• This record comes from PubMed

Enhanced production of select phytocannabinoids in medical Cannabis cultivars using microbial consortia

. 2023 ; 14 () : 1219836. [epub] 20230831

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The root microbiome of medical cannabis plants has been largely unexplored due to past legal restrictions in many countries. Microbes that live on and within the tissue of Cannabis sativa L. similar to other plants, provide advantages such as stimulating plant growth, helping it absorb minerals, providing protection against pathogen attacks, and influencing the production of secondary metabolites. To gain insight into the microbial communities of C. sativa cultivars with different tetrahydrocannabinol (THC) and cannabidiol (CBD) profiles, a greenhouse trial was carried out with and without inoculants added to the growth substrate. Illumina MiSeq metabarcoding was used to analyze the root and rhizosphere microbiomes of the five cultivars. Plant biomass production showed higher levels in three of five cultivars inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis and microbial suspension. The blossom dry weight of the cultivar THE was greater when inoculated with R. irregularis and microbial suspension than with no inoculation. Increasing plant biomass and blossom dry weight are two important parameters for producing cannabis for medical applications. In mature Cannabis, 12 phytocannabinoid compounds varied among cultivars and were affected by inoculants. Significant differences (p ≤ 0.01) in concentrations of cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerol (CBG), cannabidiol (CBD), and cannabigerolic acid (CBGA) were observed in all Cannabis cultivars when amended with F, K1, and K2 inoculants. We found microbes that were shared among cultivars. For example, Terrimicrobium sp., Actinoplanes sp., and Trichoderma reesei were shared by the cultivars ECC-EUS-THE, CCL-ECC, and EUS-THE, respectively. Actinoplanes sp. is a known species that produces phosphatase enzymes, while Trichoderma reesei is a fungal train that produces cellulase and contributes to organic matter mineralization. However, the role of Terrimicrobium sp. as an anaerobic bacterium remains unknown. This study demonstrated that the use of inoculants had an impact on the production of phytocannabinoids in five Cannabis cultivars. These inoculants could have useful applications for optimizing cannabis cultivation practices and increasing the production of phytocannabinoids.

See more in PubMed

Ahmed B., Floc’h J.-B., Lahrach Z., Hijri M. (2021. a). Phytate and microbial suspension amendments increased soybean growth and shifted microbial community structure. Microorganisms 9 (9), 1803. doi: 10.3390/microorganisms9091803 PubMed DOI PMC

Ahmed B., Hijri M. (2021). Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J. Cannabis Res. 3 (1), 25. doi: 10.1186/s42238-021-00082-0 PubMed DOI PMC

Ahmed B., Smart L. B., Hijri M. (2021. b). Microbiome of field grown hemp reveals potential microbial interactions with root and rhizosphere soil. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.741597 PubMed DOI PMC

Anderson M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26 (1), 32–46.

Andre C. M., Hausman J.-F., Guerriero G. (2016). Cannabis sativa: the plant of the thousand and one molecules. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00019 PubMed DOI PMC

Babalola O. O., Fadiji A. E., Enagbonma B. J., Alori E. T., Ayilara M. S., Ayangbenro A. S. (2020). The nexus between plant and plant microbiome: revelation of the networking strategies. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.548037 PubMed DOI PMC

Backer R., Schwinghamer T., Rosenbaum P., McCarty V., Eichhorn Bilodeau S., Lyu D., et al. . (2019). Closing the yield gap for cannabis: A meta-analysis of factors determining cannabis yield. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00495 PubMed DOI PMC

Badri A., Stefani F. O. P., Lachance G., Roy-Arcand L., Beaudet D., Vialle A., et al. . (2016). Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome. Mycorrhiza 26 (7), 721–733. doi: 10.1007/s00572-016-0708-1 PubMed DOI

Barelli L., Waller A. S., Behie S. W., Bidochka M. J. (2020). Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. PloS One 15 (4), e0231150. doi: 10.1371/journal.pone.0231150 PubMed DOI PMC

