Zeeman- and Orbital-Driven Phase Shifts in Planar Josephson Junctions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37694539
PubMed Central
PMC10540266
DOI
10.1021/acsnano.3c04957
Knihovny.cz E-zdroje
- Klíčová slova
- 2DEG, hybrid materials, orbital effect, phase transitions, spin−orbit interaction, superconductor−semiconductor, φ0-junction,
- Publikační typ
- časopisecké články MeSH
We perform supercurrent and tunneling spectroscopy measurements on gate-tunable InAs/Al Josephson junctions (JJs) in an in-plane magnetic field and report on phase shifts in the current-phase relation measured with respect to an absolute phase reference. The impact of orbital effects is investigated by studying multiple devices with different superconducting lead sizes. At low fields, we observe gate-dependent phase shifts of up to φ0 = 0.5π, which are consistent with a Zeeman field coupling to highly transmissive Andreev bound states via Rashba spin-orbit interaction. A distinct phase shift emerges at larger fields, concomitant with a switching current minimum and the closing and reopening of the superconducting gap. These signatures of an induced phase transition, which might resemble a topological transition, scale with the superconducting lead size, demonstrating the crucial role of orbital effects. Our results elucidate the interplay of Zeeman, spin-orbit, and orbital effects in InAs/Al JJs, giving improved understanding of phase transitions in hybrid JJs and their applications in quantum computing and superconducting electronics.
IBM Research Europe Zurich 8803 Rüschlikon Switzerland
Institute of Physics Czech Academy of Sciences 162 00 Prague Czech Republic
Laboratory for Solid State Physics ETH Zürich 8093 Zürich Switzerland
Zobrazit více v PubMed
de Lange G.; van Heck B.; Bruno A.; van Woerkom D. J.; Geresdi A.; Plissard S. R.; Bakkers E. P. A. M.; Akhmerov A. R.; DiCarlo L. Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements. Phys. Rev. Lett. 2015, 115, 127002.10.1103/PhysRevLett.115.127002. PubMed DOI
Larsen T. W.; Petersson K. D.; Kuemmeth F.; Jespersen T. S.; Krogstrup P.; Nygård J.; Marcus C. M. Semiconductor-Nanowire-Based Superconducting Qubit. Phys. Rev. Lett. 2015, 115, 127001.10.1103/PhysRevLett.115.127001. PubMed DOI
Casparis L.; Connolly M. R.; Kjaergaard M.; Pearson N. J.; Kringhøj A.; Larsen T. W.; Kuemmeth F.; Wang T.; Thomas C.; Gronin S.; Gardner G. C.; Manfra M. J.; Marcus C. M.; Petersson K. D. Superconducting Gatemon Qubit Based on a Proximitized Two-Dimensional Electron Gas. Nat. Nanotechnol. 2018, 13, 915–919. 10.1038/s41565-018-0207-y. PubMed DOI
Kringhøj A.; Larsen T. W.; Erlandsson O.; Uilhoorn W.; Kroll J.; Hesselberg M.; McNeil R.; Krogstrup P.; Casparis L.; Marcus C.; Petersson K. Magnetic-Field-Compatible Superconducting Transmon Qubit. Phys. Rev. Appl. 2021, 15, 054001.10.1103/PhysRevApplied.15.054001. DOI
Hertel A.; Eichinger M.; Andersen L. O.; van Zanten D. M.; Kallatt S.; Scarlino P.; Kringhøj A.; Chavez-Garcia J. M.; Gardner G. C.; Gronin S.; Manfra M. J.; Gyenis A.; Kjaergaard M.; Marcus C. M.; Petersson K. D. Gate-Tunable Transmon Using Selective-Area-Grown Superconductor-Semiconductor Hybrid Structures on Silicon. Phys. Rev. Appl. 2022, 18, 034042.10.1103/PhysRevApplied.18.034042. DOI
Andreev A. F.Thermal Conductivity of the Intermediate State of Superconductors. Zh. Eksperim. i Teor. Fiz. 1964, 46.
