Solvent-controlled formation of alkali and alkali-earth-secured cucurbituril/guest trimers

. 2023 Sep 13 ; 14 (35) : 9258-9266. [epub] 20230815

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37712024

Cucurbit[7]uril (CB[7]) encapsulates adamantyl and trimethylsilyl substituents of positively charged guests in dimethyl sulfoxide (DMSO). Unlike in water or deuterium oxide, addition of a selection of alkali and alkali-earth cations with van der Waals radii between 1.0 and 1.4 Å (Na+, K+, Ca2+, Sr2+, Ba2+ and Eu3+) to the CB[7]/guest complexes triggers their cation-mediated trimerization, a process that is very slow on the nuclear magnetic resonance (NMR) time scale. Smaller (Li+, Mg2+) or larger cations (Rb+, Cs+ or NH4+) are inert. The trimers display extensive CH-O interactions between the equatorial and pseudo-equatorial hydrogens of CB[7] and the carbonyl rim of the neighboring CB[7] unit in the trimer, and a deeply nested cation between the three interacting carbonylated CB[7] rims; a counteranion is likely perched in the shallow cavity formed by the three outer walls of CB[7] in the trimer. Remarkably, a guest must occupy the cavity of CB[7] for trimerization to take place. Using a combination of semi-empirical and density functional theory techniques in conjunction with continuum solvation models, we showed that trimerization is favored in DMSO, and not in water, because the penalty for the partial desolvation of three of the six CB[7] portals upon aggregation into a trimer is less unfavorable in DMSO compared to water.

Zobrazit více v PubMed

Nau W. M. Florea M. Assaf K. I. Isr. J. Chem. 2011;51:559–577. doi: 10.1002/ijch.201100044. DOI

Mohanty J. Nau W. M. Angew. Chem., Int. Ed. 2005;44:3750–3754. doi: 10.1002/anie.200500502. PubMed DOI

Ko Y. H. Hwang I. Lee D.-W. Kim K. Isr. J. Chem. 2011;51:506–514. doi: 10.1002/ijch.201100041. DOI

Florea M. Nau W. M. Angew. Chem., Int. Ed. 2011;50:9338–9342. doi: 10.1002/anie.201104119. PubMed DOI

Marquez C. Nau W. M. Angew. Chem., Int. Ed. 2001;40:4387–4390. doi: 10.1002/1521-3773(20011203)40:23<4387::AID-ANIE4387>3.0.CO;2-H. PubMed DOI

Moghaddam S. Yang C. Rekharsky M. Ko Y. H. Kim K. Inoue Y. Gilson M. K. J. Am. Chem. Soc. 2011;133:3570–3581. doi: 10.1021/ja109904u. PubMed DOI PMC

Rekharsky M. V. Mori T. Yang C. Ko Y. H. Selvapalam N. Kim H. Sobransingh D. Kaifer A. E. Liu S. Isaacs L. Chen W. Moghaddam S. Gilson M. K. Kim K. Inoue Y. Proc. Natl. Acad. Sci. U. S. A. 2007;104:20737–20742. doi: 10.1073/pnas.0706407105. PubMed DOI PMC

Liu S. Ruspic C. Mukhopadhyay P. Chakrabarti S. Zavalij P. Y. Isaacs L. J. Am. Chem. Soc. 2005;127:15959–15967. doi: 10.1021/ja055013x. PubMed DOI

Lagona J. Mukhopadhyay P. Chakrabarti S. Isaacs L. Angew. Chem., Int. Ed. 2005;44:4844–4870. doi: 10.1002/anie.200460675. PubMed DOI

Masson E. Ling X. Joseph R. Kyeremeh-Mensah L. Lu X. RSC Adv. 2012;2:1213–1247. doi: 10.1039/C1RA00768H. DOI

Barrow S. J. Kasera S. Rowland M. J. del Barrio J. Scherman O. A. Chem. Rev. 2015;115:12320–12406. doi: 10.1021/acs.chemrev.5b00341. PubMed DOI

Dračínský M. Hurtado C. S. Masson E. Kaleta J. Chem. Commun. 2021;57:2132–2135. doi: 10.1039/D1CC00240F. PubMed DOI

Wang W. Kaifer A. E. Supramol. Chem. 2010;22:710–716. doi: 10.1080/10610278.2010.500729. DOI

Senler S. Cheng B. Kaifer A. E. Org. Lett. 2014;16:5834–5837. doi: 10.1021/ol502479k. PubMed DOI

Kim J. Jung I.-S. Kim S.-Y. Lee E. Kang J.-K. Sakamoto S. Yamaguchi K. Kim K. J. Am. Chem. Soc. 2000;122:540–541. doi: 10.1021/ja993376p. DOI

