Rollinson E.J., Laybourn A.J., Scott T.E., Aiello-Lammens M.E., Gray S.M., Mickley J., Gurevitch J. Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol. Evol. 2013;3:182–196. PubMed PMC

Bray R.A. A new genus of dilepidid cestode in Tilapia nilotica (L., 1758) and Phalacrocorax carbo (L., 1758) in Sudan. J. Nat. Hist. 1974;8:589–596.

Scholz T., Tavakol S., Uhrová L., Brabec J., Přikrylová I., Mašová Š., Šimková A., Halajian A., Luus-Powell W.J. An annotated list and molecular data on larvae of gryporhynchid tapeworms (Cestoda: Cyclophyllidea) from freshwater fishes in Africa. Syst. Parasitol. 2018;95:567–590. PubMed

Scholz T., Davidovich N., Aflalo O., Hadar S., Mazuz M.L., Yasur-Landau D. Invasive Amirthalingamia macracantha (Cestoda: Cyclophyllidea) larvae infecting tilapia hybrids in Israel: a potential threat for aquaculture. Dis. Aquat. Org. 2021;145:185–190. PubMed

Israeli Veterinary Services [Pre-marketing control of locally grown edible fish: procedure.] 2017. https://www.sciencedirect.com/science/article/pii/S240567662200004X (In Hebrew.)

Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997;83:575–583. PubMed

Brabec J., Scholz T., Králová-Hromadová I., Bazsalovicsová E., Olson P.D. Substitution saturation and nuclear paralogs of commonly employed phylogenetic markers in the Caryophyllidea, an unusual group of non-segmented tapeworms (Platyhelminthes) Int. J. Parasitol. 2012;42:259–267. PubMed

Scholz T., de Chambrier A., Kuchta R., Littlewood D.T.J., Waeschenbach A. Macrobothriotaenia ficta (Cestoda: proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): example of convergent evolution. Zootaxa. 2013;3640:485–499. PubMed

Tamura K., Stecher G., Kumar S. Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. MEGA11. PubMed PMC

Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., Claverie J.M., Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucl. Acids Res. 2008;36:W465–W469. PubMed PMC

Dunn A.M., Hatcher M.J. Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol. 2015;31:189–199. PubMed

Kennedy C.R. In: Parasitic Diseases of Fish. Pike A.W., Lewis J.W., editors. Samara Publishing Limited; 1994. Ecology of introductions; pp. 189–208.

Taraschewski H. Hosts and parasites as aliens. J. Helminthol. 2006;80:99–128. PubMed

Lafferty K.D., Torchin M.E., Kuris A.M. In: The Biogeography of Host–Parasite Interactions. Morand S., Krasnov B.R., editors. Oxford University Press; New York: 2010. The geography of host and parasite invasions; pp. 191–203.

Poulin R., Paterson R.A., Townsend C.R., Tomkins D.M., Kelly D.W. Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. Freshw. Biol. 2011;56:676–688.

Roy H.E., Handley L.J.L., Schönrogge K., et al. Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids? BioControl. 2011;56:451–468.

Blackburn T.M., Ewen J.G. Parasites as drivers and passengers of human-mediated biological invasions. EcoHealth. 2016;14:61–73. PubMed PMC

Joyeux C., Baer J.G. Notices helminthologiques. Bull. Soc. Zool. Fr. 1935;60:482–501.

Gophen M. Tilapia stock suppression by the great cormorant (Phalacrocorax carbo) in Lake Kinneret, Israel. Open J. Mod. Hydrol. 2017;7:153–164.

Paperna I. Parasitic helminths of inland-water fishes in Israel. Isr. J. Zool. 1964;13:1–20.

Paperna I. The metazoan parasite fauna of Israel inland water fishes. Bulletin of Fish Culture, Israel. 1964;16:3–66.

Paperna I., Lahav M. New records and further data on fish parasites in Israel. Bamidgeh, Bulletin of Fish Culture, Israel. 1971;23:43–52.

Gibson D.I., Bray R.A., Harris E.A., compilers) World Wide Web electronic publication; London: 2005. Host-parasite Database of the Natural History Museum.http://www.nhm.ac.uk/research-curation/scientific-resources/taxonomy-systematics/host-parasites/ Available.

Shinn A.P., Avenant-Oldewage A., Bondad-Reantaso M.G., et al. A global review of problematic and pathogenic parasites of farmed tilapia. Rev. Aquacult. 2023

Jarecka L. Life cycle of Valipora campylancristrota (Wedl, 1855) Baer and Bona 1958–1960 (Cestoda–Dilepididae) and the description of cercoscolex – a new type of cestode larva. Bull. Acad. Polon. Sci. 1970;28:99–102. PubMed

Jarecka L. On the life cycles of Paradilepis scolecina (Rud., 1819) Hsü, 1935, and Neogryporhynchus cheilancriistrotus (Wedl, 1855) Baer and Bona, 1958–1960 (Cestoda–Dilepididae) Bull. Acad. Polon. Sci. 1970;15:159–163. PubMed

Elsner N.O., Jacobsen S., Thieltges D.W., Reise K. Alien parasitic copepods in mussels and oysters of the Wadden Sea. Helgol. Mar. Res. 2011;65:299–307.

Dubinina M.N. Nauka; Moscow: 1980. Tapeworms (Cestoda, Ligulidae) of the Fauna of the USSR; p. 320.

Arme C., Pappas P.W., Hoole D. In: Arme C., Pappas P.W., editors. vol. 2. Academic Press; 1983. Pathology of cestode infections in the vertebrate host; pp. 499–538. (Biology of the Eucestoda).

Williams H., Jones A. Taylor and Francis; 1994. Parasitic Worms of Fish.

Dick T.A., Chambers C., Isinguzo I. In: Woo P.T.K., editor. vol. 1. CAB International; 2006. Cestoidea (phylum Platyhelminthes) pp. 391–416. (Fish Diseases and Disorders).

Scholz T., Kuchta R., Oros M. Tapeworms as pathogens of fish: a review. J. Fish. Dis. 2021;44:1883–1900. PubMed

Rosen R., Dick T.A. Experimental infections of rainbow trout, Salmo gairdneri Richardson, with plerocercoids of Triaenophorus crassus Forel. J. Wildl. Dis. 1984;20:34–48. PubMed

Dezfuli B.S., Pironi F., Simoni E., Shinn A.P., Giari L. Selected pathological, immunohistochemical and ultrastructural changes associated with an infection by Diphyllobothrium dendriticum (Nitzsch, 1824) (Cestoda) plerocercoids in Coregonus lavaretus (L.) (Coregonidae) J. Fish. Dis. 2007;30:471–482. PubMed

Bauer O.N., Musselius V.A., Strelkov YuA. second ed. Light and Food Industry; Moscow: 1981. Diseases of Pond Fishes. (in Russian)

Kabata Z. Taylor & Francis; 1985. Parasite and Diseases of Fish Cultured in the Tropics.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...