Beenakker C. W. J.; van Houten H. Josephson Current Through a Superconducting Quantum Point Contact Shorter than the Coherence Length. Phys. Rev. Lett. 1991, 66, 3056–3059. 10.1103/PhysRevLett.66.3056. PubMed DOI
Furusaki A.; Tsukada M. Current-Carrying States in Josephson Junctions. Phys. Rev. B 1991, 43, 10164–10169. 10.1103/PhysRevB.43.10164. PubMed DOI
Despósito M. A.; Levy Yeyati A. Controlled Dephasing of Andreev States in Superconducting Quantum Point Contacts. Phys. Rev. B 2001, 64, 140511.10.1103/PhysRevB.64.140511. DOI
Zazunov A.; Shumeiko V. S.; Bratus’ E. N.; Lantz J.; Wendin G. Andreev Level Qubit. Phys. Rev. Lett. 2003, 90, 087003.10.1103/PhysRevLett.90.087003. PubMed DOI
Chtchelkatchev N. M.; Nazarov Y. V. Andreev Quantum Dots for Spin Manipulation. Phys. Rev. Lett. 2003, 90, 226806.10.1103/PhysRevLett.90.226806. PubMed DOI
Padurariu C.; Nazarov Y. V. Theoretical Proposal for Superconducting Spin Qubits. Phys. Rev. B 2010, 81, 144519.10.1103/PhysRevB.81.144519. DOI
Janvier C.; Tosi L.; Bretheau L.; Girit C. O.; Stern M.; Bertet P.; Joyez P.; Vion D.; Esteve D.; Goffman M. F.; Pothier H.; Urbina C. Coherent Manipulation of Andreev States in Superconducting Atomic Contacts. Science 2015, 349, 1199–1202. 10.1126/science.aab2179. PubMed DOI
Hays M.; de Lange G.; Serniak K.; van Woerkom D. J.; Bouman D.; Krogstrup P.; Nygård J.; Geresdi A.; Devoret M. H. Direct Microwave Measurement of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson Junction. Phys. Rev. Lett. 2018, 121, 047001.10.1103/PhysRevLett.121.047001. PubMed DOI
Tosi L.; Metzger C.; Goffman M. F.; Urbina C.; Pothier H.; Park S.; Yeyati A. L.; Nygård J.; Krogstrup P. Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy. Phys. Rev. X 2019, 9, 011010.10.1103/PhysRevX.9.011010. DOI
Hays M.; Fatemi V.; Bouman D.; Cerrillo J.; Diamond S.; Serniak K.; Connolly T.; Krogstrup P.; Nygård J.; Yeyati A. L.; Geresdi A.; Devoret M. H. Coherent Manipulation of an Andreev Spin Qubit. Science 2021, 373, 430–433. 10.1126/science.abf0345. PubMed DOI
Matute-Cañadas F. J.; Metzger C.; Park S.; Tosi L.; Krogstrup P.; Nygård J.; Goffman M. F.; Urbina C.; Pothier H.; Yeyati A. L. Signatures of Interactions in the Andreev Spectrum of Nanowire Josephson Junctions. Phys. Rev. Lett. 2022, 128, 197702.10.1103/PhysRevLett.128.197702. PubMed DOI
Pita-Vidal M.; Bargerbos A.; Žitko R.; Splitthoff L. J.; Grünhaupt L.; Wesdorp J. J.; Liu Y.; Kouwenhoven L. P.; Aguado R.; van Heck B.; Kou A.; Andersen C. K.. Direct Manipulation of a Superconducting Spin Qubit Strongly Coupled to a Transmon Qubit. Nat. Phys. 2023, 19, 1110.10.1038/s41567-023-02071-x. DOI
Gheewala T. Josephson-Logic Devices and Circuits. IEEE Trans. Electron Devices 1980, 27, 1857–1869. 10.1109/T-ED.1980.20123. DOI
Clark T. D.; Prance R. J.; Grassie A. D. C. Feasibility of Hybrid Josephson Field Effect Transistors. J. Appl. Phys. 1980, 51, 2736.10.1063/1.327935. DOI
Kleinsasser A.; Jackson T. Prospects for Proximity Effect Superconducting FETs. IEEE Trans. Magn. 1989, 25, 1274–1277. 10.1109/20.92528. DOI
Wen F.; Yuan J.; Wickramasinghe K. S.; Mayer W.; Shabani J.; Tutuc E. Epitaxial Al-InAs Heterostructures as Platform for Josephson Junction Field-Effect Transistor Logic Devices. IEEE Trans. Electron Devices 2021, 68, 1524–1529. 10.1109/TED.2021.3057790. DOI
Leroux C.; Parra-Rodriguez A.; Shillito R.; Paolo A. D.; Oliver W. D.; Marcus C. M.; Kjaergaard M.; Gyenis A.; Blais A.. Nonreciprocal Devices Based on Voltage-Tunable Junctions. arXiv Preprint 2022, arXiv:2209.06194 https://arxiv.org/abs/2209.06194 (accessed 01.06.2023).
