Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37713240
PubMed Central
PMC10548421
DOI
10.1021/acs.inorgchem.3c01731
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{μ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{μ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{μ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.
University of Pisa Dipartimento di Chimica e Chimica Industriale Via G Moruzzi 13 1 56124 Pisa Italy
Zobrazit více v PubMed
Zeng L.; Gupta P.; Chen Y.; Wang E.; Ji L.; Chao H.; Chen Z.-S. The development of anticancer ruthenium(II) complexes: from single molecule compoun;ds to nanomaterials. Chem. Soc. Rev. 2017, 46, 5771–5804. 10.1039/C7CS00195A. PubMed DOI PMC
Anthony E. J.; Bolitho E. M.; Bridgewater H. E.; Carter O. W. L.; Donnelly J. M.; Imberti C.; Lant E. C.; Lermyte F.; Needham R. J.; Palau M.; Sadler P. J.; Shi H.; Wang F.-X.; Zhang W.-Y.; Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. 10.1039/D0SC04082G. PubMed DOI PMC
Ribeiro G. H.; Costa A. R.; de Souza A. R.; da Silva F. V.; Martins F. T.; Plutin A. M.; Batista A. A. An overview on the anticancer activity of Ru (II)/acylthiourea complexes. Coord. Chem. Rev. 2023, 488, 21516110.1016/j.ccr.2023.215161. DOI
Meier-Menches S. M.; Gerner C.; Berger W.; Hartinger C. G.; Keppler B. K. Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development. Chem. Soc. Rev. 2018, 47, 909–928. 10.1039/C7CS00332C. PubMed DOI
Alessio E.; Messori L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995.10.3390/molecules24101995. PubMed DOI PMC
Wernitznig D.; Kiakos K.; Del Favero G.; Harrer N.; Machat H.; Osswald A.; Jakupec M. A.; Wernitznig A.; Sommergruber W.; Keppler B. K. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics 2019, 11, 1044–1048. 10.1039/c9mt00051h. PubMed DOI
Thota S.; Rodrigues D. A.; Crans D. C.; Barreiro E. J. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics?. J. Med. Chem. 2018, 61, 5805–5821. 10.1021/acs.jmedchem.7b01689. PubMed DOI
Steel T. R.; Walsh F.; Wieczorek-Błauz A.; Hanif M.; Hartinger C. G. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord. Chem. Rev. 2021, 439, 21389010.1016/j.ccr.2021.213890. DOI
Murray B. S.; Dyson P. J. Recent progress in the development of organometallics for the treatment of cancer. Curr. Opinion Chem. Biol. 2020, 56, 28–34. 10.1016/j.cbpa.2019.11.001. PubMed DOI
Betanzos-Lara S.; Salassa L.; Habtemariam A.; Novakova O.; Pizarro A. M.; Clarkson G. J.; Liskova B.; Brabec V.; Sadler P. J. Photoactivatable organometallic pyridyl ruthenium (II) arene complexes. Organometallics 2012, 31 (9), 3466–3479. 10.1021/om201177y. DOI
Murray B. S.; Babak M. V.; Hartinger C. G.; Dyson P. J. The development of RAPTA compounds for the treatment of tumors. Coord. Chem. Rev. 2016, 306, 86–114. 10.1016/j.ccr.2015.06.014. DOI
Rausch M.; Dyson P. J.; Nowak-Sliwinska P. Recent Considerations in the Application of RAPTA-C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. Adv. Ther. 2019, 2, 190004210.1002/adtp.201900042. DOI
Weiss A.; Berndsen R. H.; Dubois M.; Müller C.; Schibli R.; Griffioen A. W.; Dyson P. J.; Nowak-Sliwinska P. In vivo anti-tumor activity of the organometallic ruthenium(II)-arene complex [Ru(η6-p-cymene)-Cl2(pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem. Sci. 2014, 5, 4742–4748. 10.1039/C4SC01255K. DOI
