Ectomycorrhizal symbiosis prepares its host locally and systemically for abiotic cue signaling

. 2023 Dec ; 116 (6) : 1784-1803. [epub] 20230916

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37715981

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund
ANR-11-LABX-0002 Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers
DE-AC05-00OR22725 U.S. Department of Energy
JG_2020_002 Univerzita Palackého v Olomouci

Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.

Zobrazit více v PubMed

Adolfsson, L., Nziengui, H., Abreu, I.N., Simura, J., Beebo, A., Herdean, A. et al. (2017) Enhanced secondary and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula. Plant Physiology 175, 175, 392-411.

Aeschbacher, R.A., Schiefelbein, J.W. & Benfey, P.N. (1994) The genetic and molecular basis of root development. Annual Review of Plant Physiology and Plant Molecular Biology, 45(1), 25-45.

Agathokleous, E., Feng, Z., Oksanen, E., Sicard, P., Wang, Q., Saitanis, C. et al. (2020) Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Science Advances, 6, eabc1176.

Andersen, C.P. (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 157, 213-228.

Andersen, C.P., Wilson, R., Plocher, M. & Hogsett, W.E. (1997) Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings. Tree Physiology, 17, 805-811.

Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C. et al. (2004) Antagonistic interaction between abscisic acid and Jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell, 16(12), 3460-3479.

Basso, V., Kohler, A., Miyauchi, S., Singan, V., Guinet, F., Šimura, J. et al. (2020) An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. Plant Cell Environment, 43, 1047-1068.

Basso, V. & Veneault-Fourrey, C. (2020) Role of Jasmonates in beneficial microbe-root interactions. Methods Molecular Biology, 2085, 4367.

Bastías, D.A., Gianoli, E. & Gundel, P.E. (2021) Fungal endophytes can eliminate the plant growth-defence tradeoff. New Phytologist, 230, 2105-2113.

Bogeat-Triboulot, M.-B., Bartoli, F., Garbaye, J., Marmeisse, R. & Tagu, D. (2004) Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant and Soil, 267, 213-223.

Bouffaud, M.-L., Herrmann, S., Tarkka, M., Bönn, M., Feldhahn, L. & Buscot, F. (2020) Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics, 21, 399.

Buchfink, B., Xie, C. & Huson, D.H. (2015) Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12, 59-60.

Calvo-Polanco, M., Armada, E., Zamarreño, A.M., García-Mina, J.M. & Aroca, R. (2019) Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor. Journal of Experimental Botany, 70, 6437-6446.

Castagna, A. & Ranieri, A. (2009) Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environmental Pollution, 157, 1461-1469.

Cirelli, D., Equiza, M.A., Lieffers, V.J. & Tyree, M.T. (2016) Populus species from diverse habitats maintain high night-time conductance under drought. Tree Physiology, 36(2), 229-242.

Clayton, H., Knight, M.R., Knight, H., McAinsh, M.R. & Hetherington, A.M. (1999) Dissection of the ozone-induced calcium signature. Plant Journal, 17, 575-579.

Cohen, D., Bogeat-Triboulot, M.-B., Tisserant, E., Balzergue, S., Martin-Magniette, M.-L., Lelandais, G. et al. (2010) Comparative transcriptomics of drought responses in populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics, 11, 630.

Coleman, M.D., Dickson, R.E., Isebrands, J.G. & Karnosky, D.F. (1996) Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiology, 16, 145-152.

Collier, M.D., Fotelli, M.N., Nahm, M., Kopriva, S., Rennenberg, H., Hanke, D.E. et al. (2003) Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level-interactions between cytokinins and soluble N compounds. Plant Cell Environment, 26, 1549-1560.

Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. & Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676.

Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M. & Shinozaki, K. (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11, 1-14.

Cudlín, P., Kieliszewska-Rokicka, B., Grebenc, T., Alberton, O., Lehto, T., Bakker, M.R. et al. (2007) Fine roots and ectomycorrhizae as indicators of environmental change. Plant Biosystems, 141, 406-425.

Daguerre, Y., Basso, V., Hartmann-Wittulski, S., Schellenberger, R., Meyer, L., Bailly, J. et al. (2020) The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins. Scientific Reports, 10, 1-16.

Davière, J.-M. & Achard, P. (2017) Organ communication: Cytokinins on the move. Nature Plants, 3, 1-2.

Dreischhoff, S., Das, I.S., Jakobi, M., Kasper, K. & Polle, A. (2020) Local responses and systemic induced resistance mediated by ectomycorrhizal fungi. Frontiers in Plant Science, 11, 1908.

