Exploring Wild Hordeum spontaneum and Hordeum marinum Accessions as Genetic Resources for Fungal Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0418 and RO0423
Ministry of Agriculture, Czech Republic
PubMed
37765425
PubMed Central
PMC10534467
DOI
10.3390/plants12183258
PII: plants12183258
Knihovny.cz E-zdroje
- Klíčová slova
- FHB, genetic resources, net blotch, resistance breeding, rust, wild barley,
- Publikační typ
- časopisecké články MeSH
Crop Wild Relatives (CWRs), as potential sources of new genetic variants, are being extensively studied to identify genotypes that will be able to confer resistance to biotic stresses. In this study, a collection of barley wild relatives was assessed in the field, and their phenotypic variability was evaluated using a Barley Description List, reflecting the identified ecosites. Overall, the CWRs showed significant field resistance to various fungal diseases. To further investigate their resistance, greenhouse tests were performed, revealing that several CWRs exhibited resistance against Fusarium culmorum, Pyrenophora teres, and Puccinia hordei G.H. Otth. Additionally, to characterize the genetic diversity within the collection, DNA polymorphisms at 21 loci were examined. We successfully employed barley-specific SSR markers, confirming their suitability for identifying H. spontaneum and even H. marinum, i.e., perennial species. The SSR markers efficiently clustered the investigated collection according to species and ecotypes, similarly to the phenotypic assessment. Moreover, SSR markers associated with disease resistance revealed different alleles in comparison to those found in resistant barley cultivars. Overall, our findings highlight that this evaluated collection of CWRs represents a valuable reservoir of genetic variability and resistance genes that can be effectively utilized in breeding programs.
Zobrazit více v PubMed
Hajjar R., Hodgkin T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica. 2007;156:1–13. doi: 10.1007/s10681-007-9363-0. DOI
Dempewolf H., Baute G., Anderson J., Kilian B., Smith C., Guarino L. Past and Future Use of Wild Relatives in Crop Breeding Crop Science. 2017. [(accessed on 7 September 2023)]. pp. 1070–1082. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2016.10.0885. DOI
Hajjar R., Hodgkin T. Using crop wild relatives for crop improvement: Trends and perspectives. In: Maxted N.B.V.F., Kell S.P., Iriondo J., Dulloo E., Turok J., editors. Crop Wild Relative Conservation and Use. CABI; Sicily, Italy: 2007. pp. 535–548.
Maxted N., Scholten M., Codd R., Ford-Lloyd B. Creation and use of a national inventory of crop wild relatives. Biol. Conserv. 2007;140:142–159. doi: 10.1016/j.biocon.2007.08.006. DOI
Razzaq A., Saleem F., Wani S.H., Abdelmohsen S.A.M., Alyousef H.A., Abdelbacki A.M.M., Alkallas F.H., Tamam N., Elansary H.O. De-novo Domestication for Improving Salt Tolerance in Crops. Front. Plant Sci. 2021;12:681367. doi: 10.3389/fpls.2021.681367. PubMed DOI PMC
FAO Faostat Database. [(accessed on 27 January 2023)]. Available online: https://www.fao.org/faostat/en/#search/FAO%202020%20FAO%20crop%20estimate%20data%20.
Badr A.M.K., Sch R., Rabey H.E., Effgen S., Ibrahim H.H., Pozzi C., Rohde W., Salamini F. On the Origin and Domestication History of Barley (Hordeum vulgare) Mol. Biol. Evol. 2000;17:499–510. doi: 10.1093/oxfordjournals.molbev.a026330. PubMed DOI
Morrell P.L., Clegg M.T. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc. Natl. Acad. Sci. USA. 2007;104:3289–3294. doi: 10.1073/pnas.0611377104. PubMed DOI PMC
Hammer K. Das Domestikationssyndrom. Die Kult. 1984;32:11–34. doi: 10.1007/BF02098682. DOI
Barati M., Majidi M.M., Mirlohi A., Safari M., Mostafavi F., Karami Z. Potential of Iranian Wild Barley (Hordeum vulgare ssp. spontaneum) in Breeding for Drought Tolerance. Cereal Res. Commun. 2018;46:707–716. doi: 10.1556/0806.46.2018.040. DOI
Ebrahim F., Arzani A., Rahimmalek M., Sun D.F., Peng J.H. Salinity tolerance of wild barley Hordeum vulgare ssp. spontaneum. Plant Breed. 2020;139:304–316. doi: 10.1111/pbr.12770. DOI
Kintzios S., Fischbeck G. Identification of new sources for resistance to powdery mildew in H-spontaneum-derived winter barley lines. Genet. Resour. Crop Evol. 1996;43:25–31. doi: 10.1007/BF00126937. DOI
Global G. GRIN Czech. [(accessed on 6 January 2022)]. Available online: https://grinczech.vurv.cz/gringlobal/search.aspx.
