A cluster-tree-based trusted routing algorithm using Grasshopper Optimization Algorithm (GOA) in Wireless Sensor Networks (WSNs)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37682948
PubMed Central
PMC10491002
DOI
10.1371/journal.pone.0289173
PII: PONE-D-23-11684
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- kobylky * MeSH
- komunikace MeSH
- záplavy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In wireless sensor networks (WSNs), existing routing protocols mainly consider energy efficiency or security separately. However, these protocols must be more comprehensive because many applications should guarantee security and energy efficiency, simultaneously. Due to the limited energy of sensor nodes, these protocols should make a trade-off between network lifetime and security. This paper proposes a cluster-tree-based trusted routing method using the grasshopper optimization algorithm (GOA) called CTTRG in WSNs. This routing scheme includes a distributed time-variant trust (TVT) model to analyze the behavior of sensor nodes according to three trust criteria, including the black hole, sink hole, and gray hole probability, the wormhole probability, and the flooding probability. Furthermore, CTTRG suggests a GOA-based trusted routing tree (GTRT) to construct secure and stable communication paths between sensor nodes and base station. To evaluate each GTRT, a multi-objective fitness function is designed based on three parameters, namely the distance between cluster heads and their parent node, the trust level, and the energy of cluster heads. The evaluation results prove that CTTRG has a suitable and successful performance in terms of the detection speed of malicious nodes, packet loss rate, and end-to-end delay.
Department of Computer Engineering Dezful Branch Islamic Azad University Dezful Iran
Department of Computer Science University of Human Development Sulaymaniyah Iraq
Department of Information Technology University of Human Development Sulaymaniyah Iraq
Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan
Institute of Research and Development Duy Tan University Da Nang Vietnam
School of Computing Gachon University Seongnam Korea
School of Medicine and Pharmacy Duy Tan University Da Nang Vietnam
Zobrazit více v PubMed
Yousefpoor M.S., Yousefpoor E., Barati H., Barati A., Movaghar A. and Hosseinzadeh M., 2021. Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: A comprehensive review. Journal of Network and Computer Applications, 190, p.103118. doi: 10.1016/j.jnca.2021.103118 DOI
Yousefpoor M.S. and Barati H., 2019. Dynamic key management algorithms in wireless sensor networks: A survey. Computer Communications, 134, pp.52–69. doi: 10.1016/j.comcom.2018.11.005 DOI
Jeong H., Lee S.W., Hussain Malik M., Yousefpoor E., Yousefpoor M.S., Ahmed O.H., et al.. 2022. SecAODV: A secure healthcare routing scheme based on hybrid cryptography in wireless body sensor networks. Frontiers in Medicine, p.1224. doi: 10.3389/fmed.2022.829055 PubMed DOI PMC
Hosseinzadeh M., Tanveer J., Masoud Rahmani A., Yousefpoor E., Sadegh Yousefpoor M., Khan F. et al.. 2022. A Cluster-Tree-Based Secure Routing Protocol Using Dragonfly Algorithm (DA) in the Internet of Things (IoT) for Smart Agriculture. Mathematics, 11(1), p.80. doi: 10.3390/math11010080 DOI
Yousefpoor M.S. and Barati H., 2020. DSKMS: a dynamic smart key management system based on fuzzy logic in wireless sensor networks. Wireless Networks, 26(4), pp.2515–2535. doi: 10.1007/s11276-019-01980-1 DOI
Yousefpoor E., Barati H. and Barati A., 2021. A hierarchical secure data aggregation method using the dragonfly algorithm in wireless sensor networks. Peer-to-Peer Networking and Applications, 14(4), pp.1917–1942. doi: 10.1007/s12083-021-01116-3 DOI
Rahmani A.M., Ali S., Malik M.H., Yousefpoor E., Yousefpoor M.S., Mousavi A., et al.. 2022. An energy-aware and Q-learning-based area coverage for oil pipeline monitoring systems using sensors and Internet of Things. Scientific Reports, 12(1), p.9638. doi: 10.1038/s41598-022-12181-w PubMed DOI PMC
Gulati K., Boddu R.S.K., Kapila D., Bangare S.L., Chandnani N. and Saravanan G., 2022. A review paper on wireless sensor network techniques in Internet of Things (IoT). Materials Today: Proceedings, 51, pp.161–165.
