Zeeman- and Orbital-Driven Phase Shifts in Planar Josephson Junctions

. 2023 Sep 26 ; 17 (18) : 18139-18147. [epub] 20230911

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37694539

We perform supercurrent and tunneling spectroscopy measurements on gate-tunable InAs/Al Josephson junctions (JJs) in an in-plane magnetic field and report on phase shifts in the current-phase relation measured with respect to an absolute phase reference. The impact of orbital effects is investigated by studying multiple devices with different superconducting lead sizes. At low fields, we observe gate-dependent phase shifts of up to φ0 = 0.5π, which are consistent with a Zeeman field coupling to highly transmissive Andreev bound states via Rashba spin-orbit interaction. A distinct phase shift emerges at larger fields, concomitant with a switching current minimum and the closing and reopening of the superconducting gap. These signatures of an induced phase transition, which might resemble a topological transition, scale with the superconducting lead size, demonstrating the crucial role of orbital effects. Our results elucidate the interplay of Zeeman, spin-orbit, and orbital effects in InAs/Al JJs, giving improved understanding of phase transitions in hybrid JJs and their applications in quantum computing and superconducting electronics.

Zobrazit více v PubMed

de Lange G.; van Heck B.; Bruno A.; van Woerkom D. J.; Geresdi A.; Plissard S. R.; Bakkers E. P. A. M.; Akhmerov A. R.; DiCarlo L. Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements. Phys. Rev. Lett. 2015, 115, 127002.10.1103/PhysRevLett.115.127002. PubMed DOI

Larsen T. W.; Petersson K. D.; Kuemmeth F.; Jespersen T. S.; Krogstrup P.; Nygård J.; Marcus C. M. Semiconductor-Nanowire-Based Superconducting Qubit. Phys. Rev. Lett. 2015, 115, 127001.10.1103/PhysRevLett.115.127001. PubMed DOI

Casparis L.; Connolly M. R.; Kjaergaard M.; Pearson N. J.; Kringhøj A.; Larsen T. W.; Kuemmeth F.; Wang T.; Thomas C.; Gronin S.; Gardner G. C.; Manfra M. J.; Marcus C. M.; Petersson K. D. Superconducting Gatemon Qubit Based on a Proximitized Two-Dimensional Electron Gas. Nat. Nanotechnol. 2018, 13, 915–919. 10.1038/s41565-018-0207-y. PubMed DOI

Kringhøj A.; Larsen T. W.; Erlandsson O.; Uilhoorn W.; Kroll J.; Hesselberg M.; McNeil R.; Krogstrup P.; Casparis L.; Marcus C.; Petersson K. Magnetic-Field-Compatible Superconducting Transmon Qubit. Phys. Rev. Appl. 2021, 15, 054001.10.1103/PhysRevApplied.15.054001. DOI

Hertel A.; Eichinger M.; Andersen L. O.; van Zanten D. M.; Kallatt S.; Scarlino P.; Kringhøj A.; Chavez-Garcia J. M.; Gardner G. C.; Gronin S.; Manfra M. J.; Gyenis A.; Kjaergaard M.; Marcus C. M.; Petersson K. D. Gate-Tunable Transmon Using Selective-Area-Grown Superconductor-Semiconductor Hybrid Structures on Silicon. Phys. Rev. Appl. 2022, 18, 034042.10.1103/PhysRevApplied.18.034042. DOI

Andreev A. F.Thermal Conductivity of the Intermediate State of Superconductors. Zh. Eksperim. i Teor. Fiz. 1964, 46.

