Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols

. 2023 Oct 02 ; 62 (39) : 15875-15890. [epub] 20230915

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37713240

Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{μ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{μ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{μ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.

Zobrazit více v PubMed

Zeng L.; Gupta P.; Chen Y.; Wang E.; Ji L.; Chao H.; Chen Z.-S. The development of anticancer ruthenium(II) complexes: from single molecule compoun;ds to nanomaterials. Chem. Soc. Rev. 2017, 46, 5771–5804. 10.1039/C7CS00195A. PubMed DOI PMC

Anthony E. J.; Bolitho E. M.; Bridgewater H. E.; Carter O. W. L.; Donnelly J. M.; Imberti C.; Lant E. C.; Lermyte F.; Needham R. J.; Palau M.; Sadler P. J.; Shi H.; Wang F.-X.; Zhang W.-Y.; Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. 10.1039/D0SC04082G. PubMed DOI PMC

Ribeiro G. H.; Costa A. R.; de Souza A. R.; da Silva F. V.; Martins F. T.; Plutin A. M.; Batista A. A. An overview on the anticancer activity of Ru (II)/acylthiourea complexes. Coord. Chem. Rev. 2023, 488, 21516110.1016/j.ccr.2023.215161. DOI

Meier-Menches S. M.; Gerner C.; Berger W.; Hartinger C. G.; Keppler B. K. Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development. Chem. Soc. Rev. 2018, 47, 909–928. 10.1039/C7CS00332C. PubMed DOI

Alessio E.; Messori L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995.10.3390/molecules24101995. PubMed DOI PMC

Wernitznig D.; Kiakos K.; Del Favero G.; Harrer N.; Machat H.; Osswald A.; Jakupec M. A.; Wernitznig A.; Sommergruber W.; Keppler B. K. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics 2019, 11, 1044–1048. 10.1039/c9mt00051h. PubMed DOI

Thota S.; Rodrigues D. A.; Crans D. C.; Barreiro E. J. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics?. J. Med. Chem. 2018, 61, 5805–5821. 10.1021/acs.jmedchem.7b01689. PubMed DOI

Steel T. R.; Walsh F.; Wieczorek-Błauz A.; Hanif M.; Hartinger C. G. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord. Chem. Rev. 2021, 439, 21389010.1016/j.ccr.2021.213890. DOI

Murray B. S.; Dyson P. J. Recent progress in the development of organometallics for the treatment of cancer. Curr. Opinion Chem. Biol. 2020, 56, 28–34. 10.1016/j.cbpa.2019.11.001. PubMed DOI

Betanzos-Lara S.; Salassa L.; Habtemariam A.; Novakova O.; Pizarro A. M.; Clarkson G. J.; Liskova B.; Brabec V.; Sadler P. J. Photoactivatable organometallic pyridyl ruthenium (II) arene complexes. Organometallics 2012, 31 (9), 3466–3479. 10.1021/om201177y. DOI

Murray B. S.; Babak M. V.; Hartinger C. G.; Dyson P. J. The development of RAPTA compounds for the treatment of tumors. Coord. Chem. Rev. 2016, 306, 86–114. 10.1016/j.ccr.2015.06.014. DOI

Rausch M.; Dyson P. J.; Nowak-Sliwinska P. Recent Considerations in the Application of RAPTA-C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. Adv. Ther. 2019, 2, 190004210.1002/adtp.201900042. DOI

Weiss A.; Berndsen R. H.; Dubois M.; Müller C.; Schibli R.; Griffioen A. W.; Dyson P. J.; Nowak-Sliwinska P. In vivo anti-tumor activity of the organometallic ruthenium(II)-arene complex [Ru(η6-p-cymene)-Cl2(pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem. Sci. 2014, 5, 4742–4748. 10.1039/C4SC01255K. DOI

Morais T. S.; Valente A.; Tomaz A. I.; Marques F.; Garcia M. H. Tracking antitumor metallodrugs: promising agents with the Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Future Med. Chem. 2016, 8, 527–544. 10.4155/fmc.16.7. PubMed DOI