Morais T. S.; Valente A.; Tomaz A. I.; Marques F.; Garcia M. H. Tracking antitumor metallodrugs: promising agents with the Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Future Med. Chem. 2016, 8, 527–544. 10.4155/fmc.16.7. PubMed DOI
Florindo P. R.; Pereira D. M.; Borralho P. M.; Rodrigues C. M. P.; Piedade M. F. M.; Fernandes A. C. Cyclopentadienyl – Ruthenium(II) and Iron(II) Organometallic Compounds with Carbohydrate Derivative Ligands as Good Colorectal Anticancer Agents. J. Med. Chem. 2015, 58, 4339–4347. 10.1021/acs.jmedchem.5b00403. PubMed DOI
Hajji L.; Saraiba-Bello C.; Scalambra F.; Segovia-Torrente G.; Romerosa A. Ru complexes containing Cp, mPTA and natural purine bases (mPTA = methyl-N-1,3,5-triaza-7-phosphaadamantane): Evaluation of their antiproliferative activity, solubility and redox properties. J. Inorg. Biochem. 2021, 218, 11140410.1016/j.jinorgbio.2021.111404. PubMed DOI
Mendoza Z.; Lorenzo-Luis P.; Serrano-Ruiz M.; Martín-Batista E.; Padròn J. M.; Scalambra F.; Romerosa A. Synthesis and Antiproliferative Activity of [RuCp(PPh3)2(HdmoPTA)](OSO2CF3)2 (HdmoPTA = 3,7-H-3,7-Dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane). Inorg. Chem. 2016, 55, 7820–7822. 10.1021/acs.inorgchem.6b01207. PubMed DOI
Dutta B.; Scolaro C.; Scopelliti R.; Dyson P. J.; Severin K. Importance of the π-Ligand: Remarkable Effect of the Cyclopentadienyl Ring on the Cytotoxicity of Ruthenium PTA Compounds. Organometallics 2008, 27, 1355–1357. 10.1021/om800025a. DOI
Alshurafa H.; El-khateeb M.; Abul-Futouh H.; Görls H.; Weigand W. Cyclopentadienyl ruthenium complexes of mixed heterocyclic thiol and Bis(diphenylphosphino)ferrocene ligands. J. Mol. Struct. 2019, 1191, 1–5. 10.1016/j.molstruc.2019.04.008. DOI
Tolbatov I.; Barresi E.; Taliani S.; La Mendola D.; Marzo T.; Marrone A. Diruthenium(II,III) paddlewheel complexes: effects of bridging and axial ligands on anticancer properties. Inorg. Chem. Front. 2023, 10, 2226–2238. 10.1039/D3QI00157A. DOI
Campanella B.; Braccini S.; Bresciani G.; De Franco M.; Gandin V.; Chiellini F.; Pratesi A.; Pampaloni G.; Biancalana L.; Marchetti F. The choice of μ-vinyliminium ligand substituents is key to optimize the antiproliferative activity of related diiron complexes. Metallomics 2023, 15, mfac09610.1093/mtomcs/mfac096. PubMed DOI
Rahman F.-U.; Zeeshan Bhatti M.; Ali A.; Duong H.-Q.; Zhang Y.; Ji X.; Lin Y.; Wang H.; Li Z. T.; Zhang D.-W. Dimetallic Ru(II) arene complexes appended on bis-salicylaldimine induce cancer cell death and suppress invasion via p53-dependent signaling. Eur. J. Med. Chem. 2018, 157, 1480–1490. 10.1016/j.ejmech.2018.08.054. PubMed DOI
Tomšík P.; Muthnà D.; Řezačova M.; Mičuda S.; Cmielova J.; Hroch M.; Endlicher R.; Červinkova Z.; Rudolf E.; Hann S.; Stíbal D.; Therrien B.; Süss-Fink G. [(p-MeC6H4Pri)2Ru2(SC6H4-p-But)3]Cl (diruthenium-1), a dinuclear arene ruthenium compound with very high anticancer activity: An in vitro and in vivo study. J. Organomet. Chem. 2015, 782, 42–51. 10.1016/j.jorganchem.2014.10.050. DOI