Beenakker C. W. J.; van Houten H. Josephson Current Through a Superconducting Quantum Point Contact Shorter than the Coherence Length. Phys. Rev. Lett. 1991, 66, 3056–3059. 10.1103/PhysRevLett.66.3056. PubMed DOI

Furusaki A.; Tsukada M. Current-Carrying States in Josephson Junctions. Phys. Rev. B 1991, 43, 10164–10169. 10.1103/PhysRevB.43.10164. PubMed DOI

Despósito M. A.; Levy Yeyati A. Controlled Dephasing of Andreev States in Superconducting Quantum Point Contacts. Phys. Rev. B 2001, 64, 140511.10.1103/PhysRevB.64.140511. DOI

Zazunov A.; Shumeiko V. S.; Bratus’ E. N.; Lantz J.; Wendin G. Andreev Level Qubit. Phys. Rev. Lett. 2003, 90, 087003.10.1103/PhysRevLett.90.087003. PubMed DOI

Chtchelkatchev N. M.; Nazarov Y. V. Andreev Quantum Dots for Spin Manipulation. Phys. Rev. Lett. 2003, 90, 226806.10.1103/PhysRevLett.90.226806. PubMed DOI

Padurariu C.; Nazarov Y. V. Theoretical Proposal for Superconducting Spin Qubits. Phys. Rev. B 2010, 81, 144519.10.1103/PhysRevB.81.144519. DOI

Janvier C.; Tosi L.; Bretheau L.; Girit C. O.; Stern M.; Bertet P.; Joyez P.; Vion D.; Esteve D.; Goffman M. F.; Pothier H.; Urbina C. Coherent Manipulation of Andreev States in Superconducting Atomic Contacts. Science 2015, 349, 1199–1202. 10.1126/science.aab2179. PubMed DOI

Hays M.; de Lange G.; Serniak K.; van Woerkom D. J.; Bouman D.; Krogstrup P.; Nygård J.; Geresdi A.; Devoret M. H. Direct Microwave Measurement of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson Junction. Phys. Rev. Lett. 2018, 121, 047001.10.1103/PhysRevLett.121.047001. PubMed DOI

Tosi L.; Metzger C.; Goffman M. F.; Urbina C.; Pothier H.; Park S.; Yeyati A. L.; Nygård J.; Krogstrup P. Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy. Phys. Rev. X 2019, 9, 011010.10.1103/PhysRevX.9.011010. DOI

Hays M.; Fatemi V.; Bouman D.; Cerrillo J.; Diamond S.; Serniak K.; Connolly T.; Krogstrup P.; Nygård J.; Yeyati A. L.; Geresdi A.; Devoret M. H. Coherent Manipulation of an Andreev Spin Qubit. Science 2021, 373, 430–433. 10.1126/science.abf0345. PubMed DOI

Matute-Cañadas F. J.; Metzger C.; Park S.; Tosi L.; Krogstrup P.; Nygård J.; Goffman M. F.; Urbina C.; Pothier H.; Yeyati A. L. Signatures of Interactions in the Andreev Spectrum of Nanowire Josephson Junctions. Phys. Rev. Lett. 2022, 128, 197702.10.1103/PhysRevLett.128.197702. PubMed DOI

Pita-Vidal M.; Bargerbos A.; Žitko R.; Splitthoff L. J.; Grünhaupt L.; Wesdorp J. J.; Liu Y.; Kouwenhoven L. P.; Aguado R.; van Heck B.; Kou A.; Andersen C. K.. Direct Manipulation of a Superconducting Spin Qubit Strongly Coupled to a Transmon Qubit. Nat. Phys. 2023, 19, 1110.10.1038/s41567-023-02071-x. DOI

Gheewala T. Josephson-Logic Devices and Circuits. IEEE Trans. Electron Devices 1980, 27, 1857–1869. 10.1109/T-ED.1980.20123. DOI

Clark T. D.; Prance R. J.; Grassie A. D. C. Feasibility of Hybrid Josephson Field Effect Transistors. J. Appl. Phys. 1980, 51, 2736.10.1063/1.327935. DOI

Kleinsasser A.; Jackson T. Prospects for Proximity Effect Superconducting FETs. IEEE Trans. Magn. 1989, 25, 1274–1277. 10.1109/20.92528. DOI

