Seasonal wild dance of dual endosymbionts in the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37749181
PubMed Central
PMC10519999
DOI
10.1038/s41598-023-43130-w
PII: 10.1038/s41598-023-43130-w
Knihovny.cz E-zdroje
- MeSH
- Bacteria MeSH
- Hemiptera * mikrobiologie MeSH
- lidé MeSH
- Pyrus * MeSH
- roční období MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most sap-feeding insects maintain obligate relationships with endosymbiotic bacteria that provide their hosts with essential nutrients. However, knowledge about the dynamics of endosymbiont titers across seasons in natural host populations is scarce. Here, we used quantitative PCR to investigate the seasonal dynamics of the dual endosymbionts "Candidatus Carsonella ruddii" and "Ca. Psyllophila symbiotica" in a natural population of the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea: Psyllidae). Psyllid individuals were collected across an entire year, covering both summer and overwintering generations. Immatures harboured the highest titers of both endosymbionts, while the lowest endosymbiont density was observed in males. The density of Carsonella remained high and relatively stable across the vegetative period of the pear trees, but significantly dropped during the non-vegetative period, overlapping with C. pyricola's reproductive diapause. In contrast, the titer of Psyllophila was consistently higher than Carsonella's and exhibited fluctuations throughout the sampling year, which might be related to host age. Despite a tightly integrated metabolic complementarity between Carsonella and Psyllophila, our findings highlight differences in their density dynamics throughout the year, that might be linked to their metabolic roles at different life stages of the host.
Competence Centre for Plant Health Free University of Bozen Bolzano 39100 Bolzano Italy
Department of Botany and Zoology Faculty of Science Masaryk University 60200 Brno Czech Republic
UMR 1345 Institut Agro INRAE IRHS SFR Quasav Université d'Angers Angers France
Zobrazit více v PubMed
Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. USA. 2007;104:8627–8633. PubMed PMC
Janson EM, Stireman JO, Singer MS, Abbot P. Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution. 2008;62:997–1012. PubMed
Dale C, Moran NA. Molecular interactions between bacterial symbionts and their hosts. Cell. 2006;126:453–465. PubMed
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 2008;42:165–190. PubMed
West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc. Natl. Acad. Sci. USA. 2015;112:10112–10119. PubMed PMC
Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 2005;59:155–189. PubMed
Gil R, Sabater-Muñoz B, Latorre A, Silva FJ, Moya A. Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life. Proc. Natl. Acad. Sci. USA. 2002;99:4454–4458. PubMed PMC
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 2012;10:13–26. PubMed
McCutcheon JP, Boyd BM, Dale C. The Life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 2019;29:485–495. PubMed
Mao M, Yang X, Poff K, Bennett G. Comparative genomics of the dual-obligate symbionts from the treehopper, Entylia carinata (Hemiptera: Membracidae), provide insight into the origins and evolution of an ancient symbiosis. Gen. Biol. Evol. 2017;9:1803–1815. PubMed PMC
Nakabachi A, Piel J, Malenovský I, Hirose Y. Comparative genomics underlines multiple roles of Profftella, an obligate symbiont of psyllids: Providing toxins, vitamins, and carotenoids. Gen. Biol. Evol. 2020;12:1975–1987. PubMed PMC
Dial DT, et al. Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae) ISME J, 2022;16:642–654. PubMed PMC
Dittmer J, et al. Division of labour within psyllids: Metagenomics reveals an ancient dual endosymbiosis with metabolic complementarity in the genus Cacopsylla. mSystems, in press. 2023 doi: 10.1101/2023.04.17.537237. PubMed DOI PMC
Chong RA, Moran NA. Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. Proc. Natl. Acad. Sci. USA. 2016;113:13114–13119. PubMed PMC
Ankrah NYD, Chouaia B, Douglas AE. The cost of metabolic interactions in symbioses between insects and bacteria with reduced genomes. MBio. 2018;9:10–1128. PubMed PMC
Mira A, Moran NA. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microbiol. Ecol. 2002;44:137–143. PubMed
Hosokawa T, Kikuchi Y, Fukatsu T. How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism? Mol. Ecol. 2007;16:5316–5325. PubMed
Simonet P, et al. Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis. Sci. Rep. 2016;6:19967. PubMed PMC
Michalik A, et al. Alternative transmission patterns in independently acquired nutritional cosymbionts of Dictyopharidae planthoppers. MBio. 2021;12:10–1128. PubMed PMC
Vigneron A, et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 2014;24:2267–2273. PubMed
Parkinson JF, Gobin B, Hughes WOH. The more, the merrier? Obligate symbiont density changes over time under controlled environmental conditions, yet holds no clear fitness consequences: No symbiont density fitness consequences. Physiol. Entomol. 2017;42:163–172.