Basiru S., Hijri M. (2022). The potential applications of commercial arbuscular mycorrhizal fungal inoculants and their ecological consequences. Microorganisms 10 (10), 1897. doi: 10.3390/microorganisms10101897 PubMed DOI PMC

Berendsen R. L., Pieterse C. M., Bakker P. A. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci. 17 (8), 478–486. doi: 10.1016/j.tplants.2012.04.001 PubMed DOI

Berg G., Smalla K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68 (1), 1–13. doi: 10.1111/j.1574-6941.2009.00654.x PubMed DOI

Bernstein N., Gorelick J., Zerahia R., Koch S. (2019). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00736 PubMed DOI PMC

Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J., Holmes S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13 (7), 581–583. doi: 10.1038/nmeth.3869 PubMed DOI PMC

Carvalho V. M., de Almeida F. G., de Macêdo Vieira A. C., Rocha E. D., Cabral L. M., Strongin R. M. (2022). Chemical profiling of Cannabis varieties cultivated for medical purposes in southeastern Brazil. Forensic Sci. Int. 335, 111309. doi: 10.1016/j.forsciint.2022.111309 PubMed DOI

Coffman C., Gentner W. (1975). Cannabinoid profile and elemental uptake of Cannabis sativa L. as influenced by soil characteristics 1. Agron. J. 67 (4), 491–497.

Coffman C., Gentner W. (1977). Responses of greenhouse-grown Cannabis sativa L. to nitrogen, phosphorus, and potassium. Agron. J. 69 (5), 832–836.

Comeau D., Novinscak A., Joly D. L., Filion M. (2020). Spatio-temporal and cultivar-dependent variations in the cannabis microbiome. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.00491 PubMed DOI PMC

Conant R. T., Walsh R. P., Walsh M., Bell C. W., Wallenstein M. D. (2017). Effects of a microbial biostimulant, Mammoth PTM, on Cannabis sativa bud yield. J. Horticulture 04, (01). doi: 10.4172/2376-0354.1000191 DOI

Dagher D. J., de la Providencia I. E., Pitre F. E., St-Arnaud M., Hijri M. (2020). Arbuscular mycorrhizal fungal assemblages significantly shifted upon bacterial inoculation in non-contaminated and petroleum-contaminated environments. Microorganisms 8 (4), 602. doi: 10.3390/microorganisms8040602 PubMed DOI PMC

Dang M., Arachchige N. M., Campbell L. G. (2021). Optimizing photoperiod switch to maximize floral biomass and cannabinoid yield in Cannabis sativa L.: A meta-analytic quantile regression approach. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.797425 PubMed DOI PMC

Danziger N., Bernstein N. (2021). Light matters: Effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Ind. Crops Products 164, 113351. doi: 10.1016/j.indcrop.2021.113351 DOI

Davies J., F. T., Olalde-Portugal V., Alvarado M., Escamilla H., Ferrera-Cerrato R., Espinosa J. (2000). Alleviating phosphorus stress of Chile ancho pepper (Capsicum annuum L. ‘San Luis’) by arbuscular mycorrhizal inoculation. J. Hortic. Sci. Biotechnol. 75 (6), 655–661.

De Cáceres M., Jansen F. (2019). indicspecies-package: studying the statistical relationship between species and groups of sites. R Package 1, 1.

Fathordoobady F., Singh A., Kitts D. D., Pratap Singh A., Cabral L. M., Strongin R. M. (2019). Hemp (Cannabis sativa L.) extract: anti-microbial properties, methods of extraction, and potential oral delivery. Food Rev Int. 35 (7), 664–684.

Folina A., Roussis I., Kouneli V., Kakabouki I., Karidogianni S., Bilalis D. (2019). Opportunities for cultivation of medical cannabis (Cannabis sativa L.) in Greece. Sci. Pap A Agron. 62, 293–300.

