Fluorescence-activated multi-organelle mapping of subcellular plant hormone distribution

. 2023 Dec ; 116 (6) : 1825-1841. [epub] 20230908

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37682018

Grantová podpora
EMBO ASTF 297-2013 European Molecular Biology Organization
20-22875S Grantová Agentura České Republiky
SMK-1745 Kempestiftelserna
KAW 2016.0341 Knut och Alice Wallenbergs Stiftelse
KAW 2016.0352 Knut och Alice Wallenbergs Stiftelse
GA-2010-267423 Plant Fellows (International Post doc Fellowship Program in Plant Sciences)
IGA_PrF_2023_031 Univerzita Palackého v Olomouci
VR 2018-04235 Vetenskapsrådet
2016-00504 VINNOVA

Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.

Zobrazit více v PubMed

Adan, A., Alizada, G., Kiraz, Y., Baran, Y. & Nalbant, A. (2017) Flow cytometry: basic principles and applications. Critical Reviews in Biotechnology, 37, 163-176. Available from: https://pubmed.ncbi.nlm.nih.gov/26767547/

Antoniadi, I., Plačková, L., Simonovik, B., Doležal, K., Turnbull, C., Ljung, K. et al. (2015) Cell-type-specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell, 27, 1955-1967. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4531351&tool=pmcentrez&rendertype=abstract

Band, L.R., Wells, D.M., Fozard, J.A., Ghetiu, T., French, A.P., Pound, M.P. et al. (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell, 26, 862-875. Available from: https://pubmed.ncbi.nlm.nih.gov/24632533/

Beck, S., Michalski, A., Raether, O., Lubeck, M., Kaspar, S., Goedecke, N. et al. (2015) The impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Molecular & Cellular Proteomics, 14, 2014-2029. Available from: https://pubmed.ncbi.nlm.nih.gov/25991688/

Boisnard-Lorig, C., Colon-Carmona, A., Bauch, M., Hodge, S., Doerner, P., Bancharel, E. et al. (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell, 13, 495-509. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11251092

Boussardon, C., Przybyla-Toscano, J., Carrie, C. & Keech, O. (2020) Tissue-specific isolation of Arabidopsis/plant mitochondria- IMTACT (isolation of mitochondria tagged in specific cell types). The Plant Journal, 103, 459-473. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32057155

Breitkopf, S.B., Oppermann, F.S., Kéri, G., Grammel, M. & Daub, H. (2010) proteomics analysis of cellular imatinib targets and their candidate downstream effectors. Journal of Proteome Research, 9, 6033-6043. Available from: https://doi.org/10.1021/pr1008527

Brenner, W.G., Ramireddy, E., Heyl, A. & Schmülling, T. (2012) Gene regulation by cytokinin in Arabidopsis. Frontiers in Plant Science, 3, 8. Available from: https://pubmed.ncbi.nlm.nih.gov/22639635/

Brunoni, F., Pěnčík, A., Žukauskaitė, A., Ament, A., Kopečná, M., Collani, S. et al. (2023) Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytologist, 238, 2264-2270. Available from: https://pubmed.ncbi.nlm.nih.gov/36941219/

Cancé, C., Martin-Arevalillo, R., Boubekeur, K. & Dumas, R. (2022) Auxin response factors are keys to the many auxin doors. The New Phytologist, 235, 402-419. Available from: https://pubmed.ncbi.nlm.nih.gov/35434800/

Carter, A.D., Bonyadi, R. & Gifford, M.L. (2013) The use of fluorescence-activated cell sorting in studying plant development and environmental responses. The International Journal of Developmental Biology, 57, 545-552. Available from: https://pubmed.ncbi.nlm.nih.gov/24166437/

Casanova-Sáez, R., Mateo-Bonmatí, E. & Ljung, K. (2021) Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology, 13, a039867. Available from: https://pubmed.ncbi.nlm.nih.gov/33431579/

Cedzich, A., Stransky, H., Schulz, B. & Frommer, W.B. (2008) Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiology, 148, 1857-1867. Available from: https://pubmed.ncbi.nlm.nih.gov/18835995/

Chamrád, I., Simerský, R., Bérešová, L., Strnad, M., Šebela, M. & Lenobel, R. (2014) Proteomic identification of a candidate sequence of wheat cytokinin-binding protein 1. Journal of Plant Growth Regulation, 33, 896-902.