Vogel KJ, Moran NA. Effect of host genotype on symbiont titer in the aphid–Buchnera symbiosis. Insects. 2011;2:423–434. PubMed PMC
Wilkinson TL, Koga R, Fukatsu T. Role of host nutrition in symbiont regulation: impact of dietary nitrogen on proliferation of obligate and facultative bacterial endosymbionts of the pea aphid Acyrthosiphon pisum. Appl. Environ. Microbiol. 2007;73:1362–1366. PubMed PMC
Chandler SM, Wilkinson TL, Douglas AE. Impact of plant nutrients on the relationship between a herbivorous insect and its symbiotic bacteria. Proc. R. Soc. B. 2008;275:565–570. PubMed PMC
Snyder AK, McLain C, Rio RVM. The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl. Environ. Microbiol. 2012;78:7792–7797. PubMed PMC
Zhang Y-C, Cao W-J, Zhong L-R, Godfray HCJ, Liu X-D. Host plant determines the population size of an obligate symbiont (Buchnera aphidicola) in aphids. Appl. Environ. Microbiol. 2016;82:2336–2346. PubMed PMC
Guidolin AS, Cônsoli FL. Influence of host plant on oligophagous and polyphagous aphids, and on their obligate symbiont titers. Biologia. 2020;75:71–81.
Komaki K, Ishikawa H. Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host. Insect Biochem. Mol. Biol. 2000;30:253–258. PubMed
Lu W-N, Chiu M-C, Kuo M-H. Host life stage- and temperature-dependent density of the symbiont Buchnera aphidicola in a subtropical pea aphid (Acyrthosiphon pisum) population. J. Asia-Pac. Entomol. 2014;17:537–541.
Kono M, Koga R, Shimada M, Fukatsu T. Infection dynamics of coexisting Beta- and Gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl. Environ. Microbiol. 2008;74:4175–4184. PubMed PMC
Correa CC, Ballard JWO. Wolbachia gonadal density in female and male Drosophila vary with laboratory adaptation and respond differently to physiological and environmental challenges. J. Inverteb. Pathol. 2012;111:197–204. PubMed
Parker BJ, Hrček J, McLean AHC, Brisson JA, Godfray HCJ. Intraspecific variation in symbiont density in an insect–microbe symbiosis. Mol. Ecol. 2021;30:1559–1569. PubMed
Thao ML, et al. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl. Environ. Microbiol. 2000;66:2898–2905. PubMed PMC
Nakabachi A, et al. The 160-Kilobase genome of the bacterial endosymbiont Carsonella. Science. 2006;314:267–267. PubMed
Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol. Biol. Evol. 2012;29:3781–3792. PubMed PMC
Nakabachi A, Malenovský I, Gjonov I, Hirose Y. 16S rRNA sequencing detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from relatives of the Asian citrus psyllid. Microbiol. Ecol. 2020;80:410–422. PubMed
Schuler H, et al. Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma. Environ. Microbiol. 2022 doi: 10.1111/1462-2920.16138. PubMed DOI PMC
Štarhová Serbina L, et al. Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts. Environ. Microbiol. 2022;24:5788–5808. PubMed PMC
Dossi FCA, da Silva EP, Cônsoli FL. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny. Microbiol. Ecol. 2014;68:881–889. PubMed
Meng L, Li X, Cheng X, Zhang H. 16S rRNA gene sequencing reveals a shift in the microbiota of Diaphorina citri during the psyllid life cycle. Front. Microbiol. 2019;10:1948. PubMed PMC
Chu C-C, Gill TA, Hoffmann M, Pelz-Stelinski KS. Inter-population variability of endosymbiont densities in the Asian citrus psyllid (Diaphorina citri Kuwayama) Microbiol. Ecol. 2016;71:999–1007. PubMed PMC
Mushegian AA, Tougeron K. Animal-microbe interactions in the context of diapause. Biol. Bull. 2019;237:180–191. PubMed
Larsson S. Stressful times for the plant stress: Insect performance hypothesis. Oikos. 1989;56:277–283.
