A new metaphor-less simple algorithm based on Rao algorithms: a Fully Informed Search Algorithm (FISA)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37705627
PubMed Central
PMC10495973
DOI
10.7717/peerj-cs.1431
PII: cs-1431
Knihovny.cz E-zdroje
- Klíčová slova
- Constrained engineering optimization, Fully Informed Search Algorithm (FISA), Optimization, Rao algorithms,
- Publikační typ
- časopisecké články MeSH
Many important engineering optimization problems require a strong and simple optimization algorithm to achieve the best solutions. In 2020, Rao introduced three non-parametric algorithms, known as Rao algorithms, which have garnered significant attention from researchers worldwide due to their simplicity and effectiveness in solving optimization problems. In our simulation studies, we have developed a new version of the Rao algorithm called the Fully Informed Search Algorithm (FISA), which demonstrates acceptable performance in optimizing real-world problems while maintaining the simplicity and non-parametric nature of the original algorithms. We evaluate the effectiveness of the suggested FISA approach by applying it to optimize the shifted benchmark functions, such as those provided in CEC 2005 and CEC 2014, and by using it to design mechanical system components. We compare the results of FISA to those obtained using the original RAO method. The outcomes obtained indicate the efficacy of the proposed new algorithm, FISA, in achieving optimized solutions for the aforementioned problems. The MATLAB Codes of FISA are publicly available at https://github.com/ebrahimakbary/FISA.
Department of Electronics and Electrical Engineering Shiraz University of Technology Shiraz Iran
Department of Mechanical Engineering McMaster University Hamilton Canada
Zobrazit více v PubMed
Akay B, Karaboga D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing. 2012;23:1001–1014. doi: 10.1007/s10845-010-0393-4. DOI
Akbari E, Rahimnejad A, Gadsden SA. A greedy non-hierarchical grey wolf optimizer for real-world optimization. Electronics Letters. 2021;57:499–501. doi: 10.1049/ELL2.12176. DOI
Aragón VS, Esquivel SC, Coello CAC. A modified version of a T-cell algorithm for constrained optimization problems. International Journal for Numerical Methods in Engineering. 2010;84(3):351–378. doi: 10.1002/nme.2904. DOI
Askari Q, Younas I. Improved political optimizer for complex landscapes and engineering optimization problems. Expert Systems with Applications. 2021;182:115178. doi: 10.1016/J.ESWA.2021.115178. DOI
Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures. 2016;169:1–12. doi: 10.1016/j.compstruc.2016.03.001. DOI
Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congress on Evolutionary Computation; Piscataway. 2007. pp. 4661–4667. DOI
Band SS, Ardabili S, Danesh ASeyed, Mansor Z, AlShourbaji I, Mosavi A. Colonial competitive evolutionary Rao algorithm for optimal engineering design. Alexandria Engineering Journal. 2022;61:11537–11563. doi: 10.1016/J.AEJ.2022.05.018. DOI
Bernardino HS, Barbosa HJC, Lemonge ACC, Fonseca LG. A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); 2008. DOI
Birogul S. Hybrid harris hawk optimization based on differential evolution (HHODE) algorithm for optimal power flow problem. IEEE Access. 2019;7:184468–184488. doi: 10.1109/ACCESS.2019.2958279. DOI
Coelho L dos S, Dos Santos Coelho L, Coelho L dos S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Systems with Applications. 2010;37:1676–1683. doi: 10.1016/j.eswa.2009.06.044. DOI
Coello Coello CA. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry. 2000;41:113–127. doi: 10.1016/s0166-3615(99)00046-9. DOI
Coello Coello CA, Becerra RL. Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization. 2004;36:219–236. doi: 10.1080/03052150410001647966. DOI
Coello Coello CA, Mezura Montes E, Coello CAC, Montes EM, Coello Coello CA, Mezura Montes E. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics. 2002;16:193–203. doi: 10.1016/s1474-0346(02)00011-3. DOI
Dorigo M, Di Caro G. Ant colony optimization: a new meta-heuristic. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406); DOI
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures. 2012;110–111:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI
Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Engineering Optimization. 2006;38:129–154. doi: 10.1080/03052150500384759. DOI
Ghasemi M, Aghaei J, Hadipour M. New self-organising hierarchical PSO with jumping time-varying acceleration coefficients. Electronics Letters. 2017;53:1360–1362. doi: 10.1049/el.2017.2112. DOI