Wen F.; Yuan J.; Wickramasinghe K. S.; Mayer W.; Shabani J.; Tutuc E. Epitaxial Al-InAs Heterostructures as Platform for Josephson Junction Field-Effect Transistor Logic Devices. IEEE Trans. Electron Devices 2021, 68, 1524–1529. 10.1109/TED.2021.3057790. DOI

Leroux C.; Parra-Rodriguez A.; Shillito R.; Paolo A. D.; Oliver W. D.; Marcus C. M.; Kjaergaard M.; Gyenis A.; Blais A.. Nonreciprocal Devices Based on Voltage-Tunable Junctions. arXiv Preprint 2022, arXiv:2209.06194 https://arxiv.org/abs/2209.06194 (accessed 01.06.2023).

Souto R. S.; Leijnse M.; Schrade C. Josephson Diode Effect in Supercurrent Interferometers. Phys. Rev. Lett. 2022, 129, 267702.10.1103/PhysRevLett.129.267702. PubMed DOI

Linder J.; Robinson J. W. A. Superconducting Spintronics. Nat. Phys. 2015, 11, 307–315. 10.1038/nphys3242. DOI

Hart S.; Ren H.; Kosowsky M.; Ben-Shach G.; Leubner P.; Brüne C.; Buhmann H.; Molenkamp L. W.; Halperin B. I.; Yacoby A. Controlled Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells. Nat. Phys. 2017, 13, 87–93. 10.1038/nphys3877. DOI

Baumgartner C.; Fuchs L.; Costa A.; Reinhardt S.; Gronin S.; Gardner G. C.; Lindemann T.; Manfra M. J.; Faria Junior P. E.; Kochan D.; Fabian J.; Paradiso N.; Strunk C. Supercurrent Rectification and Magnetochiral Effects in Symmetric Josephson Junctions. Nat. Nanotechnol. 2022, 17, 39–44. 10.1038/s41565-021-01009-9. PubMed DOI

Costa A.; Baumgartner C.; Reinhardt S.; Berger J.; Gronin S.; Gardner G. C.; Lindemann T.; Manfra M. J.; Fabian J.; Kochan D.; Paradiso N.; Strunk C.. Sign Reversal of the Josephson Inductance Magnetochiral Anisotropy and 0–π-like Transitions in Supercurrent Diodes. Nat. Nanotechnol. 2023,10.1038/s41565-023-01451-x. PubMed DOI

Baumgartner C.; Fuchs L.; Costa A.; Picó-Cortés J.; Reinhardt S.; Gronin S.; Gardner G. C.; Lindemann T.; Manfra M. J.; Junior P. E. F.; Kochan D.; Fabian J.; Paradiso N.; Strunk C. Effect of Rashba and Dresselhaus Spin–Orbit Coupling on Supercurrent Rectification and Magnetochiral Anisotropy of Ballistic Josephson Junctions. J. Phys. Condens. 2022, 34, 154005.10.1088/1361-648X/ac4d5e. PubMed DOI

Pientka F.; Keselman A.; Berg E.; Yacoby A.; Stern A.; Halperin B. I. Topological Superconductivity in a Planar Josephson Junction. Phys. Rev. X 2017, 7, 021032.10.1103/PhysRevX.7.021032. DOI

Hell M.; Leijnse M.; Flensberg K. Two-Dimensional Platform for Networks of Majorana Bound States. Phys. Rev. Lett. 2017, 118, 107701.10.1103/PhysRevLett.118.107701. PubMed DOI

Fornieri A.; et al. Evidence of Topological Superconductivity in Planar Josephson Junctions. Nature 2019, 569, 89–92. 10.1038/s41586-019-1068-8. PubMed DOI

Ren H.; Pientka F.; Hart S.; Pierce A. T.; Kosowsky M.; Lunczer L.; Schlereth R.; Scharf B.; Hankiewicz E. M.; Molenkamp L. W.; Halperin B. I.; Yacoby A. Topological Superconductivity in a Phase-Controlled Josephson Junction. Nature 2019, 569, 3–8. 10.1038/s41586-019-1148-9. PubMed DOI

