Exploring Wild Hordeum spontaneum and Hordeum marinum Accessions as Genetic Resources for Fungal Resistance

. 2023 Sep 13 ; 12 (18) : . [epub] 20230913

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37765425

Grantová podpora
RO0418 and RO0423 Ministry of Agriculture, Czech Republic

Crop Wild Relatives (CWRs), as potential sources of new genetic variants, are being extensively studied to identify genotypes that will be able to confer resistance to biotic stresses. In this study, a collection of barley wild relatives was assessed in the field, and their phenotypic variability was evaluated using a Barley Description List, reflecting the identified ecosites. Overall, the CWRs showed significant field resistance to various fungal diseases. To further investigate their resistance, greenhouse tests were performed, revealing that several CWRs exhibited resistance against Fusarium culmorum, Pyrenophora teres, and Puccinia hordei G.H. Otth. Additionally, to characterize the genetic diversity within the collection, DNA polymorphisms at 21 loci were examined. We successfully employed barley-specific SSR markers, confirming their suitability for identifying H. spontaneum and even H. marinum, i.e., perennial species. The SSR markers efficiently clustered the investigated collection according to species and ecotypes, similarly to the phenotypic assessment. Moreover, SSR markers associated with disease resistance revealed different alleles in comparison to those found in resistant barley cultivars. Overall, our findings highlight that this evaluated collection of CWRs represents a valuable reservoir of genetic variability and resistance genes that can be effectively utilized in breeding programs.

Zobrazit více v PubMed

Hajjar R., Hodgkin T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica. 2007;156:1–13. doi: 10.1007/s10681-007-9363-0. DOI

Dempewolf H., Baute G., Anderson J., Kilian B., Smith C., Guarino L. Past and Future Use of Wild Relatives in Crop Breeding Crop Science. 2017. [(accessed on 7 September 2023)]. pp. 1070–1082. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2016.10.0885. DOI

Hajjar R., Hodgkin T. Using crop wild relatives for crop improvement: Trends and perspectives. In: Maxted N.B.V.F., Kell S.P., Iriondo J., Dulloo E., Turok J., editors. Crop Wild Relative Conservation and Use. CABI; Sicily, Italy: 2007. pp. 535–548.

Maxted N., Scholten M., Codd R., Ford-Lloyd B. Creation and use of a national inventory of crop wild relatives. Biol. Conserv. 2007;140:142–159. doi: 10.1016/j.biocon.2007.08.006. DOI

Razzaq A., Saleem F., Wani S.H., Abdelmohsen S.A.M., Alyousef H.A., Abdelbacki A.M.M., Alkallas F.H., Tamam N., Elansary H.O. De-novo Domestication for Improving Salt Tolerance in Crops. Front. Plant Sci. 2021;12:681367. doi: 10.3389/fpls.2021.681367. PubMed DOI PMC

FAO Faostat Database. [(accessed on 27 January 2023)]. Available online: https://www.fao.org/faostat/en/#search/FAO%202020%20FAO%20crop%20estimate%20data%20.

Badr A.M.K., Sch R., Rabey H.E., Effgen S., Ibrahim H.H., Pozzi C., Rohde W., Salamini F. On the Origin and Domestication History of Barley (Hordeum vulgare) Mol. Biol. Evol. 2000;17:499–510. doi: 10.1093/oxfordjournals.molbev.a026330. PubMed DOI

Morrell P.L., Clegg M.T. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc. Natl. Acad. Sci. USA. 2007;104:3289–3294. doi: 10.1073/pnas.0611377104. PubMed DOI PMC

Hammer K. Das Domestikationssyndrom. Die Kult. 1984;32:11–34. doi: 10.1007/BF02098682. DOI

Barati M., Majidi M.M., Mirlohi A., Safari M., Mostafavi F., Karami Z. Potential of Iranian Wild Barley (Hordeum vulgare ssp. spontaneum) in Breeding for Drought Tolerance. Cereal Res. Commun. 2018;46:707–716. doi: 10.1556/0806.46.2018.040. DOI

Ebrahim F., Arzani A., Rahimmalek M., Sun D.F., Peng J.H. Salinity tolerance of wild barley Hordeum vulgare ssp. spontaneum. Plant Breed. 2020;139:304–316. doi: 10.1111/pbr.12770. DOI

Kintzios S., Fischbeck G. Identification of new sources for resistance to powdery mildew in H-spontaneum-derived winter barley lines. Genet. Resour. Crop Evol. 1996;43:25–31. doi: 10.1007/BF00126937. DOI

Global G. GRIN Czech. [(accessed on 6 January 2022)]. Available online: https://grinczech.vurv.cz/gringlobal/search.aspx.