Lehn J. M. Struct. Bonding (Berlin) 1973;16:1–69. doi: 10.1007/BFb0004364. DOI

Khan A. A. Baur W. H. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972;28:683–693. doi: 10.1107/S0567740872003024. DOI

Yang X. Wang R. Kermagoret A. Bardelang D. Angew. Chem., Int. Ed. 2020;132:21464–21476. doi: 10.1002/ange.202004622. PubMed DOI

Combes S. Tran K. T. Ayhan M. M. Karoui H. Rockenbauer A. Tonetto A. Monnier V. Charles L. Rosas R. Viel S. Siri D. Tordo P. Clair S. Wang R. Bardelang D. Ouari O. J. Am. Chem. Soc. 2019;141:5897–5907. doi: 10.1021/jacs.9b00150. PubMed DOI

Ouari O. Bardelang D. Isr. J. Chem. 2018;58:343–356. doi: 10.1002/ijch.201700115. DOI

Bardelang D. Udachin K. A. Leek D. M. Margeson J. C. Chan G. Ratcliffe C. I. Ripmeester J. A. Cryst. Growth Des. 2011;11:5598–5614. doi: 10.1021/cg201173j. DOI

Bardelang D. Banaszak K. Karoui H. Rockenbauer A. Waite M. Udachin K. Ripmeester J. A. Ratcliffe C. I. Ouari O. Tordo P. J. Am. Chem. Soc. 2009;131:5402–5404. doi: 10.1021/ja900306m. PubMed DOI

Shimada K. Kato H. Saito T. Matsuyama S. Kinugasa S. J. Chem. Phys. 2005;122:244914–244917. doi: 10.1063/1.1948378. PubMed DOI

Raeisi M. Kotturi K. del Valle I. Schulz J. Dornblut P. Masson E. J. Am. Chem. Soc. 2018;140:3371–3377. doi: 10.1021/jacs.7b13304. PubMed DOI

Joseph R. Nkrumah A. Clark R. J. Masson E. J. Am. Chem. Soc. 2014;136:6602–6607. doi: 10.1021/ja4092165. PubMed DOI

Huang W.-H., Liu S. and Isaacs L., in Modern Supramolecular Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, pp. 113–142

Grimme S. J. Chem. Theory Comput. 2019;15:2847–2862. doi: 10.1021/acs.jctc.9b00143. PubMed DOI

Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI

Grimme S. Bannwarth C. Shushkov P. J. Chem. Theory Comput. 2017;13:1989–2009. doi: 10.1021/acs.jctc.7b00118. PubMed DOI

Ehlert S. Stahn M. Spicher S. Grimme S. J. Chem. Theory Comput. 2021;17:4250–4261. doi: 10.1021/acs.jctc.1c00471. PubMed DOI

Pais V. F. Carvalho E. F. A. Tomé J. P. C. Pischel U. Supramol. Chem. 2014;26:642–647. doi: 10.1080/10610278.2014.926011. DOI

Zhang S. Grimm L. Miskolczy Z. Biczók L. Biedermann F. Nau W. M. Chem. Commun. 2019;55:14131–14134. doi: 10.1039/C9CC07687E. PubMed DOI

Grimme S. Chem.–Eur. J. 2012;18:9955–9964. doi: 10.1002/chem.201200497. PubMed DOI

BIOVIA COSMOtherm, Release 2020, Dassault Systèmes, http://www.3ds.com

Klamt A. J. Phys. Chem. 1995;99:2224–2235. doi: 10.1021/j100007a062. DOI

Marcus Y. Chem. Rev. 2009;109:1346–1370. doi: 10.1021/cr8003828. PubMed DOI

Kelly C. P. Cramer C. J. Truhlar D. G. J. Phys. Chem. B. 2007;111:408–422. doi: 10.1021/jp065403l. PubMed DOI PMC

Kelly C. P. Cramer C. J. Truhlar D. G. J. Chem. Theory Comput. 2005;1:1133–1152. doi: 10.1021/ct050164b. PubMed DOI

Da Silva J. P. Jayaraj N. Jockusch S. Turro N. J. Ramamurthy V. Org. Lett. 2011;13:2410–2413. doi: 10.1021/ol200647j. PubMed DOI

Shen J. Dearden D. V. Isr. J. Chem. 2018;58:225–229. doi: 10.1002/ijch.201700095. DOI

Marcus Y. Biophys. Chem. 1994;51:111–127. doi: 10.1016/0301-4622(94)00051-4. DOI

Ling X. Masson E. Org. Lett. 2012;14:4866–4869. doi: 10.1021/ol3021989. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Surface inclusion and dynamics of cucurbit[7]uril-based supramolecular complexes

. 2025 Aug 06 ; 16 (31) : 14081-14087. [epub] 20250610

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...