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V. & Mann, M. (2011) Andromeda: A peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10, 1794-1805. Available from: https://pubmed.ncbi.nlm.nih.gov/21254760/

Deal, R.B. & Henikoff, S. (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nature Protocols, 6, 56-68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21212783

Di Mambro, R., De Ruvo, M., Pacifici, E., Salvi, E., Sozzani, R., Benfey, P.N. et al. (2017) Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences of the United States of America, 114, E7641-E7649. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28831001

Di Mambro, R., Svolacchia, N., Ioio, R.D., Pierdonati, E., Salvi, E., Pedrazzini, E. et al. (2019) The lateral root cap acts as an auxin sink that controls meristem size. Current Biology, 29, 1199-1205.e4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30880016

Dubreuil, C., Jin, X., Barajas-López, J.D.D. et al. (2018) Establishment of photosynthesis through chloroplast development is controlled by two distinct regulatory phases. Plant Physiology, 176, 1199-1214. Available from: https://doi.org/10.1104/pp.17.00435

Franc, V., Šebela, M., Řehulka, P., Končitíková, R., Lenobel, R., Madzak, C. et al. (2012) Analysis of N-glycosylation in maize cytokinin oxidase/dehydrogenase 1 using a manual microgradient chromatographic separation coupled offline to MALDI-TOF/TOF mass spectrometry. Journal of Proteomics, 75, 4027-4037. Available from: https://pubmed.ncbi.nlm.nih.gov/22634084/

Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T. et al. (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 426, 147-153. Available from: http://www.nature.com/articles/nature02085

Galbraith, D., Loureiro, J., Antoniadi, I., Bainard, J., Bureš, P., Cápal, P. et al. (2021) Best practices in plant cytometry. Cytometry Part A, 99, 311-317. https://doi.org/10.1002/cyto.a.24295

Haas, C., Hegner, R., Helbig, K., Bartels, K., Bley, T. & Weber, J. (2016) Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations. Biotechnology and Bioengineering, 113, 1244-1250. Available from: https://pubmed.ncbi.nlm.nih.gov/26614913/

Hayashi, K., Arai, K., Aoi, Y. et al. (2021) The main oxidative inactivation pathway of the plant hormone auxin. Nature Communications, 12, 1-11. Available from: https://www.nature.com/articles/s41467-021-27020-1

Hayashi, K., Nakamura, S., Fukunaga, S., Nishimura, T., Jenness, M.K., Murphy, A.S. et al. (2014) Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proceedings of the National Academy of Sciences of the United States of America, 111, 11557-11562. Available from: https://doi.org/10.1073/pnas.1408960111

Hošek, P., Hoyerová, K., Kiran, N.S., Dobrev, P.I., Zahajská, L., Filepová, R. et al. (2020) Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. The New Phytologist, 225, 2423-2438. Available from: https://pubmed.ncbi.nlm.nih.gov/31682013/

Hoyerová, K., Gaudinová, A., Malbeck, J., Dobrev, P.I., Kocábek, T., Šolcová, B. et al. (2006) Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry, 67, 1151-1159. Available from: https://pubmed.ncbi.nlm.nih.gov/16678229/

Huang, D.W., Sherman, B.T. & Lempicki, R.A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44-57. Available from: https://pubmed.ncbi.nlm.nih.gov/19131956/

Huber, L.A., Pfaller, K. & Vietor, I. (2003) Organelle proteomics: implications for subcellular fractionation in proteomics. Circulation Research, 92, 962-968. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12750306