Jakob S.S., Ihlow A., Blattner F.R. Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)—Niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol. Ecol. 2007;16:1713–1727. doi: 10.1111/j.1365-294X.2007.03228.x. PubMed DOI

Harlan J.R., Zohary D. Distribution of Wild Wheats and Barley. Science. 1966;153:1074–1080. doi: 10.1126/science.153.3740.1074. PubMed DOI

Bedada G., Westerbergh A., Müller T., Galkin E., Bdolach E., Moshelion M., Fridman E., Schmid K.J. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genom. 2014;15:995. doi: 10.1186/1471-2164-15-995. PubMed DOI PMC

Carmona A., Friero E., de Bustos A., Jouve N., Cuadrado A. The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. Ann. Bot. 2013;112:1845–1855. doi: 10.1093/aob/mct245. PubMed DOI PMC

Yin B., Sun G.L., Sun D.K., Ren X.F. Phylogenetic analysis of two single-copy nuclear genes revealed origin of tetraploid barley Hordeum marinum. PLoS ONE. 2020;15:e0235475. doi: 10.1371/journal.pone.0235475. PubMed DOI PMC

Huang L., Kuang L.H., Li X., Wu L.Y., Wu D.Z., Zhang G.P. Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environ. Exp. Bot. 2018;156:48–61. doi: 10.1016/j.envexpbot.2018.08.019. DOI

Alamri S.A., Barrett-Lennard E.G., Teakle N.L., Colmer T.D. Improvement of salt and waterlogging tolerance in wheat: Comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents. Funct. Plant Biol. 2013;40:1168–1178. doi: 10.1071/FP12385. PubMed DOI

Jiang J., Liu D. New hordeum-triticum hybrids. Cereal Res. Commun. 1987;15:95–99.

Garthwaite A.J., von Bothmer R., Colmer T.D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl− into the shoots. J. Exp. Bot. 2005;56:2365–2378. doi: 10.1093/jxb/eri229. PubMed DOI

Efremova T., Arbuzova V., Trubacheeva N., Ocadchaya T., Chumanova E., Pershina L. Substitution of Hordeum marinum ssp gussoneanum chromosome 7HL into wheat homoeologous group-7. Euphytica. 2013;192:251–257. doi: 10.1007/s10681-012-0843-5. DOI

Mano Y., Omori F. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp mays) Ann. Bot. 2013;112:1125–1139. doi: 10.1093/aob/mct160. PubMed DOI PMC

Salomon B., Vonbothmer R., Jacobsen N. Intergeneric crosses between Hordeum and north-american Elymus (Poaceae, Triticeae) Hereditas. 1991;114:35–39. doi: 10.1111/j.1601-5223.1991.tb00550.x. DOI

Riaz A., Kanwal F., Borner A., Pillen K., Dai F., Alqudah A.M. Advances in Genomics-Based Breeding of Barley: Molecular Tools and Genomic Databases. Agronomy. 2021;11:894. doi: 10.3390/agronomy11050894. DOI

Thudi M., Palakurthi R., Schnable J.C., Chitikineni A., Dreisigacker S., Mace E., Srivastava R.K., Satyavathi C.T., Odeny D., Tiwari V.K., et al. Genomic resources in plant breeding for sustainable agriculture. J. Plant Physiol. 2021;257:153351. doi: 10.1016/j.jplph.2020.153351. PubMed DOI PMC

Alqudah A.M., Sallam A., Baenziger P.S., Borner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from Barley—A review. J. Adv. Res. 2020;22:119–135. doi: 10.1016/j.jare.2019.10.013. PubMed DOI PMC

Zenda T., Liu S.T., Dong A.Y., Duan H.J. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life. 2021;11:502. doi: 10.3390/life11060502. PubMed DOI PMC

Sovova T., Kerins G., Demnerova K., Ovesna J. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline. Curr. Issues Mol. Biol. 2017;21:41–61. PubMed

Bilz M., Kell S., Maxted N., Lansdown R. European Red. List. of Vascular Plants. Publications Office of the European Union; Luxembourg: 2011.

Kell S., Maxted N., Bilz M. Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CABI International; Wallingford, UK: 2012. European crop wild relative threat assessment: Knowledge gained and lessons learnt; pp. 218–242.

Jia Q.J., Zhu J.H., Wang J.M., Yang J.M. Fusarium Head Blight Evaluation and Genetic Diversity Assessment by Simple Sequence Repeats in 88 Barley Cultivars and Landraces. In: Ceccarelli S., Grando S., editors. Proceedings of the 10th International Barley Genetics Symposium; Alexandria, Egypt. 5–10 April 2008; Alexandria, Egypt: ICARDA; 2008. pp. 298–310.