Ghasemi M, Akbari E, Faraji Davoudkhani I, Rahimnejad A, Asadpoor MB, Gadsden SA. Application of Coulomb’s and Franklin’s laws algorithm to solve large-scale optimal reactive power dispatch problems. Soft Computing. 2022a;26:13899–13923. doi: 10.1007/s00500-022-07417-w. DOI
Ghasemi M, Akbari M-A, Jun C, Bateni SM, Zare M, Zahedi A, Pai H-T, Band SS, Moslehpour M, Chau K-W. Circulatory System Based Optimization (CSBO): an expert multilevel biologically inspired meta-heuristic algorithm. Engineering Applications of Computational Fluid Mechanics. 2022b;16:1483–1525. doi: 10.1080/19942060.2022.2098826. DOI
Ghasemi M, Akbari E, Rahimnejad A, Razavi SE, Ghavidel S, Li L. Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing. 2019;23:9701–9718. doi: 10.1007/s00500-018-3536-8. DOI
Ghasemi M, Rahimnejad A, Gil M, Akbari E, Gadsden SA. A self-competitive mutation strategy for differential evolution algorithms with applications to proportional–integral–derivative controllers and automatic voltage regulator systems. Decision Analytics Journal. 2023;7:100205. doi: 10.1016/J.DAJOUR.2023.100205. DOI
Gogna A, Tayal A. Metaheuristics: review and application. Journal of Experimental & Theoretical Artificial Intelligence. 2013;25:503–526. doi: 10.1080/0952813x.2013.782347. DOI
Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S. Henry gas solubility optimization: a novel physics-based algorithm. Future Generation Computer Systems. 2019;101:646–667. doi: 10.1016/j.future.2019.07.015. DOI
He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence. 2007;20:89–99. doi: 10.1016/j.engappai.2006.03.003. DOI
Hedar A-R, Fukushima M. Derivative-free filter simulated annealing method for constrained continuous global optimization. Journal of Global Optimization. 2006;35:521–549. doi: 10.1007/s10898-005-3693-z. DOI
Huang F, Wang L, He Q. An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation. 2007;186:340–356. doi: 10.1016/j.amc.2006.07.105. DOI
Hwang S-F, He R-S. A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics. 2006;20:7–21. doi: 10.1016/j.aei.2005.09.001. DOI
Kalemci EN, Ikizler SBanu. Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall. Geomechanics and Engineering. 2020;20:527–536. doi: 10.12989/gae.2020.20.6.527. DOI
Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization. 2007;39:459–471. doi: 10.1007/s10898-007-9149-x. DOI
Kaveh A, Dadras A. A novel meta-heuristic optimization algorithm: thermal exchange optimization. Advances in Engineering Software. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. DOI
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95-international conference on neural networks; Piscataway. 1995. pp. 1942–1948.
Kumar V, Yadav SM. Self-adaptive multi-population-based Jaya algorithm to optimize the cropping pattern under a constraint environment. Journal of Hydroinformatics. 2019;22:368–384. doi: 10.2166/hydro.2019.087. DOI
Liu B, Chen Q, Zhang Q, Liang JJ, Suganthan P-NB, Qu BY. Problem definitions and evaluation criteria for computationally expensive single objective numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, SingaporeTechnical Report. 2013
Liu Z, Nishi T. Strategy dynamics particle swarm optimizer. Information Sciences. 2022;582:665–703. doi: 10.1016/J.INS.2021.10.028. DOI
Meng Z, Zhong Y, Mao G, Liang Y. PSO-sono: a novel PSO variant for single-objective numerical optimization. Information Sciences. 2022;586:176–191. doi: 10.1016/J.INS.2021.11.076. DOI
Mezura-Montes E, Coello CAC. Useful infeasible solutions in engineering optimization with evolutionary algorithms. Lecture Notes in Computer Science; 2005. pp. 652–662. DOI
Mezura-Montes E, Coello CAC. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems. 2008;37:443–473. doi: 10.1080/03081070701303470. DOI
Mezura-Montes E, Hernández-Ocana B. Bacterial foraging for engineering design problems: preliminary results. Laboratorio Nacional de Informática Avanzada (LANIA AC)-Universidad Juárez Autónoma de Tabasco; México: 2008.
Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Systems. 2015;89:228–249. doi: 10.1016/j.knosys.2015.07.006. DOI
Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Montemurro M, Vincenti A, Vannucci P. The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms. Computer Methods in Applied Mechanics and Engineering. 2013;256:70–87. doi: 10.1016/j.cma.2012.12.009. DOI
Ngo TT, Sadollah A, Kim JH. A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. Journal of Computational Science. 2016;13:68–82. doi: 10.1016/j.jocs.2016.01.004. DOI
Parsopoulos KE, Vrahatis MN. Unified particle swarm optimization for solving constrained engineering optimization problems. International conference on natural computation; Cham. 2005. pp. 582–591.