Dartiailh M. C.; Mayer W.; Yuan J.; Wickramasinghe K. S.; Matos-Abiague A.; Žutić I.; Shabani J. Phase Signature of Topological Transition in Josephson Junctions. Phys. Rev. Lett. 2021, 126, 036802.10.1103/PhysRevLett.126.036802. PubMed DOI

Konschelle F. m. c.; Tokatly I. V.; Bergeret F. S. Theory of the Spin-Galvanic Effect and the Anomalous Phase Shift φ0 in Superconductors and Josephson Junctions with Intrinsic Spin-Orbit Coupling. Phys. Rev. B 2015, 92, 125443.10.1103/PhysRevB.92.125443. DOI

Szombati D. B.; Nadj-Perge S.; Car D.; Plissard S. R.; Bakkers E. P. A. M.; Kouwenhoven L. P. Josephson φ0-Junction in Nanowire Quantum Dots. Nat. Phys. 2016, 12, 568–572. 10.1038/nphys3742. DOI

Murani A.; Kasumov A.; Sengupta S.; Kasumov Y. A.; Volkov V. T.; Khodos I. I.; Brisset F.; Delagrange R.; Chepelianskii A.; Deblock R.; Bouchiat H.; Guéron S. Ballistic Edge States in Bismuth Nanowires Revealed by SQUID Interferometry. Nat. Commun. 2017, 8, 15941.10.1038/ncomms15941. PubMed DOI PMC

Spanton E. M.; Deng M.; Vaitiekėnas S.; Krogstrup P.; Nygård J.; Marcus C. M.; Moler K. A. Current-Phase Relations of Few-Mode InAs Nanowire Josephson Junctions. Nat. Phys. 2017, 13, 1177–1181. 10.1038/nphys4224. DOI

Li C.; de Ronde B.; de Boer J.; Ridderbos J.; Zwanenburg F.; Huang Y.; Golubov A.; Brinkman A. Zeeman-Effect-Induced 0−π Transitions in Ballistic Dirac Semimetal Josephson Junctions. Phys. Rev. Lett. 2019, 123, 026802.10.1103/PhysRevLett.123.026802. PubMed DOI

Assouline A.; Feuillet-Palma C.; Bergeal N.; Zhang T.; Mottaghizadeh A.; Zimmers A.; Lhuillier E.; Eddrie M.; Atkinson P.; Aprili M.; Aubin H. Spin-Orbit Induced Phase-Shift in Bi2Se3 Josephson Junctions. Nat. Commun. 2019, 10, 126.10.1038/s41467-018-08022-y. PubMed DOI PMC

Mayer W.; Dartiailh M. C.; Yuan J.; Wickramasinghe K. S.; Rossi E.; Shabani J. Gate Controlled Anomalous Phase Shift in Al/InAs Josephson Junctions. Nat. Commun. 2020, 11, 212.10.1038/s41467-019-14094-1. PubMed DOI PMC

Haxell D. Z.; Coraiola M.; Hinderling M.; ten Kate S. C.; Sabonis D.; Svetogorov A. E.; Belzig W.; Cheah E.; Krizek F.; Schott R.; Wegscheider W.; Nichele F.. Demonstration of the Nonlocal Josephson Effect in Andreev Molecules. Nano Lett. 2023, 23, 7532.10.1021/acs.nanolett.3c02066. PubMed DOI PMC

Bezuglyi E. V.; Rozhavsky A. S.; Vagner I. D.; Wyder P. Combined Effect of Zeeman Splitting and Spin-Orbit Interaction on the Josephson Current in a Superconductor–Two-Dimensional Electron Gas–Superconductor Structure. Phys. Rev. B 2002, 66, 052508.10.1103/PhysRevB.66.052508. DOI