Russell J., Fuller J., Young G., Thomas B., Taramino G., Macaulay M., Waugh R., Powell W. Discriminating between barley genotypes using microsatellite markers. Genome. 1997;40:442–450. doi: 10.1139/g97-059. PubMed DOI

Ramsay L., Macaulay M., Ivanissevich S.d., MacLean K., Cardle L., Fuller J., Edwards K.J., Tuvesson S., Morgante M., Massari A., et al. A Simple Sequence Repeat-Based Linkage Map of Barley. Genetics. 2000;156:1997–2005. doi: 10.1093/genetics/156.4.1997. PubMed DOI PMC

Sanchez-Martin J., Keller B. Contribution of recent technological advances to future resistance breeding. Theor. Appl. Genet. 2019;132:713–732. doi: 10.1007/s00122-019-03297-1. PubMed DOI

Osman M., He X., Capettini F., Helm J., Singh P.K. Phenotypic Characterization of Canadian Barley Advanced Breeding Lines for Multiple Disease Resistance. Cereal Res. Commun. 2019;47:484–495. doi: 10.1556/0806.47.2019.19. DOI

von Korff M., Wang H., Léon J., Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor. Appl. Genet. 2004;109:1736–1745. doi: 10.1007/s00122-004-1818-2. PubMed DOI

Li J.Z., Huang X.Q., Heinrichs F., Ganal M.W., Röder M.S. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome. 2006;49:454–466. doi: 10.1139/g05-128. PubMed DOI

Rubiales D., Ramírez M.C., Niks R.E. Avoidance of leaf rust fungi in wild relatives of cultivated cereals. Euphytica. 1996;87:1–6. doi: 10.1007/BF00022958. DOI

Rehman S., Amouzoune M., Hiddar H., Aberkane H., Benkirane R., Filali-Maltouf A., Al-Jaboobi M., Acqbouch L., Tsivelikas A., Verma R.P.S., et al. Trait discovery in Hordeum vulgare sbsp. spontaneum accessions and in lines derived from interspecific crosses with wild Hordeum species for enhancing barley breeding efforts. Crop Sci. 2021;61:219–233. doi: 10.1002/csc2.20360. DOI

Yu X.H., Casonato S., Jones E., Butler R.C., Johnston P.A., Chng S. Phenotypic characterization of the Hordeum bulbosum derived leaf rust resistance genes Rph22 and Rph26 in barley. J. Appl. Microbiol. 2022;133:2083–2094. doi: 10.1111/jam.15710. PubMed DOI PMC

Chen Y., Kistler H., Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. Annu. Rev. Phytopathol. 2019;57:15–39. doi: 10.1146/annurev-phyto-082718-100318. PubMed DOI

Salacova L., Faltusova Z., Ovesna J. Mechanisms Used by Plants for Defence against Fungal Pathogens. Chem. Listy. 2015;109:613–618.

Moretti A., Pascale M., Logrieco A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019;84:38–40. doi: 10.1016/j.tifs.2018.03.008. DOI

Valverde-Bogantes E., Bianchini A., Herr J.R., Rose D.J., Wegulo S.N., Hallen-Adams H.E. Recent population changes of Fusarium head blight pathogens: Drivers and implications. Can. J. Plant Pathol. 2020;42:315–329. doi: 10.1080/07060661.2019.1680442. DOI

Kolawole O., Meneely J., Petchkongkaew A., Elliott C. A review of mycotoxin biosynthetic pathways: Associated genes and their expressions under the influence of climatic factors. Fungal Biol. Rev. 2021;37:8–26. doi: 10.1016/j.fbr.2021.04.003. DOI

Spunarova M., Ovesna J., Tvaruzek L., Kucera L., Spunar J., Hollerova I. The use of molecular markers for characterisation of spring barley for breeding to Fusarium head blight resistance. Plant Soil. Environ. 2005;51:483–490. doi: 10.17221/3621-PSE. DOI

Sato K., Hori K., Takeda K. Detection of Fusarium head blight resistance QTLs using five populations of top-cross progeny derived from two-row x two-row crosses in barley. Mol. Breed. 2008;22:517–526. doi: 10.1007/s11032-008-9195-1. DOI

Liu M., Li Y., Ma Y.L., Zhao Q., Stiller J., Feng Q., Tian Q.L., Liu D.C., Han B., Liu C.J. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnol. J. 2020;18:443–456. doi: 10.1111/pbi.13210. PubMed DOI PMC

