FGF-23 is a biomarker of RV dysfunction and congestion in patients with HFrEF
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37749114
PubMed Central
PMC10520041
DOI
10.1038/s41598-023-42558-4
PII: 10.1038/s41598-023-42558-4
Knihovny.cz E-zdroje
- MeSH
- biologické markery MeSH
- dysfunkce pravé srdeční komory * MeSH
- funkce levé komory srdeční MeSH
- lidé MeSH
- prognóza MeSH
- proteomika MeSH
- srdeční selhání * MeSH
- tepový objem MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
There is no biomarker reflecting right ventricular dysfunction in HFrEF patients used in clinical practice. We have aimed to look for a circulating marker of RV dysfunction employing a quantitative proteomic strategy. The Olink Proteomics Multiplex panels (Cardiovascular Disease II, III, Cardiometabolic, and Inflammation Target Panels) identified FGF-23 to be the most differentially abundant (more than 2.5-fold) in blood plasma of HF patients with severe RV dysfunction (n = 30) compared to those with preserved RV function (n = 31). A subsequent ELISA-based confirmatory analysis of circulating FGF-23 in a large cohort of patients (n = 344, 72.7% NYHA III/IV, LVEF 22.5%, 54.1% with moderate/severe RV dysfunction), followed by multivariable regression analysis, revealed that the plasma FGF-23 level was most significantly associated with RV dysfunction grade (p = 0.0004) and congestion in the systemic circulation (p = 0.03), but not with LV-ejection fraction (p = 0.69) or estimated glomerular filtration rate (eGFR, p = 0.08). FGF-23 was associated with the degree of RV dysfunction in both sub-cohorts (i.e. in patients with and without congestion, p < 0.0001). The association between FGF-23 and RV-dysfunction remained significant after the adjustment for BNP (p = 0.01). In contrast, when adjusted for BNP, FGF-23 was no longer associated with LV dysfunction (p = 0.59). The Cox proportional hazard model revealed that circulating FGF-23 was significantly associated with adverse outcomes even after adjusting for BNP, LVEF, RV dysfunction grade and eGFR. Circulating FGF-23 is thus a biomarker of right ventricular dysfunction in HFrEF patients regardless of congestion status.
3rd Faculty of Medicine Charles University Prague Czech Republic
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
Department of Pathology Brigham and Women's Hospital Harvard Medical School Boston MA USA
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Bosch L, Lam CSP, Gong L, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur. J. Heart Fail. 2017;19:1664–1671. doi: 10.1002/ejhf.873. PubMed DOI
van Kimmenade RR, Januzzi JL., Jr Emerging biomarkers in heart failure. Clin. Chem. 2012;58:127–138. doi: 10.1373/clinchem.2011.165720. PubMed DOI
Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021;42:1289–1367. doi: 10.1093/eurheartj/ehaa575. PubMed DOI
Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS) Eur. Heart J. 2020;41:543–603. doi: 10.1093/eurheartj/ehz405. PubMed DOI
Havlenova T, Skaroupkova P, Miklovic M, et al. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci. Rep. 2021;11:17136. doi: 10.1038/s41598-021-96618-8. PubMed DOI PMC
Bellavia D, Iacovoni A, Scardulla C, et al. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur. J. Heart Fail. 2017;19:926–946. doi: 10.1002/ejhf.733. PubMed DOI
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging. 2015;16:233–270. doi: 10.1093/ehjci/jev014. PubMed DOI
Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2010;23:685–713. doi: 10.1016/j.echo.2010.05.010. PubMed DOI
Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2660–2667. doi: 10.1161/01.CIR.95.12.2660. PubMed DOI
Benes J, Kotrc M, Conrad MJ, Kautzner J, Melenovsky V, Jarolim P. Exercise dynamics of cardiac biomarkers and hemoconcentration in patients with chronic systolic heart failure. J. Cardiac Fail. 2020;26:1100–1105. doi: 10.1016/j.cardfail.2020.07.004. PubMed DOI
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 2013;75:503–533. doi: 10.1146/annurev-physiol-030212-183727. PubMed DOI PMC
Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Min. Res. Off. J. Am. Soc. Bone Min. Res. 2004;19:429–435. doi: 10.1359/JBMR.0301264. PubMed DOI
Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J. Clin. Investig. 2011;121:4393–4408. doi: 10.1172/JCI46122. PubMed DOI PMC
Hao H, Li X, Li Q, et al. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget. 2016;7:64649–64664. doi: 10.18632/oncotarget.11623. PubMed DOI PMC
Leifheit-Nestler M, Kirchhoff F, Nespor J, et al. Fibroblast growth factor 23 is induced by an activated renin-angiotensin-aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrol. Dialy. Transp. Off. Publ. Eur. Dialy. Transp. Assoc. Eur. Renal Assoc. 2018;33:1722–1734. PubMed
Slavic S, Ford K, Modert M, et al. Genetic ablation of Fgf23 or klotho does not modulate experimental heart hypertrophy induced by pressure overload. Sci. Rep. 2017;7:11298. doi: 10.1038/s41598-017-10140-4. PubMed DOI PMC
Grabner A, Schramm K, Silswal N, et al. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep. 2017;7:1993. doi: 10.1038/s41598-017-02068-6. PubMed DOI PMC
Pi M, Ye R, Han X, et al. Cardiovascular interactions between fibroblast growth factor-23 and angiotensin II. Sci. Rep. 2018;8:12398. doi: 10.1038/s41598-018-30098-1. PubMed DOI PMC
Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82:737–747. doi: 10.1038/ki.2012.176. PubMed DOI PMC
Ivey-Miranda JB, Stewart B, Cox ZL, et al. FGF-23 (fibroblast growth factor-23) and cardiorenal interactions. Circ. Heart Fail. 2021;14:e008385. doi: 10.1161/CIRCHEARTFAILURE.121.008385. PubMed DOI PMC
Koller L, Kleber ME, Brandenburg VM, et al. Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ. Heart Fail. 2015;8:1059–1067. doi: 10.1161/CIRCHEARTFAILURE.115.002341. PubMed DOI
von Jeinsen B, Sopova K, Palapies L, et al. Bone marrow and plasma FGF-23 in heart failure patients: novel insights into the heart-bone axis. ESC Heart Failure. 2019;6:536–544. doi: 10.1002/ehf2.12416. PubMed DOI PMC
Pandhi P, Ter Maaten JM, Anker SD, et al. Pathophysiologic processes and novel biomarkers associated with congestion in heart failure. JACC. Heart Failure. 2022;10:623–632. doi: 10.1016/j.jchf.2022.05.013. PubMed DOI
Colombo PC, Onat D, Harxhi A, et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur. Heart J. 2014;35:448–454. doi: 10.1093/eurheartj/eht456. PubMed DOI PMC
Benes J, Kotrc M, Wohlfahrt P, et al. Right ventricular global dysfunction score: a new concept of right ventricular function assessment in patients with heart failure with reduced ejection fraction (HFrEF) Front. Cardiovasc. Med. 2023;10:1194174. doi: 10.3389/fcvm.2023.1194174. PubMed DOI PMC
Richter M, Lautze HJ, Walther T, Braun T, Kostin S, Kubin T. The failing heart is a major source of circulating FGF23 via oncostatin M receptor activation. J. Heart Lung Transp. 2015;34:1211–1214. doi: 10.1016/j.healun.2015.06.007. PubMed DOI
Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 2020;16:7–19. doi: 10.1038/s41581-019-0189-5. PubMed DOI