Souto R. S.; Leijnse M.; Schrade C. Josephson Diode Effect in Supercurrent Interferometers. Phys. Rev. Lett. 2022, 129, 267702.10.1103/PhysRevLett.129.267702. PubMed DOI
Linder J.; Robinson J. W. A. Superconducting Spintronics. Nat. Phys. 2015, 11, 307–315. 10.1038/nphys3242. DOI
Hart S.; Ren H.; Kosowsky M.; Ben-Shach G.; Leubner P.; Brüne C.; Buhmann H.; Molenkamp L. W.; Halperin B. I.; Yacoby A. Controlled Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells. Nat. Phys. 2017, 13, 87–93. 10.1038/nphys3877. DOI
Baumgartner C.; Fuchs L.; Costa A.; Reinhardt S.; Gronin S.; Gardner G. C.; Lindemann T.; Manfra M. J.; Faria Junior P. E.; Kochan D.; Fabian J.; Paradiso N.; Strunk C. Supercurrent Rectification and Magnetochiral Effects in Symmetric Josephson Junctions. Nat. Nanotechnol. 2022, 17, 39–44. 10.1038/s41565-021-01009-9. PubMed DOI
Costa A.; Baumgartner C.; Reinhardt S.; Berger J.; Gronin S.; Gardner G. C.; Lindemann T.; Manfra M. J.; Fabian J.; Kochan D.; Paradiso N.; Strunk C.. Sign Reversal of the Josephson Inductance Magnetochiral Anisotropy and 0–π-like Transitions in Supercurrent Diodes. Nat. Nanotechnol. 2023,10.1038/s41565-023-01451-x. PubMed DOI
Baumgartner C.; Fuchs L.; Costa A.; Picó-Cortés J.; Reinhardt S.; Gronin S.; Gardner G. C.; Lindemann T.; Manfra M. J.; Junior P. E. F.; Kochan D.; Fabian J.; Paradiso N.; Strunk C. Effect of Rashba and Dresselhaus Spin–Orbit Coupling on Supercurrent Rectification and Magnetochiral Anisotropy of Ballistic Josephson Junctions. J. Phys. Condens. 2022, 34, 154005.10.1088/1361-648X/ac4d5e. PubMed DOI
Pientka F.; Keselman A.; Berg E.; Yacoby A.; Stern A.; Halperin B. I. Topological Superconductivity in a Planar Josephson Junction. Phys. Rev. X 2017, 7, 021032.10.1103/PhysRevX.7.021032. DOI
Hell M.; Leijnse M.; Flensberg K. Two-Dimensional Platform for Networks of Majorana Bound States. Phys. Rev. Lett. 2017, 118, 107701.10.1103/PhysRevLett.118.107701. PubMed DOI
Fornieri A.; et al. Evidence of Topological Superconductivity in Planar Josephson Junctions. Nature 2019, 569, 89–92. 10.1038/s41586-019-1068-8. PubMed DOI
Ren H.; Pientka F.; Hart S.; Pierce A. T.; Kosowsky M.; Lunczer L.; Schlereth R.; Scharf B.; Hankiewicz E. M.; Molenkamp L. W.; Halperin B. I.; Yacoby A. Topological Superconductivity in a Phase-Controlled Josephson Junction. Nature 2019, 569, 3–8. 10.1038/s41586-019-1148-9. PubMed DOI