Premkumar M, Babu TS, Umashankar S, Sowmya R. A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik. 2020;208:164559. doi: 10.1016/j.ijleo.2020.164559. DOI
Premkumar M, Jangir P, Sowmya R, Elavarasan RM, Kumar BS. Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules. ISA Transactions. 2021;116:139–166. doi: 10.1016/J.ISATRA.2021.01.045. PubMed DOI
Rao RV. Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. International Journal of Industrial Engineering Computations. 2020;11:107–130. doi: 10.5267/j.ijiec.2019.6.002. DOI
Rao RV, Keesari HSingh, Taler J, Oclon P, Taler D. Elitist Rao algorithms and R-method for optimization of energy systems. Heat Transfer Engineering. 2022:926–950. doi: 10.1080/01457632.2022.2113448. DOI
Rao RV, Pawar RB. Constrained design optimization of selected mechanical system components using Rao algorithms. Applied Soft Computing. 2020a;89:106141. doi: 10.1016/j.asoc.2020.106141. DOI
Rao RV, Pawar RB. Self-adaptive multi-population rao algorithms for engineering design optimization. Applied Artificial Intelligence. 2020b;34:187–250. doi: 10.1080/08839514.2020.1712789. DOI
Rao RV, Pawar RB. Design optimization of cam-follower mechanisms using Rao algorithms and their variants. Evolutionary Intelligence. 2022 doi: 10.1007/s12065-022-00750-x. DOI
Rao RV, Pawar RB. Dimensional synthesis of four-bar mechanisms using Rao algorithms and their variants. Applied Soft Computing. 2023;132:109839. doi: 10.1016/j.asoc.2022.109839. DOI
Rao RVV, Savsani VJJ, Vakharia DPP. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design. 2011;43:303–315. doi: 10.1016/j.cad.2010.12.015. DOI
Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: a gravitational search algorithm. Information Sciences. 2009;179:2232–2248. doi: 10.1016/J.INS.2009.03.004. DOI
Ray T, Liew K-M. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation. 2003;7:386–396. doi: 10.1109/TEVC.2003.814902. DOI
Sahay S, Upputuri R, Kumar N. Optimal power flow-based approach for grid dispatch problems through Rao algorithms. Journal of Engineering Research. 2023;11:100032. doi: 10.1016/j.jer.2023.100032. DOI
Shadravan S, Naji HR, Bardsiri VK. The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence. 2019;80:20–34. doi: 10.1016/j.engappai.2019.01.001. DOI
Storn R, Price K. International Computer Science, Berkeley, CaliforniaDifferential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces: technical report TR-95-012. 1995
Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nanyang Technological University, Singapore, May 2005 AND KanGAL Report #2005005, IIT Kanpur, IndiaTechnical report. 2005
Wang L, Wang Z, Liang H, Huang C. Parameter estimation of photovoltaic cell model with Rao-1 algorithm. Optik. 2020;210:163846. doi: 10.1016/j.ijleo.2019.163846. DOI
Whitley D. A genetic algorithm tutorial. Statistics and Computing. 1994;4:65–85. doi: 10.1007/bf00175354. DOI
Yang XS. Firefly algorithm, stochastic test functions and design optimisation. International symposium on stochastic algorithms; Berlin, Heidelberg. 2009. pp. 169–178. DOI
Yang X-S. A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); 2010. pp. 65–74. DOI
Yılmaz M, Dede T. Multi-objective time–cost trade-off optimization for the construction scheduling with Rao algorithms. Structures. 2023;48:798–808. doi: 10.1016/j.istruc.2023.01.006. DOI
Zervoudakis K, Tsafarakis S. A mayfly optimization algorithm. Computers & Industrial Engineering. 2020;145:106559. doi: 10.1016/J.CIE.2020.106559. DOI
Zhang J, Xiao M, Gao L, Pan Q. Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling. 2018;63:464–490. doi: 10.1016/j.apm.2018.06.036. DOI
Zhao W, Wang L, Zhang Z. Supply-demand-based optimization: a novel economics-inspired algorithm for global optimization. IEEE Access. 2019;7:73182–73206. doi: 10.1109/ACCESS.2019.2918753. DOI
Zou L, Pan Z, Gao Z, Gao J. Improving the search accuracy of differential evolution by using the number of consecutive unsuccessful updates. Knowledge-Based Systems. 2022;250:109005. doi: 10.1016/J.KNOSYS.2022.109005. DOI