Du, B., Kreuzwieser, J., Winkler, J.B., Ghirardo, A., Schnitzler, J.-P., Ache, P. et al. (2018) Physiological responses of date palm (Phoenix dactylifera) seedlings to acute ozone exposure at high temperature. Environmental Pollution, 242, 905-913.

Evans, N.H., McAinsh, M.R., Hetherington, A.M. & Knight, M.R. (2005) ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. Plant Journal, 41, 615-626.

Fellenberg, C., Corea, O., Yan, L.H., Archinuk, F., Piirtola, E.M., Gordon, H. et al. (2020) Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. Plant Journal, 102, 99-115.

Felzer, B.S., Cronin, T., Reilly, J.M., Melillo, J.M. & Wang, X. (2007) Impacts of ozone on trees and crops. Comptes Rendus Geoscience, 339, 784-798.

Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S. et al. (2012) Package ‘car’, Vol. 16. Vienna: R Foundation for Statistical Computing.

Garbaye, J. (2000) The role of ectomycorrhizal symbiosis in the resistance of forests to water stress. Outlook on Agriculture, 29, 63-69.

Georgii, E., Kugler, K., Pfeifer, M., Vanzo, E., Block, K., Domagalska, M.A. et al. (2019) The systems architecture of molecular memory in poplar after abiotic stress. The Plant Cell, 31(2), 346-367.

Goh, D.M., Cosme, M., Kisiala, A.B., Mulholland, S., Said, Z.M.F., Spíchal, L. et al. (2019) A stimulatory role for cytokinin in the arbuscular mycorrhizal symbiosis of pea. Frontiers in Plant Science, 10, 262.

Grebenc, T. & Kraigher, H. (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biology, 9, 279-287.

Grünhofer, P., Stöcker, T., Guo, Y., Li, R., Lin, J., Ranathunge, K. et al. (2022) Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region. Physiologia Plantarum, 174(5), e13765.

Ha, C.M., Rao, X., Saxena, G. & Dixon, R.A. (2021) Growth-defense tradeoffs and yield loss in plants with engineered cell walls. New Phytologist, 231, 60-74.

Hothorn, T., Bretz, F. & Westfall, P. (2008) Simultaneous inference in general parametric models. Biometrical Journal, 50, 346-363.

Jolivet, Y., Bagard, M., Cabané, M., Vaultier, M.-N., Gandin, A., Afif, D. et al. (2016) Deciphering the ozone-induced changes in cellular processes: a prerequisite for ozone risk assessment at the tree and forest levels. Annals Forest Science, 73, 923-943.

Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A. & Pozo, M.J. (2012) Mycorrhiza-induced resistance and priming of plant defenses. Journal Chemical Ecology, 38, 651-664.

Kaling, M., Schmidt, A., Moritz, F., Rosenkranz, M., Witting, M., Kasper, K. et al. (2018) Mycorrhiza-triggered transcriptomic and metabolomic networks impinge on herbivore fitness. Plant Physiology, 176, 2639-2656.

Kudo, T., Kiba, T. & Sakakibara, H. (2010) Metabolism and long-distance translocation of cytokinins. Journal Integrative Plant Biology, 52, 53-60.

Langfelder, P. & Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.

Langmead, B. & Salzberg, S.L. (2012) Fast gapped-read alignment with bowtie 2. Nature Methods, 9, 357-359.

Lehto, T. & Zwiazek, J. (2011) Ectomycorrhizae and water relations of trees: a review. Mycorrhiza, 2, 71-90.

Li, D., Liu, C.M., Luo, R., Sadakane, K. & Lam, T.W. (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31, 1674-1676.

Li, H., Testerink, C. & Zhang, Y. (2021) How roots and shoots communicate through stressful times. Trends in Plant Science, 26, 940-952.

Lohse, M., Nagel, A., Herter, T., May, P., Schroda, M., Zrenner, R. et al. (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environment, 37, 1250-1258.

Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Luo, Z.B., Janz, D., Jiang, X., Gobel, C., Wildhagen, H., Tan, Y. et al. (2009) Upgrading root physiology for stress tolerance by ectomycorrhizae: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiology, 151, 1902-1917.

Luo, Z.B., Li, K., Gai, Y., Göbel, C., Wildhagen, H., Jiang, X.N. et al. (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environmental Experimental Botany, 72, 304-311.

Ma, Y., He, J., Ma, C.F., Luo, J., Li, H., Liu, T.X. et al. (2014) Ectomycorrhizae with Paxillus involutus enhance cadmium uptake and tolerance in populus × canescens. Plant Cell Environment, 37, 627-642.