Hurný, A., Cuesta, C., Cavallari, N., Ötvös, K., Duclercq, J., Dokládal, L. et al. (2020) SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nature Communications, 11, 2170. Available from: https://pubmed.ncbi.nlm.nih.gov/32358503/

Jiskrová, E., Novák, O., Pospíšilová, H., Holubová, K., Karády, M., Galuszka, P. et al. (2016) Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. New Biotechnology, 33, 735-742. Available from: https://pubmed.ncbi.nlm.nih.gov/26777983/

Kakimoto, T. (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant and Cell Physiology, 42, 677-685. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11479373

Kasahara, H., Takei, K., Ueda, N., Hishiyama, S., Yamaya, T., Kamiya, Y. et al. (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. The Journal of Biological Chemistry, 279, 14049-14054.

Kiran, N.S., Benková, E., Reková, A., Dubová, J., Malbeck, J., Palme, K. et al. (2012) Retargeting a maize β-glucosidase to the vacuole - Evidence from intact plants that zeatin-O-glucoside is stored in the vacuole. Phytochemistry, 79, 67-77. Available from: https://pubmed.ncbi.nlm.nih.gov/22552277/

Kubiasová, K., Montesinos, J.C., Šamajová, O., Nisler, J., Mik, V., Semerádová, H. et al. (2020) Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum. Nature Communications, 11, 4285. Available from: https://www.nature.com/articles/s41467-020-17949-0

Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y. et al. (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 445, 652-655. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17287810

Lee, Y.H., Tan, H.T. & Chung, M.C.M. (2010) Subcellular fractionation methods and strategies for proteomics. Proteomics, 10, 3935-3956. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21080488

Leon, I.R., Schwammle, V., Jensen, O.N. & Sprenger, R.R. (2013) Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Molecular & Cellular Proteomics, 12, 2992-3005. Available from: https://pubmed.ncbi.nlm.nih.gov/23792921/

Levi, M., Tarquini, F., Sgorbati, S. & Sparvoli, E. (1986) Determination of DNA content by static cytofluorimetry in nuclei released from fixed plant tissue. Protoplasma, 132, 64-68. Available from: https://doi.org/10.1007/BF01275791

Liao, C.Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T. & Weijers, D. (2015) Reporters for sensitive and quantitative measurement of auxin response. Nature Methods, 12, 207-210. Available from: https://pubmed.ncbi.nlm.nih.gov/25643149/

Logan, D.C. & Leaver, C.J. (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. Journal of Experimental Botany, 51, 865-871. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10948212

Martín-Fernández, J.A., Barceló-Vidal, C. & Pawlowsky-Glahn, V. (2003) Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology, 35, 253-278.

Matsushima, R., Hayashi, Y., Kondo, M., Shimada, T., Nishimura, M. & Hara-Nishimura, I. (2002) An endoplasmic reticulum-derived structure that is induced under stress conditions in Arabidopsis. Plant Physiology, 130, 1807-1814. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12481064

Mellor, N., Band, L.R., Pěnčík, A., Novák, O., Rashed, A., Holman, T. et al. (2016) Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 113, 11022-11027. Available from: https://doi.org/10.1073/pnas.1604458113

Middleton, A.M., Dal Bosco, C., Chlap, P., Bensch, R., Harz, H., Ren, F. et al. (2018) Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Reports, 22, 3044-3057. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124718302699

Millar, A.H. & Taylor, N.L. (2017) The isolation of plant organelles and structures in the post-genomic era. Methods in Molecular Biology, 1511, 1-11. Available from: https://pubmed.ncbi.nlm.nih.gov/27730598/

Müller, B. & Sheen, J. (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453, 1094-1097. Available from: http://www.nature.com/articles/nature06943

Müller, K., Dobrev, P.I., Pencík, A. et al. (2021) DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiology, 187, 103-115. Available from: https://pubmed.ncbi.nlm.nih.gov/34618129/