Giannini F.; Geiser L.; Paul L. E. H.; Order T.; Therrien B.; Süss-Fink G.; Furrer J. A. Tuning the in vitro cell cytotoxicity of dinuclear arene ruthenium trithiolato complexes: Influence of the arene ligand. J. Organomet. Chem. 2015, 783, 40–45. 10.1016/j.jorganchem.2015.02.010. DOI
Zhao J.; Li S.; Wang X.; Xu G.; Gou S. Dinuclear Organoruthenium Complexes Exhibiting Antiproliferative Activity through DNA Damage and a Reactive-Oxygen-Species-Mediated Endoplasmic Reticulum Stress Pathway. Inorg. Chem. 2019, 58, 2208–2217. 10.1021/acs.inorgchem.8b03447. PubMed DOI
Nazarov A. A.; Mendoza-Ferri M. G.; Hanif M.; Keppler B. K.; Dyson P. J. Hartinger, Understanding the interactions of diruthenium anticancer agents with amino acids. J. Biol. Inorg. Chem. 2018, 23, 1159–1164. 10.1007/s00775-018-1597-x. PubMed DOI
Stíbal D.; Therrien B.; Süss-Fink G.; Nowak-Sliwinska P.; Dyson P. J.; Čermáková E.; Řezáčová M.; Tomšík P. Chlorambucil conjugates of dinuclear p-cymene ruthenium trithiolato complexes: synthesis, characterization and cytotoxicity study in vitro and in vivo. J. Biol. Inorg. Chem. 2016, 21, 443–452. 10.1007/s00775-016-1353-z. PubMed DOI
Studer V.; Anghel N.; Desiatkina O.; Felder T.; Boubaker G.; Amdouni Y.; Ramseier J.; Hungerbühler M.; Kempf C.; Heverhagen J. T.; Hemphill A.; Ruprecht N.; Furrer J.; Păunescu R. Conjugates Containing Two and Three Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Units as In Vitro Antiparasitic and Anticancer Agents. Pharmaceuticals 2020, 13, 471.10.3390/ph13120471. PubMed DOI PMC
Orts-Arroyo M.; Gutierrez F.; Gil-Tebar A.; Ibarrola-Villava M.; Jimenez-Martí E.; Silvestre-Llora A.; Castro I.; Ribas G.; Martínez-Lillo J. A novel adenine-based diruthenium(III) complex: Synthesis, crystal structure, electrochemical properties and evaluation of the anticancer activity. J. Inorg. Biochem. 2022, 232, 11181210.1016/j.jinorgbio.2022.111812. PubMed DOI
Muthná D.; Tomšík P.; Havelek R.; Köhlerová R.; Kasilingam V.; Čermáková E.; Stíbal D.; Řezáčová M.; Süss-Fink G. In-vitro and in-vivo evaluation of the anticancer activity of diruthenium-2, a new trithiolato arene ruthenium complex [(η6-p-MeC6H4Pri)2Ru2(μ-S-p-C6H4OH)3]Cl. Anti-Cancer Drugs 2016, 27, 643–650. 10.1097/CAD.0000000000000374. PubMed DOI
Alves S. R.; Santos R. L. S. R.; Fornaciari B.; Colquhoun A.; de Oliveira Silva D. A novel μ-oxo-diruthenium(III,III)-ibuprofen-(4-aminopyridine) chloride derived from the diruthenium(II,III)-ibuprofen paddlewheel metallodrug shows anticancer properties. J. Inorg. Biochem. 2021, 225, 11159610.1016/j.jinorgbio.2021.111596. PubMed DOI
Wang J.; Zhang Y.; Li Y.; Li E.; Ye W.; Pan J. Dinuclear Organoruthenium Complex for Mitochondria-Targeted Near-Infrared Imaging and Anticancer Therapy to Overcome Platinum Resistance. Inorg. Chem. 2022, 61, 8267–8282. 10.1021/acs.inorgchem.2c00714. PubMed DOI
Nyawade E. A.; Friedrich H. B.; Omondi B.; Chenia H. Y.; Singh M.; Gorle S. Synthesis and characterization of new diaminoalkane-bridged dicarbonyl(η5-cyclopentadienyl)ruthenium(II) complex salts: Antibacterial activity tests of η5-cyclopentadienyl dicarbonyl ruthenium(II) amine complexes. J. Organomet. Chem. 2015, 799–800, 138–146. 10.1016/j.jorganchem.2015.09.007. DOI
Johnpeter J. P.; Plasseraud L.; Schmitt F.; Juillerat-Jeanneret L.; Therrien B. Catalytic and anticancer activities of sawhorse-type diruthenium tetracarbonyl complexes derived from fluorinated fatty acids. J. Coord. Chem. 2013, 66, 1753–1762. 10.1080/00958972.2013.790020. DOI