Florindo P. R.; Pereira D. M.; Borralho P. M.; Rodrigues C. M. P.; Piedade M. F. M.; Fernandes A. C. Cyclopentadienyl – Ruthenium(II) and Iron(II) Organometallic Compounds with Carbohydrate Derivative Ligands as Good Colorectal Anticancer Agents. J. Med. Chem. 2015, 58, 4339–4347. 10.1021/acs.jmedchem.5b00403. PubMed DOI

Hajji L.; Saraiba-Bello C.; Scalambra F.; Segovia-Torrente G.; Romerosa A. Ru complexes containing Cp, mPTA and natural purine bases (mPTA = methyl-N-1,3,5-triaza-7-phosphaadamantane): Evaluation of their antiproliferative activity, solubility and redox properties. J. Inorg. Biochem. 2021, 218, 11140410.1016/j.jinorgbio.2021.111404. PubMed DOI

Mendoza Z.; Lorenzo-Luis P.; Serrano-Ruiz M.; Martín-Batista E.; Padròn J. M.; Scalambra F.; Romerosa A. Synthesis and Antiproliferative Activity of [RuCp(PPh3)2(HdmoPTA)](OSO2CF3)2 (HdmoPTA = 3,7-H-3,7-Dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane). Inorg. Chem. 2016, 55, 7820–7822. 10.1021/acs.inorgchem.6b01207. PubMed DOI

Dutta B.; Scolaro C.; Scopelliti R.; Dyson P. J.; Severin K. Importance of the π-Ligand: Remarkable Effect of the Cyclopentadienyl Ring on the Cytotoxicity of Ruthenium PTA Compounds. Organometallics 2008, 27, 1355–1357. 10.1021/om800025a. DOI

Alshurafa H.; El-khateeb M.; Abul-Futouh H.; Görls H.; Weigand W. Cyclopentadienyl ruthenium complexes of mixed heterocyclic thiol and Bis(diphenylphosphino)ferrocene ligands. J. Mol. Struct. 2019, 1191, 1–5. 10.1016/j.molstruc.2019.04.008. DOI

Tolbatov I.; Barresi E.; Taliani S.; La Mendola D.; Marzo T.; Marrone A. Diruthenium(II,III) paddlewheel complexes: effects of bridging and axial ligands on anticancer properties. Inorg. Chem. Front. 2023, 10, 2226–2238. 10.1039/D3QI00157A. DOI

Campanella B.; Braccini S.; Bresciani G.; De Franco M.; Gandin V.; Chiellini F.; Pratesi A.; Pampaloni G.; Biancalana L.; Marchetti F. The choice of μ-vinyliminium ligand substituents is key to optimize the antiproliferative activity of related diiron complexes. Metallomics 2023, 15, mfac09610.1093/mtomcs/mfac096. PubMed DOI

Rahman F.-U.; Zeeshan Bhatti M.; Ali A.; Duong H.-Q.; Zhang Y.; Ji X.; Lin Y.; Wang H.; Li Z. T.; Zhang D.-W. Dimetallic Ru(II) arene complexes appended on bis-salicylaldimine induce cancer cell death and suppress invasion via p53-dependent signaling. Eur. J. Med. Chem. 2018, 157, 1480–1490. 10.1016/j.ejmech.2018.08.054. PubMed DOI

Tomšík P.; Muthnà D.; Řezačova M.; Mičuda S.; Cmielova J.; Hroch M.; Endlicher R.; Červinkova Z.; Rudolf E.; Hann S.; Stíbal D.; Therrien B.; Süss-Fink G. [(p-MeC6H4Pri)2Ru2(SC6H4-p-But)3]Cl (diruthenium-1), a dinuclear arene ruthenium compound with very high anticancer activity: An in vitro and in vivo study. J. Organomet. Chem. 2015, 782, 42–51. 10.1016/j.jorganchem.2014.10.050. DOI

Giannini F.; Geiser L.; Paul L. E. H.; Order T.; Therrien B.; Süss-Fink G.; Furrer J. A. Tuning the in vitro cell cytotoxicity of dinuclear arene ruthenium trithiolato complexes: Influence of the arene ligand. J. Organomet. Chem. 2015, 783, 40–45. 10.1016/j.jorganchem.2015.02.010. DOI