Niehaus, M., Straube, H., Künzler, P., Rugen, N., Hegermann, J., Giavalisco, P. et al. (2020) Rapid affinity purification of tagged plant mitochondria (Mito-AP) for metabolome and proteome analyses. Plant Physiology, 182, 1194-1210. Available from: https://pubmed.ncbi.nlm.nih.gov/31911558/

Novák, O., Hényková, E., Sairanen, I., Kowalczyk, M., Pospíšil, T. & Ljung, K. (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal, 72, 523-536. Available from: https://doi.org/10.1111/j.1365-313X.2012.05085.x

Novák, O., Napier, R. & Ljung, K. (2017) Zooming in on plant hormone analysis: tissue- and cell-specific Approaches. Annual Review of Plant Biology, 68, 323-348. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28226234

Pavlova, P., van Zanten, M., Snoek, B.L., Jong, H.d. & Fransz, P. (2021) 2D morphometric analysis of Arabidopsis thaliana nuclei reveals characteristic profiles of different cell types and accessions. Chromosome Research, 30, 5-24. Available from: https://pubmed.ncbi.nlm.nih.gov/34665365/

Pěnčík, A., Casanova-Sáez, R., Pilařová, V., Žukauskaitė, A., Pinto, R., Luis Micol, J. et al. (2018) Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. Journal of Experimental Botany, 69, 2569-2579. Available from: http://www.duchefa.com

Pěnčík, A., Simonovik, B., Petersson, S.V., Henyková, E., Simon, S., Greenham, K. et al. (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell, 25, 3858-3870. Available from: https://doi.org/10.1105/tpc.113.114421

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J. et al. (2019) The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Research, 47, D442-D450. Available from: https://pubmed.ncbi.nlm.nih.gov/30395289/

Pesquet, E., Korolev, A.V., Calder, G. & Lloyd, C.W. (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Current Biology, 20, 744-749.

Petersson, S.V., Johansson, A.I., Kowalczyk, M. et al. (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell, 21, 1659-1668. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19491238

Petrášek, J., Mravec, J., Bouchard, R. et al. (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 312, 914-918. Available from: https://doi.org/10.1126/science.1123542

Petrovská, B., Jeřábková, H., Chamrád, I., Vrána, J., Lenobel, R., Uřinovská, J. et al. (2014) Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenetic and Genome Research, 143, 78-86. Available from: https://www.karger.com/Article/FullText/365311

Polanská, L., Vičánková, A., Nováková, M., Malbeck, J., Dobrev, P.I., Brzobohatý, B. et al. (2007) Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. Journal of Experimental Botany, 58, 637-649. Available from: https://doi.org/10.1093/jxb/erl235

Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A. et al. (2016) Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 113, 11016-11021. Available from: https://doi.org/10.1073/pnas.1604375113

Ranocha, P., Dima, O., Nagy, R., Felten, J., Corratgé-Faillie, C., Novák, O. et al. (2013) Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 4, 2625. Available from: https://doi.org/10.1038/ncomms3625

Robert, S., Zouhar, J., Carter, C.J. & Raikhel, N. (2007) Isolation of intact vacuoles from Arabidopsis rosette leaf-derived protoplasts. Nature Protocols, 2, 259-262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17406583

Sakakibara, H. (2006) Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431-449. Available from: https://pubmed.ncbi.nlm.nih.gov/16669769/

Schaller, G.E., Bishopp, A. & Kieber, J.J. (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell, 27, 44-63. Available from: https://doi.org/10.1105/tpc.114.133595

Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J. et al. (2011) Global quantification of mammalian gene expression control. Nature, 473, 337-342. Available from: https://pubmed.ncbi.nlm.nih.gov/21593866/

Šimášková, M., O'Brien, J.A., Khan, M. et al. (2015) Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications, 6, 8717. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26541513

Skalický, V., Kubeš, M., Napier, R. & Novák, O. (2018) Auxins and cytokinins-the role of subcellular organization on homeostasis. International Journal of Molecular Sciences, 19, 3115. Available from: http://www.mdpi.com/1422-0067/19/10/3115