Biancalana L.; Marchetti F. Aminocarbyne ligands in organometallic chemistry. Coord. Chem. Rev. 2021, 449, 21420310.1016/j.ccr.2021.214203. DOI
King P. J.; Knox S. A. R.; McCormick G. J.; Guy Orpen A. Synthesis and reactivity of dimetallacyclopentenone complexes [Ru2(CO)(μ-CO){μ-C(O)CR1CR2}(C5H5)2] (R1 = Me or Ph; R2 = CO2Me). J. Chem. Soc., Dalton Trans. 2000, 2975–2982. 10.1039/b003156i. DOI
Dyke A. F.; Knox S. A. R.; Naish P. J.; Taylor G. E. Organic Chemistry of Dinuclear Metal Centres. Part 1. Combination of Alkynes with Carbon Monoxide at di-iron and diruthenium Centres. J. Chem. Soc., Dalton Trans. 1982, 1297–1306. 10.1039/DT9820001297. DOI
Bresciani G.; Zacchini S.; Pampaloni G.; Bortoluzzi M.; Marchetti F. η6-Coordinated ruthenabenzenes from three-component assembly on a diruthenium μ-allenyl scaffold. Dalton Trans. 2022, 51, 8390–8400. 10.1039/D2DT01071B. PubMed DOI
Mazzoni R.; Salmi M.; Zanotti V. C-C Bond Formation in Diiron Complexes. Chem.—Eur. J. 2012, 18, 10174–10194. 10.1002/chem.201201040. PubMed DOI
Bresciani G.; Schoch S.; Biancalana L.; Zacchini S.; Bortoluzzi M.; Pampaloni G.; Marchetti F. Cyanide–alkene competition in a diiron complex and isolation of a multisite (cyano)alkylidene–alkene species. Dalton Trans. 2022, 51, 1936–1945. 10.1039/D1DT03781A. PubMed DOI
Marchetti F. Constructing Organometallic Architectures from Aminoalkylidyne Diiron Complexes. Eur. J. Inorg. Chem. 2018, 2018, 3987–4003. 10.1002/ejic.201800659. DOI
Kawahara B.; Gao L.; Cohn W.; Whitelegge J. P.; Sen S.; Janzen C.; Mascharak P. K. Diminished viability of human ovarian cancer cells by antigen-specific delivery of carbon monoxide with a family of photoactivatable antibody-photoCORM conjugates. Chem. Sci. 2020, 11, 467–473. 10.1039/C9SC03166A. PubMed DOI PMC
Kawahara B.; M?ller T.; Hu-Moore K.; Carrington S.; Faull K. F.; Sen S. Mascharak, Attenuation of Antioxidant Capacity in Human Breast Cancer Cells by Carbon Monoxide through Inhibition of Cystathionine β- Synthase Activity: Implications in Chemotherapeutic Drug Sensitivity. J. Med. Chem. 2017, 60, 8000–8010. 10.1021/acs.jmedchem.7b00476. PubMed DOI
Ling K.; Men F.; Wang W.-C.; Zhou Y.-Q.; Zhang H.-W.; Ye D.-W. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J. Med. Chem. 2018, 61, 2611–2635. 10.1021/acs.jmedchem.6b01153. PubMed DOI
Štarha P.; Trávníček Z. Non-platinum complexes containing releasable biologically active ligands. Coord. Chem. Rev. 2019, 395, 130–145. 10.1016/j.ccr.2019.06.001. DOI
Steel T. R.; Walsh F.; Wieczorek-Błauz A.; Hanif M.; Hartinger C. G. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord. Chem. Rev. 2021, 439, 21389010.1016/j.ccr.2021.213890. DOI
Sumithaa C.; Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal–Drug Synergism in Metallodrug Design. Mol. Pharmaceutics 2023, 20, 1453–1479. 10.1021/acs.molpharmaceut.2c01027. PubMed DOI
Pröhl M.; Bus T.; Czaplewska J. A.; Traeger A.; Deicke M.; Weiss H.; Weigand W. U. S.; Schubert M. Gottschaldt, Synthesis and in vitro Toxicity of d-Glucose and d-Fructose Conjugated Curcumin–Ruthenium Complexes. Eur. J. Inorg. Chem. 2016, 33, 5197–5204.