Dartiailh M. C.; Mayer W.; Yuan J.; Wickramasinghe K. S.; Matos-Abiague A.; Žutić I.; Shabani J. Phase Signature of Topological Transition in Josephson Junctions. Phys. Rev. Lett. 2021, 126, 036802.10.1103/PhysRevLett.126.036802. PubMed DOI
Konschelle F. m. c.; Tokatly I. V.; Bergeret F. S. Theory of the Spin-Galvanic Effect and the Anomalous Phase Shift φ0 in Superconductors and Josephson Junctions with Intrinsic Spin-Orbit Coupling. Phys. Rev. B 2015, 92, 125443.10.1103/PhysRevB.92.125443. DOI
Szombati D. B.; Nadj-Perge S.; Car D.; Plissard S. R.; Bakkers E. P. A. M.; Kouwenhoven L. P. Josephson φ0-Junction in Nanowire Quantum Dots. Nat. Phys. 2016, 12, 568–572. 10.1038/nphys3742. DOI
Murani A.; Kasumov A.; Sengupta S.; Kasumov Y. A.; Volkov V. T.; Khodos I. I.; Brisset F.; Delagrange R.; Chepelianskii A.; Deblock R.; Bouchiat H.; Guéron S. Ballistic Edge States in Bismuth Nanowires Revealed by SQUID Interferometry. Nat. Commun. 2017, 8, 15941.10.1038/ncomms15941. PubMed DOI PMC
Spanton E. M.; Deng M.; Vaitiekėnas S.; Krogstrup P.; Nygård J.; Marcus C. M.; Moler K. A. Current-Phase Relations of Few-Mode InAs Nanowire Josephson Junctions. Nat. Phys. 2017, 13, 1177–1181. 10.1038/nphys4224. DOI
Li C.; de Ronde B.; de Boer J.; Ridderbos J.; Zwanenburg F.; Huang Y.; Golubov A.; Brinkman A. Zeeman-Effect-Induced 0−π Transitions in Ballistic Dirac Semimetal Josephson Junctions. Phys. Rev. Lett. 2019, 123, 026802.10.1103/PhysRevLett.123.026802. PubMed DOI
Assouline A.; Feuillet-Palma C.; Bergeal N.; Zhang T.; Mottaghizadeh A.; Zimmers A.; Lhuillier E.; Eddrie M.; Atkinson P.; Aprili M.; Aubin H. Spin-Orbit Induced Phase-Shift in Bi2Se3 Josephson Junctions. Nat. Commun. 2019, 10, 126.10.1038/s41467-018-08022-y. PubMed DOI PMC
Mayer W.; Dartiailh M. C.; Yuan J.; Wickramasinghe K. S.; Rossi E.; Shabani J. Gate Controlled Anomalous Phase Shift in Al/InAs Josephson Junctions. Nat. Commun. 2020, 11, 212.10.1038/s41467-019-14094-1. PubMed DOI PMC
Haxell D. Z.; Coraiola M.; Hinderling M.; ten Kate S. C.; Sabonis D.; Svetogorov A. E.; Belzig W.; Cheah E.; Krizek F.; Schott R.; Wegscheider W.; Nichele F.. Demonstration of the Nonlocal Josephson Effect in Andreev Molecules. Nano Lett. 2023, 23, 7532.10.1021/acs.nanolett.3c02066. PubMed DOI PMC
Bezuglyi E. V.; Rozhavsky A. S.; Vagner I. D.; Wyder P. Combined Effect of Zeeman Splitting and Spin-Orbit Interaction on the Josephson Current in a Superconductor–Two-Dimensional Electron Gas–Superconductor Structure. Phys. Rev. B 2002, 66, 052508.10.1103/PhysRevB.66.052508. DOI