Zhao J.; Li S.; Wang X.; Xu G.; Gou S. Dinuclear Organoruthenium Complexes Exhibiting Antiproliferative Activity through DNA Damage and a Reactive-Oxygen-Species-Mediated Endoplasmic Reticulum Stress Pathway. Inorg. Chem. 2019, 58, 2208–2217. 10.1021/acs.inorgchem.8b03447. PubMed DOI

Nazarov A. A.; Mendoza-Ferri M. G.; Hanif M.; Keppler B. K.; Dyson P. J. Hartinger, Understanding the interactions of diruthenium anticancer agents with amino acids. J. Biol. Inorg. Chem. 2018, 23, 1159–1164. 10.1007/s00775-018-1597-x. PubMed DOI

Stíbal D.; Therrien B.; Süss-Fink G.; Nowak-Sliwinska P.; Dyson P. J.; Čermáková E.; Řezáčová M.; Tomšík P. Chlorambucil conjugates of dinuclear p-cymene ruthenium trithiolato complexes: synthesis, characterization and cytotoxicity study in vitro and in vivo. J. Biol. Inorg. Chem. 2016, 21, 443–452. 10.1007/s00775-016-1353-z. PubMed DOI

Studer V.; Anghel N.; Desiatkina O.; Felder T.; Boubaker G.; Amdouni Y.; Ramseier J.; Hungerbühler M.; Kempf C.; Heverhagen J. T.; Hemphill A.; Ruprecht N.; Furrer J.; Păunescu R. Conjugates Containing Two and Three Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Units as In Vitro Antiparasitic and Anticancer Agents. Pharmaceuticals 2020, 13, 471.10.3390/ph13120471. PubMed DOI PMC

Orts-Arroyo M.; Gutierrez F.; Gil-Tebar A.; Ibarrola-Villava M.; Jimenez-Martí E.; Silvestre-Llora A.; Castro I.; Ribas G.; Martínez-Lillo J. A novel adenine-based diruthenium(III) complex: Synthesis, crystal structure, electrochemical properties and evaluation of the anticancer activity. J. Inorg. Biochem. 2022, 232, 11181210.1016/j.jinorgbio.2022.111812. PubMed DOI

Muthná D.; Tomšík P.; Havelek R.; Köhlerová R.; Kasilingam V.; Čermáková E.; Stíbal D.; Řezáčová M.; Süss-Fink G. In-vitro and in-vivo evaluation of the anticancer activity of diruthenium-2, a new trithiolato arene ruthenium complex [(η6-p-MeC6H4Pri)2Ru2(μ-S-p-C6H4OH)3]Cl. Anti-Cancer Drugs 2016, 27, 643–650. 10.1097/CAD.0000000000000374. PubMed DOI

Alves S. R.; Santos R. L. S. R.; Fornaciari B.; Colquhoun A.; de Oliveira Silva D. A novel μ-oxo-diruthenium(III,III)-ibuprofen-(4-aminopyridine) chloride derived from the diruthenium(II,III)-ibuprofen paddlewheel metallodrug shows anticancer properties. J. Inorg. Biochem. 2021, 225, 11159610.1016/j.jinorgbio.2021.111596. PubMed DOI

Wang J.; Zhang Y.; Li Y.; Li E.; Ye W.; Pan J. Dinuclear Organoruthenium Complex for Mitochondria-Targeted Near-Infrared Imaging and Anticancer Therapy to Overcome Platinum Resistance. Inorg. Chem. 2022, 61, 8267–8282. 10.1021/acs.inorgchem.2c00714. PubMed DOI

Nyawade E. A.; Friedrich H. B.; Omondi B.; Chenia H. Y.; Singh M.; Gorle S. Synthesis and characterization of new diaminoalkane-bridged dicarbonyl(η5-cyclopentadienyl)ruthenium(II) complex salts: Antibacterial activity tests of η5-cyclopentadienyl dicarbonyl ruthenium(II) amine complexes. J. Organomet. Chem. 2015, 799–800, 138–146. 10.1016/j.jorganchem.2015.09.007. DOI