Bortolamiol E.; Visentin F.; Scattolin T. Recent Advances in Bioconjugated Transition Metal Complexes for Cancer Therapy. Appl. Sci. 2023, 13, 5561.10.3390/app13095561. DOI
Kvasnica M.; Rarova L.; Oklestkova J.; Budesinsky M.; Kohout L. Synthesis and cytotoxic activities of estrone and estradiol cis-dichloroplatinum(II) complexes. Bioorg. Med. Chem. 2012, 20, 6969–6978. 10.1016/j.bmc.2012.10.013. PubMed DOI
Huxley M.; Sanchez-Cano C.; Browning M. J.; Navarro-Ranninger C.; Quiroga A. G.; Rodger A.; Hannon M. J. An androgenic steroid delivery vector that imparts activity to a non-conventional platinum(II) metallo-drug. Dalton Trans. 2010, 39, 11353–11364. 10.1039/c0dt00838a. PubMed DOI
Carmona-Negrón J. A.; Santana A.; Rheingold A. L.; Meléndez E. Synthesis, structure, docking and cytotoxic studies of ferrocene – hormone conjugates for hormone-dependent breast cancer application. Dalton Trans. 2019, 48, 5952–5964. 10.1039/C8DT01856A. PubMed DOI
Lv G.; Qiu L.; Li K.; Liu Q.; Li X.; Peng Y.; Wang S.; Lin J. Enhancement of therapeutic effect in breast cancer with a steroid-conjugated ruthenium complex. New J. Chem. 2019, 43, 3419–3427. 10.1039/C8NJ04159H. DOI
Bansal R.; Chandra Acharya P. Man-Made Cytotoxic Steroids: Exemplary Agents for Cancer Therapy. Chem. Rev. 2014, 114, 6986–7005. 10.1021/cr4002935. PubMed DOI
Bresciani G.; Zacchini S.; Pampaloni G.; Marchetti F. Carbon-Carbon Bond Coupling of Vinyl Molecules with an Allenyl Ligand at a Diruthenium Complex. Organometallics 2022, 41, 1006–1014. 10.1021/acs.organomet.2c00060. DOI
Bresciani G.; Boni S.; Funaioli T.; Zacchini S.; Pampaloni G.; Busto N.; Biver T.; Marchetti F. Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies. Inorg. Chem. 2023, 62, 12453–12467. 10.1021/acs.inorgchem.3c01644. PubMed DOI PMC
Boni A.; Marchetti F.; Pampaloni G.; Zacchini S. Cationic Diiron and Diruthenium μ-Allenyl Complexes: Synthesis, X-Ray Structures and Cyclization Reactions with Ethyldiazoacetate/Amine Affording Unprecedented Butenolide- and Furaniminium-Substituted Bridging Carbene Ligands. Dalton Trans. 2010, 39, 10866–10875. 10.1039/c0dt00697a. PubMed DOI
Dennett J. N. L.; Knox S. A. R.; Anderson K. M.; Charmant J. P. H.; Orpen A. G. The synthesis of [FeRu(CO)2(μ-CO)2(η-C5H5)(η-C5Me5)] and convenient entries to its organometallic chemistry. Dalton Trans. 2005, 63–73. 10.1039/B414412K. PubMed DOI
Knox S. A. R.; Marchetti F. Additions and intramolecular migrations of nucleophiles in cationic diruthenium μ-allenyl complexes. J. Organomet. Chem. 2007, 692, 4119–4128. 10.1016/j.jorganchem.2007.06.029. DOI
Boni A.; Funaioli T.; Marchetti F.; Pampaloni G.; Pinzino C.; Zacchini S. Electrochemical, EPR and computational results on [Fe2Cp2(CO)2]-based complexes with a bridging hydrocarbyl ligand. J. Organomet. Chem. 2011, 696, 3551–3556. 10.1016/j.jorganchem.2011.07.039. DOI