Malcheska, F., Ahmad, A., Batool, S., Müller, H.M., Ludwig-Müller, J., Kreuzwieser, J. et al. (2017) Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. Plant Physiology, 174(2), 798-814.

Martin, F., Kohler, A., Murat, C., Veneault-Fourrey, C. & Hibbett, D.S. (2016) Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology, 14, 760-773.

Matyssek, R., Wieser, G., Ceulemans, R., Rennenberg, H., Pretzch, H., Haberer, K. et al. (2010) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)-resume from the free-air fumigation study at Kranzberg forest. Environmental Pollution, 158, 2527-2532.

Maupetit, A., Larbat, R., Pernaci, M., Andrieux, A., Guinet, C., Boutigny, A.-L. et al. (2018) Defense compounds rather than nutrient availability shape aggressiveness trait variation long a leaf maturity gradient in a biotrophic plant pathogen. Frontiers in Plant Science, 9, 1396.

Motte, H., Vanneste, S. & Beeckman, T. (2019) Molecular and environmental regulation of root development. Annual Review of Plant Biology, 70(1), 465-488.

Pfabel, C., Eckhardt, K.-U., Baum, C., Struck, C., Frey, P. & Weih, M. (2012) Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populus trichocarpa x deltoides). Tree Physiology, 32, 1357-1364.

Pickles, B.J., Egger, K.N., Massicotte, H.B. & Green, S. (2012) Ectomycorrhizae and climate change. Fungal Ecology, 5, 73e84.

Plett, J.M., Daguerre, Y., Wittulsky, S., Vayssières, A., Deveau, A., Melton, S.J. et al. (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences of the United States of America, 111, 8299-8304.

Plett, J.M., Montanini, B., Kohler, A., Ottonello, S. & Martin, F. (2011) Tapping genomics to unravel ectomycorrhizal Symbiosis. In: Xu, J.-R. & Bluhm, B.H. (Eds.) Fungal genomics: methods and protocols, methods in molecular biology, Vol. 722. Totowa, NJ: Springer-Humana Press, pp. 249-281.

Pozo, M.J. & Azcón-Aguilar, C. (2007) Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393-398.

Renaut, J., Bohler, S., Hausman, J.F., Hoffmann, L., Sergeant, K., Ashan, N. et al. (2009) The impact of atmospheric composition on plants: a case study of ozone and poplar. Mass Spectrometry Reviews, 28, 495-516.

Rigoulot, S.B., Petzold, H.E., Williams, S.P., Brunner, A.M. & Beers, E.P. (2019) Populus trichocarpa clade a PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. Plant Molecular Biology, 100(3), 303-317.

Rittenberg, D. & Foster, G.L. (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. Journal of Biological Chemistry, 133, 737-744.

Royer, M., Cohen, D., Aubry, N., Vendramin, V., Scalabrin, S., Cattonaro, F. et al. (2016) The build-up of osmotic stress responses within the growing root apex using kinematics and RNA-sequencing. Journal of Experimental Botany, 67, 5961-5973.

Sanmartín, N., Sánchez-Bel, P., Pastor, V., Pastor-Fernández, J., Mateu, D., Pozo, M.J. et al. (2020) Root-to-shoot signaling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Science, 298, 110595.

Schweiger, R. & Müller, C. (2015) Leaf metabolome in arbuscular mycorrhizal symbiosis. Current Opinion Plant Biology, 26, 120-126.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498-2504.

Shi, W., Zhang, Y., Chen, S., Polle, A., Rennenberg, H. & Luo, Z.-B. (2019) Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environment, 42, 1087-1103.

Shinozaki, K. & Yamaguchi-Shinozaki, K. (1997) Gene expression and signal transduction in water-stress response. Plant Physiology, 115(2), 327-334.

Sillo, F., Brunetti, C., Marroni, F., Vita, F., dos Santos Nascimento, L.B., Vizzini, A. et al. (2022) Systemic effects of tuber melanosporum inoculation in two Corylus avellana genotypes. Tree Physiology, 42(7), 1463-1480.

Šimura, J., Antoniadi, I., Široká, J., Tarkowská, D., Strnad, M., Ljung, K. et al. (2018) Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology, 177, 476-489.

Smith, S.E. & Read, D.J. (2008) Mycorrhizal symbiosis. Cambridge, UK: Academic Press.

Song, W.-M. & Zhang, B. (2015) Multiscale embedded gene Co-expression network analysis. PLoS Computational Biology, 11, e1004574.

Song, Y., Wang, M., Zeng, R., Groten, K. & Baldwin, I.T. (2019) Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. Plant Cell Environment, 42, 2945-2961.