Backes G., Madsen L.H., Jaiser H., Stougaard J., Herz M., Mohler V., Jahoor A. Localisation of genes for resistance against Blumeria graminis f.sp hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp spontaneum) line. Theor. Appl. Genet. 2003;106:353–362. doi: 10.1007/s00122-002-1148-1. PubMed DOI

Henningsen E., Sallam A.H., Matny O., Szinyei T., Figueroa M., Steffenson B.J. Rpg7: A New Gene for Stem Rust Resistance from Hordeum vulgare ssp. spontaneum. Phytopathology. 2021;111:548–558. doi: 10.1094/PHYTO-08-20-0325-R. PubMed DOI

Tyryshkin L.G. Genetic control of effective leaf rust resistance in collection accessions of barley Hordeum vulgare L. Russ. J. Genet. 2009;45:376–378. doi: 10.1134/S1022795409030181. PubMed DOI

Amouzoune M., Rehman S., Benkirane R., Verma S., Gyawali S., Al-Jaboobi M., Verma R.P.S., Kehel Z., Amri A. Genome-Wide Association Study of Leaf Rust Resistance at Seedling and Adult Plant Stages in a Global Barley Panel. Agriculture. 2022;12:1829. doi: 10.3390/agriculture12111829. DOI

Sallam A.H., Tyagi P., Brown-Guedira G., Muehlbauer G.J., Hulse A., Steffenson B.J. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp spontaneum. G3-Genes Genomes Genet. 2017;7:3491–3507. doi: 10.1534/g3.117.300222. PubMed DOI PMC

Clare S.J., Oguz A.C., Effertz K., Poudel R.S., See D., Karakaya A., Brueggeman R.S. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3-Genes Genomes Genet. 2021;11:jkab280. doi: 10.1093/g3journal/jkab280. PubMed DOI PMC

Vasighzadeh A., Sharifnabi B., Javan-Nikkhah M., Stukenbrock E.H. Infection experiments of Pyrenophora teres f. maculata on cultivated and wild barley indicate absence of host specificity. Eur. J. Plant Pathol. 2022;163:749–759. doi: 10.1007/s10658-022-02496-9. DOI

Afanasenko O., Rozanova I., Gofman A., Lashina N., Novakazi F., Mironenko N., Baranova O., Zubkovich A. Validation of Molecular Markers of Barley Net Blotch Resistance Loci on Chromosome 3H for Marker-Assisted Selection. Agriculture. 2022;12:439. doi: 10.3390/agriculture12040439. DOI

Backes A., Guerriero G., Barka E.A., Jacquard C. Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. Front. Plant Sci. 2021;12:614951. doi: 10.3389/fpls.2021.614951. PubMed DOI PMC

Novakazi F., Afanasenko O., Anisimova A., Platz G.J., Snowdon R., Kovaleva O., Zubkovich A., Ordon F. Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres) Theor. Appl. Genet. 2019;132:2633–2650. doi: 10.1007/s00122-019-03378-1. PubMed DOI

Sato K., Takeda K. Net blotch resistance in wild species of Hordeum. Euphytica. 1997;95:179–185. doi: 10.1023/A:1002958924439. DOI

Davila J.A., Loarce Y., Ramsay L., Waugh R., Ferrer E. Comparison of RAMP and SSR markers for the study of wild barley genetic diversity. Hereditas. 1999;131:5–13. doi: 10.1111/j.1601-5223.1999.00005.x. PubMed DOI

Jilal A., Grando S., Henry R.J., Lee L.S., Rice N., Hill H., Baum M., Ceccarelli S. Genetic diversity of ICARDA’s worldwide barley landrace collection. Genet. Resour. Crop Evol. 2008;55:1221–1230. doi: 10.1007/s10722-008-9322-1. DOI

Shakhatreh Y., Baum M., Haddad N., Alrababah M., Ceccarelli S. Assessment of genetic diversity among Jordanian wild barley (Hordeum spontaneum) genotypes revealed by SSR markers. Genet. Resour. Crop Evol. 2016;63:813–822. doi: 10.1007/s10722-015-0285-8. DOI

Trubacheeva N.V., Badaeva E.D., Osadchaya T.S., Pershina L.A. Use of H. vulgare EST Markers, GISH and C-banding to Study Bread Wheat—H. marinum subsp. gussoneanum (2n = 28) Introgression Lines. Cereal Res. Commun. 2019;47:593–603. doi: 10.1556/0806.47.2019.37. DOI

Ben Romdhane M., Riahi L., Yazidi R., Mliki A., Zoghlami N. Cross transferability of barley nuclear SSRs to pearl millet genome provides new molecular tools for genetic analyses and marker assisted selection. Open Agric. 2022;7:668–678. doi: 10.1515/opag-2022-0132. DOI

Löve Á. Conspectus of the Triticeae. Feddes Repert. 1984;95:425–521. doi: 10.1002/fedr.4910950702. DOI

Jacobsen N., Vonbothmer R. Supraspecific groups in the genus hordeum. Hereditas. 1992;116:21–24. doi: 10.1111/j.1601-5223.1992.tb00794.x. DOI

Celik Oguz A. Resistance of wild barley (Hordeum spontaneum) and barley landraces to leaf stripe (Drechslera graminea) Phytopathol. Mediterr. 2019;58:485–495.