Gervasio G.; Marabello D.; Sappa E.; Secco A. Reaction of Fe3(CO)12 with but-2-yn-1,4-diol, 1,4-dichloro-but-2-yne, propargyl-alcohol and propargyl-chloride. The X-ray structures of [Fe2(CO)6{H2CCCCH2}], [Fe2(CO)6{H2CCC(H)C(OCH3)O}] and [Fe3(CO)10{H2CCC(H)-C(O)C{CH2(O)CH3}CCH2}]. J. Organomet. Chem. 2005, 690, 3755–3764. 10.1016/j.jorganchem.2005.05.009. DOI
Casey C. P.; Ha Y.; Powell D. R. Synthesis and Reactions of Dirhenium Alkenylidene and Alkylidyne Complexes. J. Am. Chem. Soc. 1994, 116, 3424–3428. 10.1021/ja00087a029. DOI
Dennett J. N. L.; Knox S. A. R.; Charmant J. P. H.; Gillon A. L.; Orpen A. G. Synthesis and reactivity of μ-butadienyl diruthenium cations. Inorg. Chim. Acta 2003, 354, 29–40. 10.1016/S0020-1693(03)00391-8. DOI
Busetto L.; Maitlis P. M.; Zanotti V. Bridging vinylalkylidene transition metal complexes. Coord. Chem. Rev. 2010, 254, 470–486. 10.1016/j.ccr.2009.07.022. DOI
Boni A.; Funaioli T.; Marchetti F.; Pampaloni G.; Pinzino C.; Zacchini S. Reversible Reductive Dimerization of Diiron μ -Vinyl Complex via C-C Coupling: Characterization and Reactivity of the Intermediate Radical Species. Organometallics 2011, 30, 4115–4122. 10.1021/om200421a. DOI
Marchetti F.Alkylidyne and Alkylidene Complexes of Iron. In Parkin G., Meyer K., O’Hare D., Eds.; Comprehensive Organometallic Chemistry IV; Elsevier: Kidlington, UK, 2022; Vol. 7, pp 210–257.
Bresciani G.; Boni S.; Zacchini S.; Pampaloni G.; Bortoluzzi M.; Marchetti F. Alkyne – alkenyl coupling at a diruthenium complex. Dalton Trans. 2022, 51, 15703–15715. 10.1039/D2DT02866B. PubMed DOI
Dyke A. F.; Knox S. A. R.; Naish P. J.; Taylor G. E. Making and breaking of carbon–carbon bonds at a di-iron or di-ruthenium centre: X-ray structure of [Ru2(CO)(μ-CO){μ-η1,η3-C(O)C2Ph2}(η-C5H5)2]. J. Chem. Soc., Chem. Commun. 1980, 409–410. 10.1039/C39800000409. DOI
Akita M.; Sugimoto S.; Terada M.; Moro-aka Y. Photochemical head-to-head (R = H) vs. head-to-tail dimerization (R = Ph) of iron acetylide complexes leading to a dimetallacyclopentenone and a μ-vinylidene complex. J. Organomet. Chem. 1993, 447, 103–106. 10.1016/0022-328X(93)80278-J. DOI
Adams K. J.; Barker J. J.; Charmant J. P. H.; Ganter C.; Klatt G.; Knox S. A. R.; Orpen A. G.; Ruile S. Tri- and Tetra-nuclear μ-Alkyne Clusters from [Ru2(μ-CO)-(μ-C2R2)(Cp)2] (R = Ph or CF3). J. Chem. Soc., Dalton Trans. 1994, 477–484. 10.1039/DT9940000477. DOI
Casey C. P.; Vosejpka P. C.; Crocker M. Reactions of nucleophiles with cationic bridging alkylidyne complexes. J. Organomet. Chem. 1990, 394, 339–347. 10.1016/0022-328X(90)87243-7. DOI
Agonigi G.; Bortoluzzi M.; Funaioli T.; Marchetti F.; Pampaloni G.; Zacchini S. Synthesis of diiron μ-allenyl complexes by electrophilic addition to propen-2-yl-dimetallacyclopentenone species: A joint experimental and DFT study. J. Organomet. Chem. 2013, 731, 61–66. 10.1016/j.jorganchem.2013.02.005. DOI
Dyke A. F.; Knox S. A. R.; Morris M. J.; Naish P. J. Organic Chemistry of Dinuclear Metal Centres. μ-Carbene Complexes of Iron and Ruthenium from Alkynes via μ-Vinyl Cations. J. Chem. Soc., Dalton Trans. 1983, 1417–1425. 10.1039/DT9830001417. DOI