Johnpeter J. P.; Plasseraud L.; Schmitt F.; Juillerat-Jeanneret L.; Therrien B. Catalytic and anticancer activities of sawhorse-type diruthenium tetracarbonyl complexes derived from fluorinated fatty acids. J. Coord. Chem. 2013, 66, 1753–1762. 10.1080/00958972.2013.790020. DOI

Biancalana L.; Marchetti F. Aminocarbyne ligands in organometallic chemistry. Coord. Chem. Rev. 2021, 449, 21420310.1016/j.ccr.2021.214203. DOI

King P. J.; Knox S. A. R.; McCormick G. J.; Guy Orpen A. Synthesis and reactivity of dimetallacyclopentenone complexes [Ru2(CO)(μ-CO){μ-C(O)CR1CR2}(C5H5)2] (R1 = Me or Ph; R2 = CO2Me). J. Chem. Soc., Dalton Trans. 2000, 2975–2982. 10.1039/b003156i. DOI

Dyke A. F.; Knox S. A. R.; Naish P. J.; Taylor G. E. Organic Chemistry of Dinuclear Metal Centres. Part 1. Combination of Alkynes with Carbon Monoxide at di-iron and diruthenium Centres. J. Chem. Soc., Dalton Trans. 1982, 1297–1306. 10.1039/DT9820001297. DOI

Bresciani G.; Zacchini S.; Pampaloni G.; Bortoluzzi M.; Marchetti F. η6-Coordinated ruthenabenzenes from three-component assembly on a diruthenium μ-allenyl scaffold. Dalton Trans. 2022, 51, 8390–8400. 10.1039/D2DT01071B. PubMed DOI

Mazzoni R.; Salmi M.; Zanotti V. C-C Bond Formation in Diiron Complexes. Chem.—Eur. J. 2012, 18, 10174–10194. 10.1002/chem.201201040. PubMed DOI

Bresciani G.; Schoch S.; Biancalana L.; Zacchini S.; Bortoluzzi M.; Pampaloni G.; Marchetti F. Cyanide–alkene competition in a diiron complex and isolation of a multisite (cyano)alkylidene–alkene species. Dalton Trans. 2022, 51, 1936–1945. 10.1039/D1DT03781A. PubMed DOI

Marchetti F. Constructing Organometallic Architectures from Aminoalkylidyne Diiron Complexes. Eur. J. Inorg. Chem. 2018, 2018, 3987–4003. 10.1002/ejic.201800659. DOI

Kawahara B.; Gao L.; Cohn W.; Whitelegge J. P.; Sen S.; Janzen C.; Mascharak P. K. Diminished viability of human ovarian cancer cells by antigen-specific delivery of carbon monoxide with a family of photoactivatable antibody-photoCORM conjugates. Chem. Sci. 2020, 11, 467–473. 10.1039/C9SC03166A. PubMed DOI PMC

Kawahara B.; M?ller T.; Hu-Moore K.; Carrington S.; Faull K. F.; Sen S. Mascharak, Attenuation of Antioxidant Capacity in Human Breast Cancer Cells by Carbon Monoxide through Inhibition of Cystathionine β- Synthase Activity: Implications in Chemotherapeutic Drug Sensitivity. J. Med. Chem. 2017, 60, 8000–8010. 10.1021/acs.jmedchem.7b00476. PubMed DOI

Ling K.; Men F.; Wang W.-C.; Zhou Y.-Q.; Zhang H.-W.; Ye D.-W. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J. Med. Chem. 2018, 61, 2611–2635. 10.1021/acs.jmedchem.6b01153. PubMed DOI

Štarha P.; Trávníček Z. Non-platinum complexes containing releasable biologically active ligands. Coord. Chem. Rev. 2019, 395, 130–145. 10.1016/j.ccr.2019.06.001. DOI

Steel T. R.; Walsh F.; Wieczorek-Błauz A.; Hanif M.; Hartinger C. G. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord. Chem. Rev. 2021, 439, 21389010.1016/j.ccr.2021.213890. DOI

Sumithaa C.; Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal–Drug Synergism in Metallodrug Design. Mol. Pharmaceutics 2023, 20, 1453–1479. 10.1021/acs.molpharmaceut.2c01027. PubMed DOI

Pröhl M.; Bus T.; Czaplewska J. A.; Traeger A.; Deicke M.; Weiss H.; Weigand W. U. S.; Schubert M. Gottschaldt, Synthesis and in vitro Toxicity of d-Glucose and d-Fructose Conjugated Curcumin–Ruthenium Complexes. Eur. J. Inorg. Chem. 2016, 33, 5197–5204.

