Solvent-controlled formation of alkali and alkali-earth-secured cucurbituril/guest trimers
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37712024
PubMed Central
PMC10498720
DOI
10.1039/d3sc02032k
PII: d3sc02032k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cucurbit[7]uril (CB[7]) encapsulates adamantyl and trimethylsilyl substituents of positively charged guests in dimethyl sulfoxide (DMSO). Unlike in water or deuterium oxide, addition of a selection of alkali and alkali-earth cations with van der Waals radii between 1.0 and 1.4 Å (Na+, K+, Ca2+, Sr2+, Ba2+ and Eu3+) to the CB[7]/guest complexes triggers their cation-mediated trimerization, a process that is very slow on the nuclear magnetic resonance (NMR) time scale. Smaller (Li+, Mg2+) or larger cations (Rb+, Cs+ or NH4+) are inert. The trimers display extensive CH-O interactions between the equatorial and pseudo-equatorial hydrogens of CB[7] and the carbonyl rim of the neighboring CB[7] unit in the trimer, and a deeply nested cation between the three interacting carbonylated CB[7] rims; a counteranion is likely perched in the shallow cavity formed by the three outer walls of CB[7] in the trimer. Remarkably, a guest must occupy the cavity of CB[7] for trimerization to take place. Using a combination of semi-empirical and density functional theory techniques in conjunction with continuum solvation models, we showed that trimerization is favored in DMSO, and not in water, because the penalty for the partial desolvation of three of the six CB[7] portals upon aggregation into a trimer is less unfavorable in DMSO compared to water.
Zobrazit více v PubMed
Nau W. M. Florea M. Assaf K. I. Isr. J. Chem. 2011;51:559–577. doi: 10.1002/ijch.201100044. DOI
Mohanty J. Nau W. M. Angew. Chem., Int. Ed. 2005;44:3750–3754. doi: 10.1002/anie.200500502. PubMed DOI
Ko Y. H. Hwang I. Lee D.-W. Kim K. Isr. J. Chem. 2011;51:506–514. doi: 10.1002/ijch.201100041. DOI
Florea M. Nau W. M. Angew. Chem., Int. Ed. 2011;50:9338–9342. doi: 10.1002/anie.201104119. PubMed DOI
Marquez C. Nau W. M. Angew. Chem., Int. Ed. 2001;40:4387–4390. doi: 10.1002/1521-3773(20011203)40:23<4387::AID-ANIE4387>3.0.CO;2-H. PubMed DOI
Moghaddam S. Yang C. Rekharsky M. Ko Y. H. Kim K. Inoue Y. Gilson M. K. J. Am. Chem. Soc. 2011;133:3570–3581. doi: 10.1021/ja109904u. PubMed DOI PMC
Rekharsky M. V. Mori T. Yang C. Ko Y. H. Selvapalam N. Kim H. Sobransingh D. Kaifer A. E. Liu S. Isaacs L. Chen W. Moghaddam S. Gilson M. K. Kim K. Inoue Y. Proc. Natl. Acad. Sci. U. S. A. 2007;104:20737–20742. doi: 10.1073/pnas.0706407105. PubMed DOI PMC
Liu S. Ruspic C. Mukhopadhyay P. Chakrabarti S. Zavalij P. Y. Isaacs L. J. Am. Chem. Soc. 2005;127:15959–15967. doi: 10.1021/ja055013x. PubMed DOI
Lagona J. Mukhopadhyay P. Chakrabarti S. Isaacs L. Angew. Chem., Int. Ed. 2005;44:4844–4870. doi: 10.1002/anie.200460675. PubMed DOI
Masson E. Ling X. Joseph R. Kyeremeh-Mensah L. Lu X. RSC Adv. 2012;2:1213–1247. doi: 10.1039/C1RA00768H. DOI
Barrow S. J. Kasera S. Rowland M. J. del Barrio J. Scherman O. A. Chem. Rev. 2015;115:12320–12406. doi: 10.1021/acs.chemrev.5b00341. PubMed DOI
Dračínský M. Hurtado C. S. Masson E. Kaleta J. Chem. Commun. 2021;57:2132–2135. doi: 10.1039/D1CC00240F. PubMed DOI
Wang W. Kaifer A. E. Supramol. Chem. 2010;22:710–716. doi: 10.1080/10610278.2010.500729. DOI