Agonigi G.; Biancalana L.; Lupo M. G.; Montopoli M.; Ferri N.; Zacchini S.; Binacchi F.; Biver T.; Campanella B.; Pampaloni G.; Zanotti V.; Marchetti F. Exploring the Anticancer Potential of Diiron Bis-cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands: Behavior in Aqueous Media and In Vitro Cytotoxicity. Organometallics 2020, 39, 645–657. 10.1021/acs.organomet.9b00681. DOI
Estrela J. M.; Ortega A.; Obrador E. Glutathione in Cancer Biology and Therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143–181. 10.1080/10408360500523878. PubMed DOI
Jamali B.; Nakhjavani M.; Hosseinzadeh L.; Amidid S.; Nikounezhad N.; Shirazie F. H. Intracellular GSH Alterations and Its Relationship to Level of Resistance following Exposure to Cisplatin in Cancer Cells. Iran. J. Pharm. Res. 2015, 14, 513–519. PubMed PMC
Salemi G.; Gueli M. C.; D’Amelio M.; Saia V.; Mangiapane P.; Aridon P.; Ragonese P.; Lupo I. Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol. Sci. 2009, 30, 361–364. 10.1007/s10072-009-0090-2. PubMed DOI
Reisner E.; Arion V. B.; Guedes da Silva M. F. C.; Lichtenecker R.; Eichinger A.; Keppler B. K.; Yu Kukushkin V.; Pombeiro A. J. L. Tuning of Redox Potentials for the Design of Ruthenium Anticancer Drugs - an Electrochemical Study of [trans-RuCl4L(DMSO)]− and [trans-RuCl4L2]− Complexes, where L = Imidazole, 1,2,4-Triazole, Indazole. Inorg. Chem. 2004, 43, 7083–7093. 10.1021/ic049479c. PubMed DOI
Kirlin W. G.; Cai J.; Thompson S. A.; Diaz D. Glutathione Redox Potential in Response to Differentiation and Enzyme Inducers. Free Radical Biol. Med. 1999, 27, 1208–1218. 10.1016/S0891-5849(99)00145-8. PubMed DOI
Said Mohamed A.; Jourdain I.; Knorr M.; Elmi A.; Chtita S.; Scheel R.; Strohmann C.; Hussien M. A. Design of hydroxyl- and thioether-functionalized iron-platinum dimetallacyclopentenone complexes. Crystal and electronic structures, Hirshfeld and docking analyses and anticancer activity evaluated by in silico simulation. J. Mol. Struct. 2022, 1251, 13197910.1016/j.molstruc.2021.131979. DOI
Halon A.; Materna V.; Drag-Zalesinka M.; Nowak-Markwitz E.; Gansukh T.; Donizy P.; Spaczynski M.; Zabel M.; Dietel M.; Lage H.; Surowiak P. Estrogen Receptor Alpha Expression in Ovarian Cancer Predicts Longer Overall Survival. Pathol. Oncol. Res. 2011, 17, 511–518. 10.1007/s12253-010-9340-0. PubMed DOI PMC
Sinka I.; Kiss A.; Mernyák E.; Wölfling J.; Schneider G.; Ocsovszki I.; Kuo Ch. Y.; Wang H. Ch.; Zupkó I. Antiproliferative and antimetastatic properties of 3-benzyloxy-16-hydroxymethylene-estradiol analogs against breast cancer cell lines. Eur. J. Pharm. Sci. 2018, 123 (362–370), 9. PubMed
Berndsen R. H.; Weiss A.; Kulsoom Abdul U.; Wong T. J.; Meraldi P.; Griffioen A. W.; Dyson P. J.; Nowak-Sliwinska P. Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci. Rep. 2017, 7, 43005.10.1038/srep43005. PubMed DOI PMC
Dasari S.; Tchounwou P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC
Velma V.; Dasari S. R.; Tchounwou P. B. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights 2016, 11, 113–121. 10.4137/BMI.S39445. PubMed DOI PMC