Buzdin A. Direct Coupling Between Magnetism and Superconducting Current in the Josephson φ0 Junction. Phys. Rev. Lett. 2008, 101, 107005.10.1103/PhysRevLett.101.107005. PubMed DOI

Liu J.-F.; Chan K. S. Relation Between Symmetry Breaking and the Anomalous Josephson Effect. Phys. Rev. B 2010, 82, 125305.10.1103/PhysRevB.82.125305. DOI

Yokoyama T.; Eto M.; Nazarov Y. V. Anomalous Josephson Effect Induced by Spin-Orbit Interaction and Zeeman Effect in Semiconductor Nanowires. Phys. Rev. B 2014, 89, 195407.10.1103/PhysRevB.89.195407. DOI

Bergeret F. S.; Tokatly I. V. Theory of Diffusive φ0 Josephson Junctions in the Presence of Spin-Orbit Coupling. EPL 2015, 110, 57005.10.1209/0295-5075/110/57005. DOI

Fulde P.; Ferrell R. A. Superconductivity in a Strong Spin-Exchange Field. Phys. Rev. 1964, 135, A550–A563. 10.1103/PhysRev.135.A550. DOI

Larkin A. I.; Ovchinnikov Y. N.. Nonuniform State of Superconductors. Zh. Eksperim. i Teor. Fiz. 1964, 47.

Shabani J.; Kjaergaard M.; Suominen H. J.; Kim Y.; Nichele F.; Pakrouski K.; Stankevic T.; Lutchyn R. M.; Krogstrup P.; Feidenhans’l R.; Kraemer S.; Nayak C.; Troyer M.; Marcus C. M.; Palmstrøm C. J. Two-Dimensional Epitaxial Superconductor-Semiconductor Heterostructures: A Platform for Topological Superconducting Networks. Phys. Rev. B 2016, 93, 155402.10.1103/PhysRevB.93.155402. DOI

Cheah E.; Haxell D. Z.; Schott R.; Zeng P.; Paysen E.; ten Kate S. C.; Coraiola M.; Landstetter M.; Zadeh A. B.; Trampert A.; Sousa M.; Riel H.; Nichele F.; Wegscheider W.; Krizek F. Control Over Epitaxy and the Role of the InAs/Al Interface in Hybrid Two-Dimensional Electron Gas Systems. Phys. Rev. Mater. 2023, 7, 073403.10.1103/PhysRevMaterials.7.073403. DOI

Kjaergaard M.; Suominen H. J.; Nowak M. P.; Akhmerov A. R.; Shabani J.; Palmstrøm C. J.; Nichele F.; Marcus C. M. Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction. Phys. Rev. Appl. 2017, 7, 034029.10.1103/PhysRevApplied.7.034029. DOI

Nichele F.; Portolés E.; Fornieri A.; Whiticar A. M.; Drachmann A. C. C.; Gronin S.; Wang T.; Gardner G. C.; Thomas C.; Hatke A. T.; Manfra M. J.; Marcus C. M. Relating Andreev Bound States and Supercurrents in Hybrid Josephson Junctions. Phys. Rev. Lett. 2020, 124, 226801.10.1103/PhysRevLett.124.226801. PubMed DOI

Wickramasinghe K. S.; Mayer W.; Yuan J.; Nguyen T.; Jiao L.; Manucharyan V.; Shabani J. Transport Properties of Near Surface InAs Two-Dimensional Heterostructures. Appl. Phys. Lett. 2018, 113, 262104.10.1063/1.5050413. DOI

Winkler R.Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems; Springer Berlin Heidelberg, 2003.