Senler S. Cheng B. Kaifer A. E. Org. Lett. 2014;16:5834–5837. doi: 10.1021/ol502479k. PubMed DOI
Kim J. Jung I.-S. Kim S.-Y. Lee E. Kang J.-K. Sakamoto S. Yamaguchi K. Kim K. J. Am. Chem. Soc. 2000;122:540–541. doi: 10.1021/ja993376p. DOI
Lehn J. M. Struct. Bonding (Berlin) 1973;16:1–69. doi: 10.1007/BFb0004364. DOI
Khan A. A. Baur W. H. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972;28:683–693. doi: 10.1107/S0567740872003024. DOI
Yang X. Wang R. Kermagoret A. Bardelang D. Angew. Chem., Int. Ed. 2020;132:21464–21476. doi: 10.1002/ange.202004622. PubMed DOI
Combes S. Tran K. T. Ayhan M. M. Karoui H. Rockenbauer A. Tonetto A. Monnier V. Charles L. Rosas R. Viel S. Siri D. Tordo P. Clair S. Wang R. Bardelang D. Ouari O. J. Am. Chem. Soc. 2019;141:5897–5907. doi: 10.1021/jacs.9b00150. PubMed DOI
Ouari O. Bardelang D. Isr. J. Chem. 2018;58:343–356. doi: 10.1002/ijch.201700115. DOI
Bardelang D. Udachin K. A. Leek D. M. Margeson J. C. Chan G. Ratcliffe C. I. Ripmeester J. A. Cryst. Growth Des. 2011;11:5598–5614. doi: 10.1021/cg201173j. DOI
Bardelang D. Banaszak K. Karoui H. Rockenbauer A. Waite M. Udachin K. Ripmeester J. A. Ratcliffe C. I. Ouari O. Tordo P. J. Am. Chem. Soc. 2009;131:5402–5404. doi: 10.1021/ja900306m. PubMed DOI
Shimada K. Kato H. Saito T. Matsuyama S. Kinugasa S. J. Chem. Phys. 2005;122:244914–244917. doi: 10.1063/1.1948378. PubMed DOI
Raeisi M. Kotturi K. del Valle I. Schulz J. Dornblut P. Masson E. J. Am. Chem. Soc. 2018;140:3371–3377. doi: 10.1021/jacs.7b13304. PubMed DOI
Joseph R. Nkrumah A. Clark R. J. Masson E. J. Am. Chem. Soc. 2014;136:6602–6607. doi: 10.1021/ja4092165. PubMed DOI
Huang W.-H., Liu S. and Isaacs L., in Modern Supramolecular Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, pp. 113–142
Grimme S. J. Chem. Theory Comput. 2019;15:2847–2862. doi: 10.1021/acs.jctc.9b00143. PubMed DOI
Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI
Grimme S. Bannwarth C. Shushkov P. J. Chem. Theory Comput. 2017;13:1989–2009. doi: 10.1021/acs.jctc.7b00118. PubMed DOI
Ehlert S. Stahn M. Spicher S. Grimme S. J. Chem. Theory Comput. 2021;17:4250–4261. doi: 10.1021/acs.jctc.1c00471. PubMed DOI
Pais V. F. Carvalho E. F. A. Tomé J. P. C. Pischel U. Supramol. Chem. 2014;26:642–647. doi: 10.1080/10610278.2014.926011. DOI
Zhang S. Grimm L. Miskolczy Z. Biczók L. Biedermann F. Nau W. M. Chem. Commun. 2019;55:14131–14134. doi: 10.1039/C9CC07687E. PubMed DOI
Grimme S. Chem.–Eur. J. 2012;18:9955–9964. doi: 10.1002/chem.201200497. PubMed DOI
BIOVIA COSMOtherm, Release 2020, Dassault Systèmes, http://www.3ds.com
Klamt A. J. Phys. Chem. 1995;99:2224–2235. doi: 10.1021/j100007a062. DOI
Marcus Y. Chem. Rev. 2009;109:1346–1370. doi: 10.1021/cr8003828. PubMed DOI
Kelly C. P. Cramer C. J. Truhlar D. G. J. Phys. Chem. B. 2007;111:408–422. doi: 10.1021/jp065403l. PubMed DOI PMC
Kelly C. P. Cramer C. J. Truhlar D. G. J. Chem. Theory Comput. 2005;1:1133–1152. doi: 10.1021/ct050164b. PubMed DOI
Da Silva J. P. Jayaraj N. Jockusch S. Turro N. J. Ramamurthy V. Org. Lett. 2011;13:2410–2413. doi: 10.1021/ol200647j. PubMed DOI
Shen J. Dearden D. V. Isr. J. Chem. 2018;58:225–229. doi: 10.1002/ijch.201700095. DOI
Marcus Y. Biophys. Chem. 1994;51:111–127. doi: 10.1016/0301-4622(94)00051-4. DOI
Ling X. Masson E. Org. Lett. 2012;14:4866–4869. doi: 10.1021/ol3021989. PubMed DOI
Surface inclusion and dynamics of cucurbit[7]uril-based supramolecular complexes