Gould A. L., Zhang V., Lamberti L., Jones E. W., Obadia B., Korasidis N., et al. . (2018). Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960. PubMed PMC

Grunert O., Hernandez-Sanabria E., Vilchez-Vargas R., Jauregui R., Pieper D. H., Perneel M., et al. . (2016). Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. Sci. Rep. 6, 18837. doi: 10.1038/srep18837 PubMed DOI PMC

Hamonts K., Trivedi P., Garg A., Janitz C., Grinyer J., Holford P., et al. . (2018). Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20 (1), 124–140. doi: 10.1111/1462-2920.14031 PubMed DOI

Han Q., Ma Q., Chen Y., Tian B., Xu L., Bai Y. (2020). Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 14, 1915–1928. PubMed PMC

Hervé M., Hervé M. M. (2020). Package ‘RVAideMemoire. Available at: https://CRAN.

Khan S. A., Hamayun M., Yoon H., Kim H.-Y., Suh S.-J., Hwang S.-K., et al. . (2008). Plant growth promotion and Penicillium citrinum . BMC Microbiol. 8 (1), 231. doi: 10.1186/1471-2180-8-231 PubMed DOI PMC

Kurtz Z. D., Müller C. L., Miraldi E. R., Littman D. R., Blaser M. J., Bonneau R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. PloS Comput. Biol. 11 (5), e1004226. doi: 10.1371/journal.pcbi.1004226 PubMed DOI PMC

Kusstatscher P., Zachow C., Harms K., Maier J., Eigner H., Berg G., et al. . (2019). Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome 7 (1), 112. doi: 10.1186/s40168-019-0728-0 PubMed DOI PMC

Lay C.-Y., Bell T. H., Hamel C., Harker K. N., Mohr R., Greer C. W., et al. . (2018). Canola root‐associated microbiomes in the Canadian prairies. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.01188 PubMed DOI PMC

Ma H.-K., Pineda A., Hannula S. E., Kielak A. M., Setyarini S. N., Bezemer T. M. (2020. b). Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl. Soil Ecol. 150, 103468. doi: 10.1016/j.apsoil.2019.103468 DOI

Ma B., Wang Y., Ye S., Liu S., Stirling E., Gilbert J. A., et al. . (2020. a). Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8 (1), 82. doi: 10.1186/s40168-020-00857-2 PubMed DOI PMC

Marques J. M., da Silva T. F., Vollu R. E., Blank A. F., Ding G.-C., Seldin L., et al. . (2014). Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol. Ecol. 88 (2), 424–435. doi: 10.1111/1574-6941.12313 PubMed DOI

McKernan K., Spangler J., Zhang L., Tadigotla V., Helbert Y., Foss T., et al. . (2016). Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade Cannabis flowers. F1000Research 4, (1422). doi: 10.12688/f1000research.7507.2 PubMed DOI PMC

Morella N. M., Weng F. C.-H., Joubert P. M., Metcalf C. J. E., Lindow S., Koskella B. (2020). Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl. Acad. Sci. 117, 1148–1159. PubMed PMC

Nilsson R. H., Larsson K.-H., Taylor A. F. S., Bengtsson-Palme J., Jeppesen T. S., Schigel D., et al. . (2018). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47 (D1), D259–D264. doi: 10.1093/nar/gky1022 PubMed DOI PMC

Oksanen J., Blanchet F., Friendly M., Kindt R., Legendre P., Mcglinn D., et al. . (2020). Package – vegan: Community ecology package Vol. 6 (R package version; ).

Pacifico D., Miselli F., Carboni A., Moschella A., Mandolino G. (2008). Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica. 160, 231–240.

Pagnani G., Pellegrini M., Galieni A., D’Egidio S., Matteucci F., Ricci A., et al. . (2018). Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops Products 123, 75–83. doi: 10.1016/j.indcrop.2018.06.033 DOI

Peşteanu A., Bostan M. (2020). Perfecţionarea unor elemente tehnologice la producerea materialului săditor pentru fondarea livezilor moderne de măr. Stiinta agricola 1, 52–59.