Street, N.R., James, T.M., James, T., Mikael, B., Jaakko, K., Mark, B. et al. (2011) The physiological, transcriptional and genetic responses of an ozone-sensitive and an ozone tolerant poplar and selected extremes of their F2 progeny. Environmental Pollution, 159(1), 45-54.

Street, N.R., Skogström, O., Sjödin, A., Tucker, J., Rodríguez-Acosta, M., Nilsson, P. et al. (2006) The genetics and genomics of the drought response in populus. The Plant Journal, 48, 321-341.

Szuba, A., Marczak, Ł. & Ratajczak, I. (2020) Metabolome adjustments in ectomycorrhizal Populus canescens associated with strong promotion of plant growth by Paxillus involutus despite a very low root colonization rate. Tree Physiology, 40, 1726-1743.

Tagu, D., Faivre Rampant, P., Lapeyrie, F., Frey-Klett, P., Vion, P. & Villar, M. (2001) Variation in the ability to form ectomycorrhizae in the F1 progeny of an interspecific poplar (populus spp.) cross. Mycorrhiza, 10, 237-240.

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P. et al. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37, 914-939.

Tschaplinski, T.J., Abraham, P.E., Jawdy, S.S., Gunter, L.E., Martin, M.Z., Engle, N.L. et al. (2019) The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Annals of Botany, 124, 617-626.

Tschaplinski, T.J., Plett, J.M., Engle, N.L., Deveau, A., Cushman, K.C., Martin, M.Z. et al. (2014) Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Molecular Plant-Microbe Interactions, 27, 546-556.

Tschaplinski, T.J., Standaert, R.F., Engle, N.L., Martin, M.Z., Sangha, A.K., Parks, J.M. et al. (2012) Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnology for Biofuels, 5, 71.

Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U. et al. (2006) The genome of black cottonwood, Populus trichocarpa (torr. & gray). Science, 313, 1596-1604.

Ullah, C., Tsai, C.J., Unsicker, S.B., Xue, L., Reichelt, M., Gershenzon, J. et al. (2019) Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-Populina via increased biosynthesis of catechin and proanthocyanidins. New Phytologist, 221, 960-975.

Ullah, C., Unsicker, S.B., Fellenberg, C., Constabel, C.P., Schmidt, A., Gershenzon, J. et al. (2017) Flavan-3-ols are an effective chemical defense against rust infection. Plant Physiology, 175, 1560-1578.

Usman, M., Ho-Plágaro, T., Frank, H.E.R., Calvo-Polanco, M., Gaillard, I., Garcia, K. et al. (2021) Mycorrhizal symbiosis for better adaptation of trees to abiotic stress caused by climate change in temperate and boreal forests. Frontiers in Forest and Global Change, 4, 742392.

Vainonen, J.P. & Kangasjärvi, J. (2015) Plant signaling in acute ozone exposure. Plant Cell Environment, 38, 240-252.

Vaultier, M.-N. & Jolivet, Y. (2015) Ozone sensing and early signaling in plants: an outline from the cloud. Environmental and Experimental Botany, 114, 144-152.

Vayssières, A., Pěnčík, A., Felten, J., Kohler, A., Ljung, K., Martin, F. et al. (2015) Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling, and response. Plant Physiology, 169, 890-902.

Winwood, J., Pate, A.E., Price, A.J. & Hanke, D.E. (2007) Effects of long-term, free-air ozone fumigation on the cytokinin content of mature beech trees. Plant Biology, 9, 265-278.

Wuyts, N., Lognay, G., Swennen, R. & De Waele, D. (2006) Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism. Journal of Experimental Botany, 57, 2825-2835.

Xie, M., Zhang, J., Tschaplinski, T.J., Tuskan, G.A., Chen, J.-G. & Muchero, W. (2018) Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Frontiers in Plant Science, 9, 1427.

Xu, H., Cooke, J.E., Kemppainen, M., Pardo, A.G. & Zwiazek, J.J. (2016) Hydraulic conductivity and aquaporin transcription in roots of trembling aspen (Populus tremuloides) seedlings colonized by Laccaria bicolor. Mycorrhiza, 26, 441-451.

Xu, H., Kemppainen, M., El Kayal, W., Lee, S.H., Pardo, A.G., Cooke, J.E. et al. (2015) Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings. New Phytologist, 205, 757-770.

Xu, W., Jia, L., Shi, W., Liang, J., Zhou, F., Li, Q. et al. (2013) Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist, 197, 139-150.

Zhang, J., Yang, Y., Zheng, K., Xie, M., Feng, K., Jawdy, S.S. et al. (2018) Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in populus. New Phytologist, 220, 502-516.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...