Bortolamiol E.; Visentin F.; Scattolin T. Recent Advances in Bioconjugated Transition Metal Complexes for Cancer Therapy. Appl. Sci. 2023, 13, 5561.10.3390/app13095561. DOI

Kvasnica M.; Rarova L.; Oklestkova J.; Budesinsky M.; Kohout L. Synthesis and cytotoxic activities of estrone and estradiol cis-dichloroplatinum(II) complexes. Bioorg. Med. Chem. 2012, 20, 6969–6978. 10.1016/j.bmc.2012.10.013. PubMed DOI

Huxley M.; Sanchez-Cano C.; Browning M. J.; Navarro-Ranninger C.; Quiroga A. G.; Rodger A.; Hannon M. J. An androgenic steroid delivery vector that imparts activity to a non-conventional platinum(II) metallo-drug. Dalton Trans. 2010, 39, 11353–11364. 10.1039/c0dt00838a. PubMed DOI

Carmona-Negrón J. A.; Santana A.; Rheingold A. L.; Meléndez E. Synthesis, structure, docking and cytotoxic studies of ferrocene – hormone conjugates for hormone-dependent breast cancer application. Dalton Trans. 2019, 48, 5952–5964. 10.1039/C8DT01856A. PubMed DOI

Lv G.; Qiu L.; Li K.; Liu Q.; Li X.; Peng Y.; Wang S.; Lin J. Enhancement of therapeutic effect in breast cancer with a steroid-conjugated ruthenium complex. New J. Chem. 2019, 43, 3419–3427. 10.1039/C8NJ04159H. DOI

Bansal R.; Chandra Acharya P. Man-Made Cytotoxic Steroids: Exemplary Agents for Cancer Therapy. Chem. Rev. 2014, 114, 6986–7005. 10.1021/cr4002935. PubMed DOI

Bresciani G.; Zacchini S.; Pampaloni G.; Marchetti F. Carbon-Carbon Bond Coupling of Vinyl Molecules with an Allenyl Ligand at a Diruthenium Complex. Organometallics 2022, 41, 1006–1014. 10.1021/acs.organomet.2c00060. DOI

Bresciani G.; Boni S.; Funaioli T.; Zacchini S.; Pampaloni G.; Busto N.; Biver T.; Marchetti F. Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies. Inorg. Chem. 2023, 62, 12453–12467. 10.1021/acs.inorgchem.3c01644. PubMed DOI PMC

Boni A.; Marchetti F.; Pampaloni G.; Zacchini S. Cationic Diiron and Diruthenium μ-Allenyl Complexes: Synthesis, X-Ray Structures and Cyclization Reactions with Ethyldiazoacetate/Amine Affording Unprecedented Butenolide- and Furaniminium-Substituted Bridging Carbene Ligands. Dalton Trans. 2010, 39, 10866–10875. 10.1039/c0dt00697a. PubMed DOI

Dennett J. N. L.; Knox S. A. R.; Anderson K. M.; Charmant J. P. H.; Orpen A. G. The synthesis of [FeRu(CO)2(μ-CO)2(η-C5H5)(η-C5Me5)] and convenient entries to its organometallic chemistry. Dalton Trans. 2005, 63–73. 10.1039/B414412K. PubMed DOI

Knox S. A. R.; Marchetti F. Additions and intramolecular migrations of nucleophiles in cationic diruthenium μ-allenyl complexes. J. Organomet. Chem. 2007, 692, 4119–4128. 10.1016/j.jorganchem.2007.06.029. DOI

Boni A.; Funaioli T.; Marchetti F.; Pampaloni G.; Pinzino C.; Zacchini S. Electrochemical, EPR and computational results on [Fe2Cp2(CO)2]-based complexes with a bridging hydrocarbyl ligand. J. Organomet. Chem. 2011, 696, 3551–3556. 10.1016/j.jorganchem.2011.07.039. DOI