Banerjee A.; Lesser O.; Rahman M. A.; Thomas C.; Wang T.; Manfra M. J.; Berg E.; Oreg Y.; Stern A.; Marcus C. M. Local and Nonlocal Transport Spectroscopy in Planar Josephson Junctions. Phys. Rev. Lett. 2023, 130, 096202.10.1103/PhysRevLett.130.096202. PubMed DOI

Prada E.; San-Jose P.; de Moor M. W. A.; Geresdi A.; Lee E. J. H.; Klinovaja J.; Loss D.; Nygård J.; Aguado R.; Kouwenhoven L. P. From Andreev to Majorana Bound States in Hybrid Superconductor–Semiconductor Nanowires. Nat. Rev. Phys. 2020, 2, 575–594. 10.1038/s42254-020-0228-y. DOI

Hess R.; Legg H. F.; Loss D.; Klinovaja J. Trivial Andreev Band Mimicking Topological Bulk Gap Reopening in the Nonlocal Conductance of Long Rashba Nanowires. Phys. Rev. Lett. 2023, 130, 207001.10.1103/PhysRevLett.130.207001. PubMed DOI

Drachmann A. C. C.; Diaz R. E.; Thomas C.; Suominen H. J.; Whiticar A. M.; Fornieri A.; Gronin S.; Wang T.; Gardner G. C.; Hamilton A. R.; Nichele F.; Manfra M. J.; Marcus C. M. Anodic Oxidation of Epitaxial Superconductor-Semiconductor Hybrids. Phys. Rev. Mater. 2021, 5, 013805.10.1103/PhysRevMaterials.5.013805. DOI

Haxell D. Z.; Cheah E.; Křížek F.; Schott R.; Ritter M. F.; Hinderling M.; Belzig W.; Bruder C.; Wegscheider W.; Riel H.; Nichele F. Measurements of Phase Dynamics in Planar Josephson Junctions and SQUIDs. Phys. Rev. Lett. 2023, 130, 087002.10.1103/PhysRevLett.130.087002. PubMed DOI

Nichele F.; Drachmann A. C. C.; Whiticar A. M.; O’Farrell E. C. T.; Suominen H. J.; Fornieri A.; Wang T.; Gardner G. C.; Thomas C.; Hatke A. T.; Krogstrup P.; Manfra M. J.; Flensberg K.; Marcus C. M. Scaling of Majorana Zero-Bias Conductance Peaks. Phys. Rev. Lett. 2017, 119, 136803.10.1103/PhysRevLett.119.136803. PubMed DOI

Suominen H. J.; Kjaergaard M.; Hamilton A. R.; Shabani J.; Palmstrøm C. J.; Marcus C. M.; Nichele F. Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform. Phys. Rev. Lett. 2017, 119, 176805.10.1103/PhysRevLett.119.176805. PubMed DOI

Nesterov K. N.; Houzet M.; Meyer J. S. Anomalous Josephson Effect in Semiconducting Nanowires as a Signature of the Topologically Nontrivial Phase. Phys. Rev. B 2016, 93, 174502.10.1103/PhysRevB.93.174502. DOI

Hinderling M.; Sabonis D.; Paredes S.; Haxell D.; Coraiola M.; ten Kate S.; Cheah E.; Krizek F.; Schott R.; Wegscheider W.; Nichele F. Flip-Chip-Based Microwave Spectroscopy of Andreev Bound States in a Planar Josephson Junction. Phys. Rev. Appl. 2023, 19, 054026.10.1103/PhysRevApplied.19.054026. DOI

Terzioglu E.; Beasley M. Complementary Josephson Junction Devices and Circuits: A Possible New Approach to Superconducting Electronics. IEEE Trans. Appl. Supercond. 1998, 8, 48–53. 10.1109/77.678441. DOI

Ustinov A. V.; Kaplunenko V. K. Rapid Single-Flux Quantum Logic Using φ-Shifters. J. Appl. Phys. 2003, 94, 5405.10.1063/1.1604964. DOI

Su Z.; et al. Mirage Andreev Spectra Generated by Mesoscopic Leads in Nanowire Quantum Dots. Phys. Rev. Lett. 2018, 121, 127705.10.1103/PhysRevLett.121.127705. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...