Pellegrino E., Nuti M., Ercoli L. (2022). Multiple arbuscular mycorrhizal fungal consortia enhance yield and fatty acids of Medicago sativa: A two-year field study on agronomic traits and tracing of fungal persistence. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.814401 PubMed DOI PMC

Poisot T., Foster Z. S. L., Sharpton T. J., Grünwald N. J. (2017). Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PloS Comput. Biol. 13, (2). doi: 10.1371/journal.pcbi.1005404 PubMed DOI PMC

Punja Z. K. (2021). Epidemiology of Fusarium oxysporum causing root and crown rot of cannabis (Cannabis sativa L., marijuana) plants in commercial greenhouse production. Can. J. Plant Pathol. 43 (2), 216–235. doi: 10.1080/07060661.2020.1788165 DOI

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 (Database issue), D590–D596. doi: 10.1093/nar/gks1219 PubMed DOI PMC

Saloner A., Bernstein N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Ind. Crops Products 167, 113516. doi: 10.1016/j.indcrop.2021.113516 DOI

Saloner A., Bernstein N. (2022). Effect of potassium (K) supply on cannabinoids, terpenoids and plant function in medical cannabis. Agronomy 12 (5), 1242. doi: 10.3390/agronomy12051242 DOI

Sapkota R., Knorr K., Jørgensen L. N., O’Hanlon K. A., Nicolaisen M. (2015). Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207 (4), 1134–1144. doi: 10.1111/nph.13418 PubMed DOI

Schloter M., Nannipieri P., Sørensen S. J., van Elsas J. D. (2018). Microbial indicators for soil quality. Biol. Fertility Soils 54 (1), 1–10. doi: 10.1007/s00374-017-1248-3 DOI

Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., et al. . (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (11), 2498–2504. doi: 10.1101/gr.1239303 PubMed DOI PMC

Taghinasab M., Jabaji S. (2020). Cannabis microbiome and the role of endophytes in modulating the production of secondary metabolites: an overview. Microorganisms 8, 3, 355. doi: 10.3390/microorganisms8030355 PubMed DOI PMC

R Core Team . (2020). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing; ).

Thioye B., van Tuinen D., Kane A., de Faria S. M., Ndiaye C., Duponnois R., et al. . (2019). Tracing Rhizophagus irregularis isolate IR27 in Ziziphus mauritiana roots under field conditions. Mycorrhiza 29 (1), 77–83. doi: 10.1007/s00572-018-0875-3 PubMed DOI

Toth J. A., Smart L. B., Smart C. D., Stack G. M., Carlson C. H., Philippe G., et al. . (2021). Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). GCB Bioenergy 13 (10), 1666–1674. doi: 10.1111/gcbb.12880 DOI

Tsagkaris A. S., Prusova N., Dzuman Z., Pulkrabova J., Hajslova J. (2021). Regulated and non-regulated mycotoxin detection in cereal matrices using an ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) method. Toxins 13 (11), 783. doi: 10.3390/toxins13110783 PubMed DOI PMC

Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., Dufresne A. (2015). The importance of the microbiome of the plant holobiont. New Phytol. 206 (4), 1196–1206. doi: 10.1111/nph.13312 PubMed DOI

Vujanovic V., Hamel C., Yergeau E., St-Arnaud M. (2006). Biodiversity and biogeography of Fusarium species from northeastern North American asparagus fields based on microbiological and molecular approaches. Microbial Ecol. 51 (2), 242–255. doi: 10.1007/s00248-005-0046-x PubMed DOI

Vurukonda S. S. K. P., Giovanardi D., Stefani E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19 (4), 952. doi: 10.3390/ijms19040952 PubMed DOI PMC

Weller D. M., Raaijmakers J. M., Gardener B. B. M., Thomashow L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40 (1), 309–348. doi: 10.1146/annurev.phyto.40.030402.110010 PubMed DOI

Wickham H., Wickham M. H. (2020). Package ‘plyr.

Winston M. E., Hampton-Marcell J., ZarraonaIndia I., Owens S. M., Moreau C. S., Gilbert J. A., et al. . (2014). Understanding cultivar-specificity and soil determinants of the Cannabis microbiome. PloS One 9 (6), e99641. doi: 10.1371/journal.pone.0099641 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...