Gervasio G.; Marabello D.; Sappa E.; Secco A. Reaction of Fe3(CO)12 with but-2-yn-1,4-diol, 1,4-dichloro-but-2-yne, propargyl-alcohol and propargyl-chloride. The X-ray structures of [Fe2(CO)6{H2CCCCH2}], [Fe2(CO)6{H2CCC(H)C(OCH3)O}] and [Fe3(CO)10{H2CCC(H)-C(O)C{CH2(O)CH3}CCH2}]. J. Organomet. Chem. 2005, 690, 3755–3764. 10.1016/j.jorganchem.2005.05.009. DOI

Casey C. P.; Ha Y.; Powell D. R. Synthesis and Reactions of Dirhenium Alkenylidene and Alkylidyne Complexes. J. Am. Chem. Soc. 1994, 116, 3424–3428. 10.1021/ja00087a029. DOI

Dennett J. N. L.; Knox S. A. R.; Charmant J. P. H.; Gillon A. L.; Orpen A. G. Synthesis and reactivity of μ-butadienyl diruthenium cations. Inorg. Chim. Acta 2003, 354, 29–40. 10.1016/S0020-1693(03)00391-8. DOI

Busetto L.; Maitlis P. M.; Zanotti V. Bridging vinylalkylidene transition metal complexes. Coord. Chem. Rev. 2010, 254, 470–486. 10.1016/j.ccr.2009.07.022. DOI

Boni A.; Funaioli T.; Marchetti F.; Pampaloni G.; Pinzino C.; Zacchini S. Reversible Reductive Dimerization of Diiron μ -Vinyl Complex via C-C Coupling: Characterization and Reactivity of the Intermediate Radical Species. Organometallics 2011, 30, 4115–4122. 10.1021/om200421a. DOI

Marchetti F.Alkylidyne and Alkylidene Complexes of Iron. In Parkin G., Meyer K., O’Hare D., Eds.; Comprehensive Organometallic Chemistry IV; Elsevier: Kidlington, UK, 2022; Vol. 7, pp 210–257.

Bresciani G.; Boni S.; Zacchini S.; Pampaloni G.; Bortoluzzi M.; Marchetti F. Alkyne – alkenyl coupling at a diruthenium complex. Dalton Trans. 2022, 51, 15703–15715. 10.1039/D2DT02866B. PubMed DOI

Dyke A. F.; Knox S. A. R.; Naish P. J.; Taylor G. E. Making and breaking of carbon–carbon bonds at a di-iron or di-ruthenium centre: X-ray structure of [Ru2(CO)(μ-CO){μ-η1,η3-C(O)C2Ph2}(η-C5H5)2]. J. Chem. Soc., Chem. Commun. 1980, 409–410. 10.1039/C39800000409. DOI

Akita M.; Sugimoto S.; Terada M.; Moro-aka Y. Photochemical head-to-head (R = H) vs. head-to-tail dimerization (R = Ph) of iron acetylide complexes leading to a dimetallacyclopentenone and a μ-vinylidene complex. J. Organomet. Chem. 1993, 447, 103–106. 10.1016/0022-328X(93)80278-J. DOI

Adams K. J.; Barker J. J.; Charmant J. P. H.; Ganter C.; Klatt G.; Knox S. A. R.; Orpen A. G.; Ruile S. Tri- and Tetra-nuclear μ-Alkyne Clusters from [Ru2(μ-CO)-(μ-C2R2)(Cp)2] (R = Ph or CF3). J. Chem. Soc., Dalton Trans. 1994, 477–484. 10.1039/DT9940000477. DOI

Casey C. P.; Vosejpka P. C.; Crocker M. Reactions of nucleophiles with cationic bridging alkylidyne complexes. J. Organomet. Chem. 1990, 394, 339–347. 10.1016/0022-328X(90)87243-7. DOI