Abdulzahra, A.M.K., Al-Qurabat, A.K.M. and Abdulzahra, S.A., 2023. Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods. Internet of Things, p.100765.
Alawad, F. and Kraemer, F.A., 2022. Value of information in wireless sensor network applications and the IoT: A review. IEEE Sensors Journal.
Dampage U., Bandaranayake L., Wanasinghe R., Kottahachchi K. and Jayasanka B., 2022. Forest fire detection system using wireless sensor networks and machine learning. Scientific reports, 12(1), p.46. doi: 10.1038/s41598-021-03882-9 PubMed DOI PMC
Tirandazi P., Rahiminasab A. and Ebadi M.J., 2022. An efficient coverage and connectivity algorithm based on mobile robots for wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, pp.1–23.
Spandonidis C., Theodoropoulos P., Giannopoulos F., Galiatsatos N. and Petsa A., 2022. Evaluation of deep learning approaches for oil & gas pipeline leak detection using wireless sensor networks. Engineering Applications of Artificial Intelligence, 113, p.104890. doi: 10.1016/j.engappai.2022.104890 DOI
Hu B., Tang W. and Xie Q., 2022. A two-factor security authentication scheme for wireless sensor networks in IoT environments. Neurocomputing, 500, pp.741–749. doi: 10.1016/j.neucom.2022.05.099 DOI
Osamy, W., Khedr, A.M., Salim, A., Al Ali, A.I. and El-Sawy, A.A., 2022. Coverage, deployment and localization challenges in wireless sensor networks based on artificial intelligence techniques: a review. IEEE Access.
Faris M., Mahmud M.N., Salleh M.F.M. and Alnoor A., 2023. Wireless sensor network security: A recent review based on state-of-the-art works. International Journal of Engineering Business Management, 15, p.18479790231157220. doi: 10.1177/18479790231157220 DOI
Dai C. and Xu Z., 2022. A secure three-factor authentication scheme for multi-gateway wireless sensor networks based on elliptic curve cryptography. Ad Hoc Networks, 127, p.102768. doi: 10.1016/j.adhoc.2021.102768 DOI
Han Y., Hu H. and Guo Y., 2022. Energy-aware and trust-based secure routing protocol for wireless sensor networks using adaptive genetic algorithm. IEEE Access, 10, pp.11538–11550. doi: 10.1109/ACCESS.2022.3144015 DOI
Li Y. and Tian Y., 2022. A lightweight and secure three-factor authentication protocol with adaptive privacy-preserving property for wireless sensor networks. IEEE Systems Journal, 16(4), pp.6197–6208. doi: 10.1109/JSYST.2022.3152561 DOI
Roy P.K. and Bhattacharya A., 2022. SDIWSN: A Software-Defined Networking-Based Authentication Protocol for Real-time Data Transfer in Industrial Wireless Sensor Networks. IEEE Transactions on Network and Service Management, 19(3), pp.3465–3477. doi: 10.1109/TNSM.2022.3173975 DOI
Hu H., Han Y., Yao M. and Song X., 2021. Trust based secure and energy efficient routing protocol for wireless sensor networks. IEEE Access, 10, pp.10585–10596. doi: 10.1109/ACCESS.2021.3075959 DOI
Ahmed A., Bakar K.A., Channa M.I. and Khan A.W., 2016. A secure routing protocol with trust and energy awareness for wireless sensor network. Mobile Networks and Applications, 21, pp.272–285. doi: 10.1007/s11036-016-0683-y DOI
Qin D., Yang S., Jia S., Zhang Y., Ma J. and Ding Q., 2017. Research on trust sensing based secure routing mechanism for wireless sensor network. IEEE Access, 5, pp.9599–9609. doi: 10.1109/ACCESS.2017.2706973 DOI
Kavidha V. and Ananthakumaran S., 2019. Novel energy-efficient secure routing protocol for wireless sensor networks with Mobile sink. Peer-to-Peer Networking and Applications, 12, pp.881–892. doi: 10.1007/s12083-018-0688-3 DOI
Rathee M., Kumar S., Gandomi A.H., Dilip K., Balusamy B. and Patan R., 2019. Ant colony optimization based quality of service aware energy balancing secure routing algorithm for wireless sensor networks. IEEE Transactions on Engineering Management, 68(1), pp.170–182. doi: 10.1109/TEM.2019.2953889 DOI
Lazrag, H., Chehri, A., Saadane, R. and Rahmani, M.D., 2019, November. A blockchain-based approach for optimal and secure routing in wireless sensor networks and IoT. In 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) (pp. 411–415). IEEE.