Horton DR, Higbee BS, Krysan JL. Postdiapause development and mating status of pear psylla (Homoptera: Psyllidae) affected by pear and nonhost species. Ann. Entomol. Soc. Am. 1994;87:241–249.
Seemüller E, Schneider B. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int. J. Syst. Evol. Microbiol. 2004;54:1217–1226. PubMed
Jarausch, B., Tedeschi, R., Sauvion, N., Gross, J. & Jarausch, W. Psyllid vectors. in Phytoplasmas: Plant Pathogenic Bacteria–II (eds. Bertaccini, A., Weintraub, P. G., Rao, G. P. & Mori, N.) 53–78 (Springer Singapore, 2019).
Lauterer, P. Results of the investigations on Hemiptera in Moravia, made by the Moravian museum (Psylloidea 2). Acta Musei Moraviae, Sci. Biol.84, 71–151 (1999).
Hodkinson ID. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): A global synthesis. J. Nat. Hist. 2009;43:65–179.
Butt BA, Stuart C. Oviposition by summer and winter forms of pear psylla (Homoptera: Psyllidae) on dormant pear budwood. Environ. Entomol. 1986;15:1109–1110.
Horton DR, Guédot C, Landolt PJ. Diapause status of females affects attraction of male pear psylla, Cacopsylla pyricola, to volatiles from female-infested pear shoots. Entomol. Exp. Appl. 2007;123:185–192.
Campbell MA, et al. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas. MBio. 2018;9:15. PubMed PMC
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc. R. Soc. B. 2021;288:20211993. PubMed PMC
Douglas AE. Reproductive diapause and the bacterial symbiosis in the sycamore aphid Drepanosiphum platanoidis: Symbiosis in diapausing aphids. Ecol. Entomol. 2000;25:256–261.
Malik NSA, Perez JL, Patt JE, Zibilske LM, Mangan RL. Increased infestation of Asian citrus psyllids on cold treated sour orange seedlings: Its possible relation to biochemical changes in leaves. J. Food Agric. Environ. 2012;10:424–429.
Le Goff GJ, et al. What are the nutritional needs of the pear psylla Cacopsylla pyri? Arthrop. Plant Interact. 2018;13:431–439.
Gallinger J, Gross J. Unraveling the host plant alternation of Cacopsylla pruni—adults but not nymphs can survive on conifers due to phloem/xylem composition. Front. Plant Sci. 2018;9:484. PubMed PMC
Sudha G, Ravishankar GA. Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult. 2002;71:181–212.
Nishikori K, Morioka K, Kubo T, Morioka M. Age- and morph-dependent activation of the lysosomal system and Buchnera degradation in aphid endosymbiosis. J. Insect Physiol. 2009;55:351–357. PubMed
Koricheva, J. & Barton, K. E. Temporal changes in plant secondary metabolite production: patterns, causes and consequences. in The Ecol. Plant Second. Metabol. (eds. Iason, G. R., Dicke, M. & Hartley, S. E.) 34–55 (Cambridge University Press, 2012). 10.1017/CBO9780511675751.004.
Laughton AM, Fan MH, Gerardo NM. The combined effects of bacterial symbionts and aging on life history traits in the pea aphid, Acyrthosiphon pisum. Appl. Environ. Microbiol. 2014;80:470–477. PubMed PMC
Stoll S, Feldhaar H, Fraunholz MJ, Gross R. Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus. BMC Microbiol. 2010;10:308. PubMed PMC
Ossiannilsson, F. The Psylloidea (Homoptera) of Fennoscandia and Denmark. (Brill, E.J., 1992).
Oettl S, Schlink K. Molecular identification of two vector species, Cacopsylla melanoneura and Cacopsylla picta (Hemiptera: Psyllidae), of Apple Proliferation disease and further common psyllids of Northern Italy. J. Econ. Entomol. 2015;108:2174–2183. PubMed
Štarhová Serbina L, et al. Wolbachia infection dynamics in a natural population of the pear psyllid Cacopsylla pyri (Hemiptera: Psylloidea) across its seasonal generations. Sci. Rep. 2022;12:16502. PubMed PMC