Agonigi G.; Bortoluzzi M.; Funaioli T.; Marchetti F.; Pampaloni G.; Zacchini S. Synthesis of diiron μ-allenyl complexes by electrophilic addition to propen-2-yl-dimetallacyclopentenone species: A joint experimental and DFT study. J. Organomet. Chem. 2013, 731, 61–66. 10.1016/j.jorganchem.2013.02.005. DOI

Dyke A. F.; Knox S. A. R.; Morris M. J.; Naish P. J. Organic Chemistry of Dinuclear Metal Centres. μ-Carbene Complexes of Iron and Ruthenium from Alkynes via μ-Vinyl Cations. J. Chem. Soc., Dalton Trans. 1983, 1417–1425. 10.1039/DT9830001417. DOI

Agonigi G.; Biancalana L.; Lupo M. G.; Montopoli M.; Ferri N.; Zacchini S.; Binacchi F.; Biver T.; Campanella B.; Pampaloni G.; Zanotti V.; Marchetti F. Exploring the Anticancer Potential of Diiron Bis-cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands: Behavior in Aqueous Media and In Vitro Cytotoxicity. Organometallics 2020, 39, 645–657. 10.1021/acs.organomet.9b00681. DOI

Estrela J. M.; Ortega A.; Obrador E. Glutathione in Cancer Biology and Therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143–181. 10.1080/10408360500523878. PubMed DOI

Jamali B.; Nakhjavani M.; Hosseinzadeh L.; Amidid S.; Nikounezhad N.; Shirazie F. H. Intracellular GSH Alterations and Its Relationship to Level of Resistance following Exposure to Cisplatin in Cancer Cells. Iran. J. Pharm. Res. 2015, 14, 513–519. PubMed PMC

Salemi G.; Gueli M. C.; D’Amelio M.; Saia V.; Mangiapane P.; Aridon P.; Ragonese P.; Lupo I. Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol. Sci. 2009, 30, 361–364. 10.1007/s10072-009-0090-2. PubMed DOI

Reisner E.; Arion V. B.; Guedes da Silva M. F. C.; Lichtenecker R.; Eichinger A.; Keppler B. K.; Yu Kukushkin V.; Pombeiro A. J. L. Tuning of Redox Potentials for the Design of Ruthenium Anticancer Drugs - an Electrochemical Study of [trans-RuCl4L(DMSO)]− and [trans-RuCl4L2]− Complexes, where L = Imidazole, 1,2,4-Triazole, Indazole. Inorg. Chem. 2004, 43, 7083–7093. 10.1021/ic049479c. PubMed DOI

Kirlin W. G.; Cai J.; Thompson S. A.; Diaz D. Glutathione Redox Potential in Response to Differentiation and Enzyme Inducers. Free Radical Biol. Med. 1999, 27, 1208–1218. 10.1016/S0891-5849(99)00145-8. PubMed DOI

Said Mohamed A.; Jourdain I.; Knorr M.; Elmi A.; Chtita S.; Scheel R.; Strohmann C.; Hussien M. A. Design of hydroxyl- and thioether-functionalized iron-platinum dimetallacyclopentenone complexes. Crystal and electronic structures, Hirshfeld and docking analyses and anticancer activity evaluated by in silico simulation. J. Mol. Struct. 2022, 1251, 13197910.1016/j.molstruc.2021.131979. DOI

Halon A.; Materna V.; Drag-Zalesinka M.; Nowak-Markwitz E.; Gansukh T.; Donizy P.; Spaczynski M.; Zabel M.; Dietel M.; Lage H.; Surowiak P. Estrogen Receptor Alpha Expression in Ovarian Cancer Predicts Longer Overall Survival. Pathol. Oncol. Res. 2011, 17, 511–518. 10.1007/s12253-010-9340-0. PubMed DOI PMC

Sinka I.; Kiss A.; Mernyák E.; Wölfling J.; Schneider G.; Ocsovszki I.; Kuo Ch. Y.; Wang H. Ch.; Zupkó I. Antiproliferative and antimetastatic properties of 3-benzyloxy-16-hydroxymethylene-estradiol analogs against breast cancer cell lines. Eur. J. Pharm. Sci. 2018, 123 (362–370), 9. PubMed