Skalický, V., Vojtková, T., Pěnčík, A., Vrána, J., Juzoń, K., Koláčková, V. et al. (2021) Auxin metabolite profiling in isolated and intact plant nuclei. International Journal of Molecular Sciences, 22, 12369. Available from: https://www.mdpi.com/1422-0067/22/22/12369/htm

Šmehilová, M., Dobrůšková, J., Novák, O., Takáč, T. & Galuszka, P. (2016) Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Frontiers in Plant Science, 7, 1264.

Suda, J., Kron, P., Husband, B.C. & Trávníček, P. (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Flow cytometry with plant cells. Weinheim, Germany: Wiley, pp. 103-130. Available from: https://doi.org/10.1002/9783527610921.ch5

Svačinová, J., Novák, O., Plačková, L., Lenobel, R., Holík, J., Strnad, M. et al. (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods, 8, 17.

Tessi, T.M., Brumm, S., Winklbauer, E., Schumacher, B., Pettinari, G., Lescano, I. et al. (2021) Arabidopsis AZG2 transports cytokinins in vivo and regulates lateral root emergence. The New Phytologist, 229, 979-993. Available from: https://doi.org/10.1111/nph.16943

Thind, A.K., Wicker, T., Šimková, H., Fossati, D., Moullet, O., Brabant, C. et al. (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nature Biotechnology, 35, 793-796. Available from: https://pubmed.ncbi.nlm.nih.gov/28504667/

Tucker, E.B. (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma, 174, 45-49.

Tyanova, S., Temu, T. & Cox, J. (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, 11, 2301-2319. Available from: https://pubmed.ncbi.nlm.nih.gov/27809316/

Včelařová, L., Skalický, V., Chamrád, I., Lenobel, R., Kubeš, M., Pěnčík, A. et al. (2021) Auxin metabolome profiling in the Arabidopsis endoplasmic reticulum using an optimised organelle isolation protocol. International Journal of Molecular Sciences, 22, 9370. Available from: https://www.mdpi.com/1422-0067/22/17/9370

Wang, J., Ma, X.M., Kojima, M., Sakakibara, H. & Hou, B.K. (2013) Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana. Plant Physiology and Biochemistry, 65, 9-16. Available from: https://pubmed.ncbi.nlm.nih.gov/23416491/

Werner, T., Köllmer, I., Bartrina y Manns, I., Holst, K. & Schmülling, T. (2006) New insights into the biology of cytokinin degradation. Plant Biology (Stuttgart, Germany), 8, 371-381. Available from: https://doi.org/10.1055/s-2006-923928

Wolf, P.G., Karol, K.G., Mandoli, D.F., Kuehl, J., Arumuganathan, K., Ellis, M.W. et al. (2005) The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene, 350, 117-128. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378111905000375

Wulfetange, K., Lomin, S.N., Romanov, G.A., Stolz, A., Heyl, A. & Schmülling, T. (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiology, 156, 1808-1818.

Xu, J., Martien, J., Gilbertson, C., Ma, J., Amador-Noguez, D. & Park, J.O. (2020) Metabolic flux analysis and fluxomics-driven determination of reaction free energy using multiple isotopes. Current Opinion in Biotechnology, 64, 151-160.

Yoo, S.-D., Cho, Y.-H. & Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17585298

Zürcher, E. & Müller, B. (2016) Cytokinin synthesis, signaling, and function-advances and new insights. In: Jeon, K.W. (Ed.) International review of cell and molecular biology. Amsterdam, Netherlands: Academic Press Inc. Elsevier Science, pp. 1-38. Available from: https://doi.org/10.1016/bs.ircmb.2016.01.001

Zürcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P.T. & Müller, B. (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiology, 161, 1066-1075. Available from: https://pubmed.ncbi.nlm.nih.gov/23355633/

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace