FGF-23 is a biomarker of RV dysfunction and congestion in patients with HFrEF

. 2023 Sep 25 ; 13 (1) : 16004. [epub] 20230925

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37749114
Odkazy

PubMed 37749114
PubMed Central PMC10520041
DOI 10.1038/s41598-023-42558-4
PII: 10.1038/s41598-023-42558-4
Knihovny.cz E-zdroje

There is no biomarker reflecting right ventricular dysfunction in HFrEF patients used in clinical practice. We have aimed to look for a circulating marker of RV dysfunction employing a quantitative proteomic strategy. The Olink Proteomics Multiplex panels (Cardiovascular Disease II, III, Cardiometabolic, and Inflammation Target Panels) identified FGF-23 to be the most differentially abundant (more than 2.5-fold) in blood plasma of HF patients with severe RV dysfunction (n = 30) compared to those with preserved RV function (n = 31). A subsequent ELISA-based confirmatory analysis of circulating FGF-23 in a large cohort of patients (n = 344, 72.7% NYHA III/IV, LVEF 22.5%, 54.1% with moderate/severe RV dysfunction), followed by multivariable regression analysis, revealed that the plasma FGF-23 level was most significantly associated with RV dysfunction grade (p = 0.0004) and congestion in the systemic circulation (p = 0.03), but not with LV-ejection fraction (p = 0.69) or estimated glomerular filtration rate (eGFR, p = 0.08). FGF-23 was associated with the degree of RV dysfunction in both sub-cohorts (i.e. in patients with and without congestion, p < 0.0001). The association between FGF-23 and RV-dysfunction remained significant after the adjustment for BNP (p = 0.01). In contrast, when adjusted for BNP, FGF-23 was no longer associated with LV dysfunction (p = 0.59). The Cox proportional hazard model revealed that circulating FGF-23 was significantly associated with adverse outcomes even after adjusting for BNP, LVEF, RV dysfunction grade and eGFR. Circulating FGF-23 is thus a biomarker of right ventricular dysfunction in HFrEF patients regardless of congestion status.

Zobrazit více v PubMed

Bosch L, Lam CSP, Gong L, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur. J. Heart Fail. 2017;19:1664–1671. doi: 10.1002/ejhf.873. PubMed DOI

van Kimmenade RR, Januzzi JL., Jr Emerging biomarkers in heart failure. Clin. Chem. 2012;58:127–138. doi: 10.1373/clinchem.2011.165720. PubMed DOI

Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021;42:1289–1367. doi: 10.1093/eurheartj/ehaa575. PubMed DOI

Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS) Eur. Heart J. 2020;41:543–603. doi: 10.1093/eurheartj/ehz405. PubMed DOI

Havlenova T, Skaroupkova P, Miklovic M, et al. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci. Rep. 2021;11:17136. doi: 10.1038/s41598-021-96618-8. PubMed DOI PMC

Bellavia D, Iacovoni A, Scardulla C, et al. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur. J. Heart Fail. 2017;19:926–946. doi: 10.1002/ejhf.733. PubMed DOI

Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging. 2015;16:233–270. doi: 10.1093/ehjci/jev014. PubMed DOI

Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2010;23:685–713. doi: 10.1016/j.echo.2010.05.010. PubMed DOI

Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2660–2667. doi: 10.1161/01.CIR.95.12.2660. PubMed DOI

Benes J, Kotrc M, Conrad MJ, Kautzner J, Melenovsky V, Jarolim P. Exercise dynamics of cardiac biomarkers and hemoconcentration in patients with chronic systolic heart failure. J. Cardiac Fail. 2020;26:1100–1105. doi: 10.1016/j.cardfail.2020.07.004. PubMed DOI

Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 2013;75:503–533. doi: 10.1146/annurev-physiol-030212-183727. PubMed DOI PMC

Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Min. Res. Off. J. Am. Soc. Bone Min. Res. 2004;19:429–435. doi: 10.1359/JBMR.0301264. PubMed DOI

Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J. Clin. Investig. 2011;121:4393–4408. doi: 10.1172/JCI46122. PubMed DOI PMC

Hao H, Li X, Li Q, et al. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget. 2016;7:64649–64664. doi: 10.18632/oncotarget.11623. PubMed DOI PMC

Leifheit-Nestler M, Kirchhoff F, Nespor J, et al. Fibroblast growth factor 23 is induced by an activated renin-angiotensin-aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrol. Dialy. Transp. Off. Publ. Eur. Dialy. Transp. Assoc. Eur. Renal Assoc. 2018;33:1722–1734. PubMed

Slavic S, Ford K, Modert M, et al. Genetic ablation of Fgf23 or klotho does not modulate experimental heart hypertrophy induced by pressure overload. Sci. Rep. 2017;7:11298. doi: 10.1038/s41598-017-10140-4. PubMed DOI PMC

Grabner A, Schramm K, Silswal N, et al. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep. 2017;7:1993. doi: 10.1038/s41598-017-02068-6. PubMed DOI PMC

Pi M, Ye R, Han X, et al. Cardiovascular interactions between fibroblast growth factor-23 and angiotensin II. Sci. Rep. 2018;8:12398. doi: 10.1038/s41598-018-30098-1. PubMed DOI PMC

Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82:737–747. doi: 10.1038/ki.2012.176. PubMed DOI PMC

Ivey-Miranda JB, Stewart B, Cox ZL, et al. FGF-23 (fibroblast growth factor-23) and cardiorenal interactions. Circ. Heart Fail. 2021;14:e008385. doi: 10.1161/CIRCHEARTFAILURE.121.008385. PubMed DOI PMC

Koller L, Kleber ME, Brandenburg VM, et al. Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ. Heart Fail. 2015;8:1059–1067. doi: 10.1161/CIRCHEARTFAILURE.115.002341. PubMed DOI

von Jeinsen B, Sopova K, Palapies L, et al. Bone marrow and plasma FGF-23 in heart failure patients: novel insights into the heart-bone axis. ESC Heart Failure. 2019;6:536–544. doi: 10.1002/ehf2.12416. PubMed DOI PMC

Pandhi P, Ter Maaten JM, Anker SD, et al. Pathophysiologic processes and novel biomarkers associated with congestion in heart failure. JACC. Heart Failure. 2022;10:623–632. doi: 10.1016/j.jchf.2022.05.013. PubMed DOI

Colombo PC, Onat D, Harxhi A, et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur. Heart J. 2014;35:448–454. doi: 10.1093/eurheartj/eht456. PubMed DOI PMC

Benes J, Kotrc M, Wohlfahrt P, et al. Right ventricular global dysfunction score: a new concept of right ventricular function assessment in patients with heart failure with reduced ejection fraction (HFrEF) Front. Cardiovasc. Med. 2023;10:1194174. doi: 10.3389/fcvm.2023.1194174. PubMed DOI PMC

Richter M, Lautze HJ, Walther T, Braun T, Kostin S, Kubin T. The failing heart is a major source of circulating FGF23 via oncostatin M receptor activation. J. Heart Lung Transp. 2015;34:1211–1214. doi: 10.1016/j.healun.2015.06.007. PubMed DOI

Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 2020;16:7–19. doi: 10.1038/s41581-019-0189-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...