Berndsen R. H.; Weiss A.; Kulsoom Abdul U.; Wong T. J.; Meraldi P.; Griffioen A. W.; Dyson P. J.; Nowak-Sliwinska P. Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci. Rep. 2017, 7, 43005.10.1038/srep43005. PubMed DOI PMC

Dasari S.; Tchounwou P. B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

Velma V.; Dasari S. R.; Tchounwou P. B. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights 2016, 11, 113–121. 10.4137/BMI.S39445. PubMed DOI PMC

Zaki M.; Hairat S.; Aazam E. S. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv. 2019, 9, 3239–3278. 10.1039/C8RA07926A. PubMed DOI PMC

Xie L.; Wang L.; Guan R.; Ji L.; Chao H. Anti-metastasis and anti-proliferation effect of mitochondria-accumulating ruthenium(II) complexes via redox homeostasis disturbance and energy depletion. J. Inorg. Biochem. 2021, 217, 11138010.1016/j.jinorgbio.2021.111380. PubMed DOI

Cervinka J.; Gobbo A.; Biancalana L.; Markova L.; Novohradsky V.; Guelfi M.; Zacchini S.; Kasparkova J.; Brabec V.; Marchetti F. Ruthenium(II)–Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J. Med. Chem. 2022, 65, 10567–10587. 10.1021/acs.jmedchem.2c00722. PubMed DOI PMC

Giorgi C.; Agnoletto C.; Bononi A.; Bonora M.; De Marchi E.; Marchi S.; Missiroli S.; Patergnani S.; Poletti F.; Rimessi A.; Suski J. M.; Wieckowski M. R.; Pintona P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2012, 12, 77–85. 10.1016/j.mito.2011.07.004. PubMed DOI PMC

Brasseur K.; Leblanc V.; Fabi F.; Parent S.; Descôteaux C.; Bérubé G.; Asselin E. ERα-Targeted Therapy in Ovarian Cancer Cells by a Novel Estradiol-Platinum(II) Hybrid. Endocrinology 2013, 154, 2281–2295. 10.1210/en.2013-1083. PubMed DOI

Hwang E.; Sung Jung H. Metal–organic complex-based chemodynamic therapy agents for cancer therapy. Chem. Commun. 2020, 56, 8332–8341. 10.1039/D0CC03012K. PubMed DOI

Dharmaraja A. T. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J. Med. Chem. 2017, 60, 3221–3240. 10.1021/acs.jmedchem.6b01243. PubMed DOI

Tien Vo T. T.; Canh Vo Q.; Phuoc Tuan V.; Wee Y.; Cheng H. Ch.; Lee I. T. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol. 2021, 46, 10212410.1016/j.redox.2021.102124. PubMed DOI PMC

Menges F.Spectragryph - optical spectroscopy software, Version 1.2.5, @ 2016–2017, http://www.effemm2.de/spectragryph.

Fulmer G. R.; Miller A. J. M.; Sherden N. H.; Gottlieb H. E.; Nudelman A.; Stoltz B. M.; Bercaw J. E.; Goldberg K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. 10.1021/om100106e. DOI

Willker W.; Leibfritz D.; Kerssebaum R.; Bermel W. Gradient selection in inverse heteronuclear correlation spectroscopy. Magn. Reson. Chem. 1993, 31, 287–292. 10.1002/mrc.1260310315. DOI

Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Bresciani G.; Busto N. V.; Ceccherini M.; Bortoluzzi G.; Pampaloni B.; Garcia F. Marchetti, Screening the biological properties of transition metal carbamates reveals gold(I) and silver(I) complexes as potent cytotoxic and antimicrobial agents. J. Inorg. Biochem. 2022, 227, 11166710.1016/j.jinorgbio.2021.111667. PubMed DOI

Huang H.; Humbert N.; Bizet V.; Patra M.; Chao H.; Mazet C.; Gasser G. Influence of the dissolution solvent on the cytotoxicity of octahedral cationic Ir(III) hydride complexes. J. Organomet. Chem. 2017, 839, 15–18. 10.1016/j.jorganchem.2016.12.010. DOI

TIBCO Software Inc. Statistica (data analysis software system), version 13, 2018. http://tibco.com.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...