Buzdin A. Direct Coupling Between Magnetism and Superconducting Current in the Josephson φ0 Junction. Phys. Rev. Lett. 2008, 101, 107005.10.1103/PhysRevLett.101.107005. PubMed DOI
Liu J.-F.; Chan K. S. Relation Between Symmetry Breaking and the Anomalous Josephson Effect. Phys. Rev. B 2010, 82, 125305.10.1103/PhysRevB.82.125305. DOI
Yokoyama T.; Eto M.; Nazarov Y. V. Anomalous Josephson Effect Induced by Spin-Orbit Interaction and Zeeman Effect in Semiconductor Nanowires. Phys. Rev. B 2014, 89, 195407.10.1103/PhysRevB.89.195407. DOI
Bergeret F. S.; Tokatly I. V. Theory of Diffusive φ0 Josephson Junctions in the Presence of Spin-Orbit Coupling. EPL 2015, 110, 57005.10.1209/0295-5075/110/57005. DOI
Fulde P.; Ferrell R. A. Superconductivity in a Strong Spin-Exchange Field. Phys. Rev. 1964, 135, A550–A563. 10.1103/PhysRev.135.A550. DOI
Larkin A. I.; Ovchinnikov Y. N.. Nonuniform State of Superconductors. Zh. Eksperim. i Teor. Fiz. 1964, 47.
Shabani J.; Kjaergaard M.; Suominen H. J.; Kim Y.; Nichele F.; Pakrouski K.; Stankevic T.; Lutchyn R. M.; Krogstrup P.; Feidenhans’l R.; Kraemer S.; Nayak C.; Troyer M.; Marcus C. M.; Palmstrøm C. J. Two-Dimensional Epitaxial Superconductor-Semiconductor Heterostructures: A Platform for Topological Superconducting Networks. Phys. Rev. B 2016, 93, 155402.10.1103/PhysRevB.93.155402. DOI
Cheah E.; Haxell D. Z.; Schott R.; Zeng P.; Paysen E.; ten Kate S. C.; Coraiola M.; Landstetter M.; Zadeh A. B.; Trampert A.; Sousa M.; Riel H.; Nichele F.; Wegscheider W.; Krizek F. Control Over Epitaxy and the Role of the InAs/Al Interface in Hybrid Two-Dimensional Electron Gas Systems. Phys. Rev. Mater. 2023, 7, 073403.10.1103/PhysRevMaterials.7.073403. DOI
Kjaergaard M.; Suominen H. J.; Nowak M. P.; Akhmerov A. R.; Shabani J.; Palmstrøm C. J.; Nichele F.; Marcus C. M. Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction. Phys. Rev. Appl. 2017, 7, 034029.10.1103/PhysRevApplied.7.034029. DOI
Nichele F.; Portolés E.; Fornieri A.; Whiticar A. M.; Drachmann A. C. C.; Gronin S.; Wang T.; Gardner G. C.; Thomas C.; Hatke A. T.; Manfra M. J.; Marcus C. M. Relating Andreev Bound States and Supercurrents in Hybrid Josephson Junctions. Phys. Rev. Lett. 2020, 124, 226801.10.1103/PhysRevLett.124.226801. PubMed DOI
Wickramasinghe K. S.; Mayer W.; Yuan J.; Nguyen T.; Jiao L.; Manucharyan V.; Shabani J. Transport Properties of Near Surface InAs Two-Dimensional Heterostructures. Appl. Phys. Lett. 2018, 113, 262104.10.1063/1.5050413. DOI
Winkler R.Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems; Springer Berlin Heidelberg, 2003.