Thangaramya K., Kulothungan K., Logambigai R., Selvi M., Ganapathy S. and Kannan A., 2019. Energy aware cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Computer Networks, 151, pp.211–223. doi: 10.1016/j.comnet.2019.01.024 DOI
Deebak B.D. and Al-Turjman F., 2020. A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks. Ad Hoc Networks, 97, p.102022. doi: 10.1016/j.adhoc.2019.102022 DOI
Joshi P. and Raghuvanshi A.S., 2021. A Multi-Objective Metaheuristic Approach Based Adaptive Clustering and Path Selection in IoT Enabled Wireless Sensor Networks. International Journal of Computer Networks and Applications, 8(5), pp.566–584. doi: 10.22247/ijcna/2021/209988 DOI
Gilbert E.P.K., Baskaran K., Rajsingh E.B., Lydia M. and Selvakumar A.I. (2019) ‘Trust aware nature inspired optimized routing in clustered wireless sensor networks’, Int. J. Bio-Inspired Computation, Vol. 14, No. 2, pp.103–113. doi: 10.1504/IJBIC.2019.101637 DOI
Saleh A., Joshi P., Rathore R.S. and Sengar S.S., 2022. Trust-Aware Routing Mechanism through an Edge Node for IoT-Enabled Sensor Networks. Sensors, 22(20), p.7820. doi: 10.3390/s22207820 PubMed DOI PMC
Hriez S., Almajali S., Elgala H., Ayyash M. and Salameh H.B., 2021. A novel trust-aware and energy-aware clustering method that uses stochastic fractal search in IoT-enabled wireless sensor networks. IEEE Systems Journal, 16(2), pp.2693–2704. doi: 10.1109/JSYST.2021.3065323 DOI
Joshi, P., Kumar, S. and Raghuvanshi, A.S., 2022. A performance efficient joint clustering and routing approach for heterogeneous wireless sensor networks. Expert Systems.
Schranz M., Di Caro G.A., Schmickl T., Elmenreich W., Arvin F., Şekercioğlu A., et al.., 2021. Swarm intelligence and cyber-physical systems: concepts, challenges and future trends. Swarm and Evolutionary Computation, 60, p.100762. doi: 10.1016/j.swevo.2020.100762 DOI
Nasir M.H., Khan S.A., Khan M.M. and Fatima M., 2022. Swarm intelligence inspired intrusion detection systems—a systematic literature review. Computer Networks, p.108708. doi: 10.1016/j.comnet.2021.108708 DOI
Wang D., Tan D. and Liu L., 2018. Particle swarm optimization algorithm: an overview. Soft computing, 22, pp.387–408. doi: 10.1007/s00500-016-2474-6 DOI
Karaboga D., Gorkemli B., Ozturk C. and Karaboga N., 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42, pp.21–57. doi: 10.1007/s10462-012-9328-0 DOI
Faris H., Aljarah I., Al-Betar M.A. and Mirjalili S., 2018. Grey wolf optimizer: a review of recent variants and applications. Neural computing and applications, 30, pp.413–435. doi: 10.1007/s00521-017-3272-5 DOI
Mirjalili S., 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural computing and applications, 27, pp.1053–1073. doi: 10.1007/s00521-015-1920-1 DOI
Mirjalili S.Z., Mirjalili S., Saremi S., Faris H. and Aljarah I., 2018. Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence, 48, pp.805–820. doi: 10.1007/s10489-017-1019-8 DOI
Moghanian S., Saravi F.B., Javidi G. and Sheybani E.O., 2020. GOAMLP: Network intrusion detection with multilayer perceptron and grasshopper optimization algorithm. IEEE Access, 8, pp.215202–215213. doi: 10.1109/ACCESS.2020.3040740 DOI
Janabi S.M.A. and Kurnaz S., 2023. A new localization mechanism in IoT using grasshopper optimization algorithm and DVHOP algorithm. Wireless Networks, pp.1–21.