Zaki M.; Hairat S.; Aazam E. S. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv. 2019, 9, 3239–3278. 10.1039/C8RA07926A. PubMed DOI PMC
Xie L.; Wang L.; Guan R.; Ji L.; Chao H. Anti-metastasis and anti-proliferation effect of mitochondria-accumulating ruthenium(II) complexes via redox homeostasis disturbance and energy depletion. J. Inorg. Biochem. 2021, 217, 11138010.1016/j.jinorgbio.2021.111380. PubMed DOI
Cervinka J.; Gobbo A.; Biancalana L.; Markova L.; Novohradsky V.; Guelfi M.; Zacchini S.; Kasparkova J.; Brabec V.; Marchetti F. Ruthenium(II)–Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J. Med. Chem. 2022, 65, 10567–10587. 10.1021/acs.jmedchem.2c00722. PubMed DOI PMC
Giorgi C.; Agnoletto C.; Bononi A.; Bonora M.; De Marchi E.; Marchi S.; Missiroli S.; Patergnani S.; Poletti F.; Rimessi A.; Suski J. M.; Wieckowski M. R.; Pintona P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2012, 12, 77–85. 10.1016/j.mito.2011.07.004. PubMed DOI PMC
Brasseur K.; Leblanc V.; Fabi F.; Parent S.; Descôteaux C.; Bérubé G.; Asselin E. ERα-Targeted Therapy in Ovarian Cancer Cells by a Novel Estradiol-Platinum(II) Hybrid. Endocrinology 2013, 154, 2281–2295. 10.1210/en.2013-1083. PubMed DOI
Hwang E.; Sung Jung H. Metal–organic complex-based chemodynamic therapy agents for cancer therapy. Chem. Commun. 2020, 56, 8332–8341. 10.1039/D0CC03012K. PubMed DOI
Dharmaraja A. T. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J. Med. Chem. 2017, 60, 3221–3240. 10.1021/acs.jmedchem.6b01243. PubMed DOI
Tien Vo T. T.; Canh Vo Q.; Phuoc Tuan V.; Wee Y.; Cheng H. Ch.; Lee I. T. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol. 2021, 46, 10212410.1016/j.redox.2021.102124. PubMed DOI PMC
Menges F.Spectragryph - optical spectroscopy software, Version 1.2.5, @ 2016–2017, http://www.effemm2.de/spectragryph.
Fulmer G. R.; Miller A. J. M.; Sherden N. H.; Gottlieb H. E.; Nudelman A.; Stoltz B. M.; Bercaw J. E.; Goldberg K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. 10.1021/om100106e. DOI
Willker W.; Leibfritz D.; Kerssebaum R.; Bermel W. Gradient selection in inverse heteronuclear correlation spectroscopy. Magn. Reson. Chem. 1993, 31, 287–292. 10.1002/mrc.1260310315. DOI
Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Bresciani G.; Busto N. V.; Ceccherini M.; Bortoluzzi G.; Pampaloni B.; Garcia F. Marchetti, Screening the biological properties of transition metal carbamates reveals gold(I) and silver(I) complexes as potent cytotoxic and antimicrobial agents. J. Inorg. Biochem. 2022, 227, 11166710.1016/j.jinorgbio.2021.111667. PubMed DOI
Huang H.; Humbert N.; Bizet V.; Patra M.; Chao H.; Mazet C.; Gasser G. Influence of the dissolution solvent on the cytotoxicity of octahedral cationic Ir(III) hydride complexes. J. Organomet. Chem. 2017, 839, 15–18. 10.1016/j.jorganchem.2016.12.010. DOI
TIBCO Software Inc. Statistica (data analysis software system), version 13, 2018. http://tibco.com.