Sanei M., Pickering R., Fuchs J., Moghaddam A.M.B., Dziurlikowska A., Houben A. Interspecific Hybrids of Hordeum marinum ssp marinum x H. bulbosum Are Mitotically Stable and Reveal No Gross Alterations in Chromatin Properties. Cytogenet. Genome Res. 2010;129:110–116. doi: 10.1159/000313641. PubMed DOI

Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S.R., Varshney R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022;40:412–431. doi: 10.1016/j.tibtech.2021.08.009. PubMed DOI

Lekeš J.Z.P., Bareš I., Sehnalová J., Vlasák M. Descriptor list genus Hordeum L. 2023. [(accessed on 15 January 2022)]. Available online: https://www.gzr.cz/descriptor-lists/?lang=en.

Stakman E.C., Stewart D.M., Loegering W.Q. Identification of Physiologic Races of Puccinia Graminis Var. Tritici. United States Department of Agriculture, Agricultural Research Service; Beltsville, MD, USA: 1962.

Chrpová J., Šíp V., Štočková L., Stemberková L., Tvarůžek L. Resistance to Fusarium head blight in spring barley. Czech J. Genet. Plant Breed. 2011;47:58–63. doi: 10.17221/129/2010-CJGPB. DOI

Šíp V.S.S., Stuchlíková E., Chrpová J. The effect of infection with Fusarium culmorum L. on deoxynivalenol content in grain of selected winter wheat varieties. J. Appl. Genet. 2002;43A:319–332.

Palicová-Šárová J., Hanzalová A. Reaction of 50 Winter Wheat Cultivars Grown in the Czech Republic to Pyrenophora tritici-repentis Races 1, 3, and 6. Czech J. Genet. Plant Breed. 2006;42:31–37. doi: 10.17221/3651-CJGPB. DOI

Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA. 1984;81:8014–8018. doi: 10.1073/pnas.81.24.8014. PubMed DOI PMC

Becker J., Heun M. Barley microsatellites: Allele variation and mapping. Plant Mol. Biol. 1995;27:835–845. doi: 10.1007/BF00020238. PubMed DOI

Liu Z.W., Biyashev R.M., Maroof M.A. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor. Appl. Genet. 1996;93:869–876. doi: 10.1007/BF00224088. PubMed DOI

Brunner S., Keller B., Feuillet C. Molecular mapping of the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.) Theor. Appl. Genet. 2000;101:783–788. doi: 10.1007/s001220051544. DOI

Derevnina L., Fetch T., Singh D., Brueggeman R., Dong C., Park R.F. Analysis of Stem Rust Resistance in Australian Barley Cultivars. Plant Dis. 2014;98:1485–1493. doi: 10.1094/PDIS-11-13-1174-RE. PubMed DOI

Eckstein P.R.B., Scoles G. Allele-Specific Markers within the Barley Stem Rust Resistance Gene (Rpg1) Volume 33 Department of Plant Sciences/Crop Development Centre, University of Saskatchewan; Saskatoon, SK, Canada: 2003.

Nei M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA. 1973;70:3321–3323. doi: 10.1073/pnas.70.12.3321. PubMed DOI PMC

Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32:314–331. PubMed PMC

Tessier C., David J., This P., Boursiquot J.M., Charrier A. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor. Appl. Genet. 1999;98:171–177. doi: 10.1007/s001220051054. DOI

Belaj A., Satovic Z., Cipriani G., Baldoni L., Testolin R., Rallo L., Trujillo I. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor. Appl. Genet. 2003;107:736–744. doi: 10.1007/s00122-003-1301-5. PubMed DOI

Sokal R.R., Michener C.D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958;38:1409.

Farris J.S. On the Cophenetic Correlation Coefficient. Syst. Biol. 1969;18:279–285. doi: 10.2307/2412324. DOI

Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI

R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 13 June 2022)]. Available online: https://www.R-project.org.

Galili T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31:3718–3720. doi: 10.1093/bioinformatics/btv428. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...