Jebi R.C. and Baulkani S., 2022. Mitigation of coverage and connectivity issues in wireless sensor network by multi-objective randomized grasshopper optimization based selective activation scheme. Sustainable Computing: Informatics and Systems, 35, p.100728.
Saremi S., Mirjalili S. and Lewis A., 2017. Grasshopper optimisation algorithm: theory and application. Advances in engineering software, 105, pp.30–47. doi: 10.1016/j.advengsoft.2017.01.004 DOI
Yang, X.S., 2010. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010), pp.65–74.
Yang, X.S., 2012. Flower pollination algorithm for global optimization. In Unconventional Computation and Natural Computation: 11th International Conference, UCNC 2012, Orléan, France, September 3–7, 2012. Proceedings 11 (pp. 240–249). Springer Berlin Heidelberg.
Yang, X.S. and Deb, S., 2009, December. Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210–214). Ieee.
Yang X.S., 2010. Firefly algorithm, stochastic test functions and design optimization. International journal of bio-inspired computation, 2(2), pp.78–84. doi: 10.1504/IJBIC.2010.032124 DOI
Holland J.H., 1992. Genetic algorithms. Scientific american, 267(1), pp.66–73. doi: 10.1038/scientificamerican0792-66 PubMed DOI
Storn R. and Price K., 1997. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), p.341. doi: 10.1023/A:1008202821328 DOI
Rashedi E., Nezamabadi-Pour H. and Saryazdi S., 2009. GSA: a gravitational search algorithm. Information sciences, 179(13), pp.2232–2248. doi: 10.1016/j.ins.2009.03.004 DOI
Goyal, S.B., Bedi, P., Rajawat, A.S. and Shrivastava, D.P., 2022. Secure Authentication in Wireless Sensor Networks Using Blockchain Technology. In AI-Enabled Agile Internet of Things for Sustainable FinTech Ecosystems (pp. 93–105). IGI Global.
Dewal, P., Narula, G.S., Jain, V. and Baliyan, A., 2018. Security attacks in wireless sensor networks: A survey. In Cyber Security: Proceedings of CSI 2015 (pp. 47–58). Springer Singapore.
Xie M., Han S., Tian B. and Parvin S., 2011. Anomaly detection in wireless sensor networks: A survey. Journal of Network and computer Applications, 34(4), pp.1302–1325. doi: 10.1016/j.jnca.2011.03.004 DOI
Ezhilarasi M., Gnanaprasanambikai L., Kousalya A. and Shanmugapriya M., 2022. A novel implementation of routing attack detection scheme by using fuzzy and feed-forward neural networks. Soft Computing, pp.1–12.
Otair M., Ibrahim O.T., Abualigah L., Altalhi M. and Sumari P., 2022. An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks. Wireless Networks, 28(2), pp.721–744. doi: 10.1007/s11276-021-02866-x DOI
Pathak A., Al-Anbagi I. and Hamilton H.J., 2022. An Adaptive QoS and Trust-Based Lightweight Secure Routing Algorithm for WSNs. IEEE Internet of Things Journal, 9(23), pp.23826–23840. doi: 10.1109/JIOT.2022.3189832 DOI
Ashraf, I., Park, Y., Hur, S., Kim, S.W., Alroobaea, R., Zikria, Y.B., et al. 2022. A survey on cyber security threats in IoT-enabled maritime industry. IEEE Transactions on Intelligent Transportation Systems.
Raimundo R.J. and Rosário A.T., 2022. Cybersecurity in the internet of things in industrial management. Applied Sciences, 12(3), p.1598. doi: 10.3390/app12031598 DOI
Mezrag F., Bitam S. and Mellouk A., 2022. An efficient and lightweight identity-based scheme for secure communication in clustered wireless sensor networks. Journal of Network and Computer Applications, 200, p.103282. doi: 10.1016/j.jnca.2021.103282 DOI
Tropea M., Spina M.G., De Rango F. and Gentile A.F., 2022. Security in wireless sensor networks: A cryptography performance analysis at mac layer. Future Internet, 14(5), p.145. doi: 10.3390/fi14050145 DOI