Banerjee A.; Lesser O.; Rahman M. A.; Thomas C.; Wang T.; Manfra M. J.; Berg E.; Oreg Y.; Stern A.; Marcus C. M. Local and Nonlocal Transport Spectroscopy in Planar Josephson Junctions. Phys. Rev. Lett. 2023, 130, 096202.10.1103/PhysRevLett.130.096202. PubMed DOI
Prada E.; San-Jose P.; de Moor M. W. A.; Geresdi A.; Lee E. J. H.; Klinovaja J.; Loss D.; Nygård J.; Aguado R.; Kouwenhoven L. P. From Andreev to Majorana Bound States in Hybrid Superconductor–Semiconductor Nanowires. Nat. Rev. Phys. 2020, 2, 575–594. 10.1038/s42254-020-0228-y. DOI
Hess R.; Legg H. F.; Loss D.; Klinovaja J. Trivial Andreev Band Mimicking Topological Bulk Gap Reopening in the Nonlocal Conductance of Long Rashba Nanowires. Phys. Rev. Lett. 2023, 130, 207001.10.1103/PhysRevLett.130.207001. PubMed DOI
Drachmann A. C. C.; Diaz R. E.; Thomas C.; Suominen H. J.; Whiticar A. M.; Fornieri A.; Gronin S.; Wang T.; Gardner G. C.; Hamilton A. R.; Nichele F.; Manfra M. J.; Marcus C. M. Anodic Oxidation of Epitaxial Superconductor-Semiconductor Hybrids. Phys. Rev. Mater. 2021, 5, 013805.10.1103/PhysRevMaterials.5.013805. DOI
Haxell D. Z.; Cheah E.; Křížek F.; Schott R.; Ritter M. F.; Hinderling M.; Belzig W.; Bruder C.; Wegscheider W.; Riel H.; Nichele F. Measurements of Phase Dynamics in Planar Josephson Junctions and SQUIDs. Phys. Rev. Lett. 2023, 130, 087002.10.1103/PhysRevLett.130.087002. PubMed DOI
Nichele F.; Drachmann A. C. C.; Whiticar A. M.; O’Farrell E. C. T.; Suominen H. J.; Fornieri A.; Wang T.; Gardner G. C.; Thomas C.; Hatke A. T.; Krogstrup P.; Manfra M. J.; Flensberg K.; Marcus C. M. Scaling of Majorana Zero-Bias Conductance Peaks. Phys. Rev. Lett. 2017, 119, 136803.10.1103/PhysRevLett.119.136803. PubMed DOI
Suominen H. J.; Kjaergaard M.; Hamilton A. R.; Shabani J.; Palmstrøm C. J.; Marcus C. M.; Nichele F. Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform. Phys. Rev. Lett. 2017, 119, 176805.10.1103/PhysRevLett.119.176805. PubMed DOI
Nesterov K. N.; Houzet M.; Meyer J. S. Anomalous Josephson Effect in Semiconducting Nanowires as a Signature of the Topologically Nontrivial Phase. Phys. Rev. B 2016, 93, 174502.10.1103/PhysRevB.93.174502. DOI
Hinderling M.; Sabonis D.; Paredes S.; Haxell D.; Coraiola M.; ten Kate S.; Cheah E.; Krizek F.; Schott R.; Wegscheider W.; Nichele F. Flip-Chip-Based Microwave Spectroscopy of Andreev Bound States in a Planar Josephson Junction. Phys. Rev. Appl. 2023, 19, 054026.10.1103/PhysRevApplied.19.054026. DOI
Terzioglu E.; Beasley M. Complementary Josephson Junction Devices and Circuits: A Possible New Approach to Superconducting Electronics. IEEE Trans. Appl. Supercond. 1998, 8, 48–53. 10.1109/77.678441. DOI
Ustinov A. V.; Kaplunenko V. K. Rapid Single-Flux Quantum Logic Using φ-Shifters. J. Appl. Phys. 2003, 94, 5405.10.1063/1.1604964. DOI
Su Z.; et al. Mirage Andreev Spectra Generated by Mesoscopic Leads in Nanowire Quantum Dots. Phys. Rev. Lett. 2018, 121, 127705.10.1103/PhysRevLett.121.127705. PubMed DOI