Jakob S.S., Ihlow A., Blattner F.R. Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)—Niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol. Ecol. 2007;16:1713–1727. doi: 10.1111/j.1365-294X.2007.03228.x. PubMed DOI
Harlan J.R., Zohary D. Distribution of Wild Wheats and Barley. Science. 1966;153:1074–1080. doi: 10.1126/science.153.3740.1074. PubMed DOI
Bedada G., Westerbergh A., Müller T., Galkin E., Bdolach E., Moshelion M., Fridman E., Schmid K.J. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genom. 2014;15:995. doi: 10.1186/1471-2164-15-995. PubMed DOI PMC
Carmona A., Friero E., de Bustos A., Jouve N., Cuadrado A. The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. Ann. Bot. 2013;112:1845–1855. doi: 10.1093/aob/mct245. PubMed DOI PMC
Yin B., Sun G.L., Sun D.K., Ren X.F. Phylogenetic analysis of two single-copy nuclear genes revealed origin of tetraploid barley Hordeum marinum. PLoS ONE. 2020;15:e0235475. doi: 10.1371/journal.pone.0235475. PubMed DOI PMC
Huang L., Kuang L.H., Li X., Wu L.Y., Wu D.Z., Zhang G.P. Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environ. Exp. Bot. 2018;156:48–61. doi: 10.1016/j.envexpbot.2018.08.019. DOI
Alamri S.A., Barrett-Lennard E.G., Teakle N.L., Colmer T.D. Improvement of salt and waterlogging tolerance in wheat: Comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents. Funct. Plant Biol. 2013;40:1168–1178. doi: 10.1071/FP12385. PubMed DOI
Jiang J., Liu D. New hordeum-triticum hybrids. Cereal Res. Commun. 1987;15:95–99.
Garthwaite A.J., von Bothmer R., Colmer T.D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl− into the shoots. J. Exp. Bot. 2005;56:2365–2378. doi: 10.1093/jxb/eri229. PubMed DOI
Efremova T., Arbuzova V., Trubacheeva N., Ocadchaya T., Chumanova E., Pershina L. Substitution of Hordeum marinum ssp gussoneanum chromosome 7HL into wheat homoeologous group-7. Euphytica. 2013;192:251–257. doi: 10.1007/s10681-012-0843-5. DOI
Mano Y., Omori F. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp mays) Ann. Bot. 2013;112:1125–1139. doi: 10.1093/aob/mct160. PubMed DOI PMC
Salomon B., Vonbothmer R., Jacobsen N. Intergeneric crosses between Hordeum and north-american Elymus (Poaceae, Triticeae) Hereditas. 1991;114:35–39. doi: 10.1111/j.1601-5223.1991.tb00550.x. DOI
Riaz A., Kanwal F., Borner A., Pillen K., Dai F., Alqudah A.M. Advances in Genomics-Based Breeding of Barley: Molecular Tools and Genomic Databases. Agronomy. 2021;11:894. doi: 10.3390/agronomy11050894. DOI
Thudi M., Palakurthi R., Schnable J.C., Chitikineni A., Dreisigacker S., Mace E., Srivastava R.K., Satyavathi C.T., Odeny D., Tiwari V.K., et al. Genomic resources in plant breeding for sustainable agriculture. J. Plant Physiol. 2021;257:153351. doi: 10.1016/j.jplph.2020.153351. PubMed DOI PMC
Alqudah A.M., Sallam A., Baenziger P.S., Borner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from Barley—A review. J. Adv. Res. 2020;22:119–135. doi: 10.1016/j.jare.2019.10.013. PubMed DOI PMC
Zenda T., Liu S.T., Dong A.Y., Duan H.J. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life. 2021;11:502. doi: 10.3390/life11060502. PubMed DOI PMC
Sovova T., Kerins G., Demnerova K., Ovesna J. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline. Curr. Issues Mol. Biol. 2017;21:41–61. PubMed
Bilz M., Kell S., Maxted N., Lansdown R. European Red. List. of Vascular Plants. Publications Office of the European Union; Luxembourg: 2011.
Kell S., Maxted N., Bilz M. Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CABI International; Wallingford, UK: 2012. European crop wild relative threat assessment: Knowledge gained and lessons learnt; pp. 218–242.
Jia Q.J., Zhu J.H., Wang J.M., Yang J.M. Fusarium Head Blight Evaluation and Genetic Diversity Assessment by Simple Sequence Repeats in 88 Barley Cultivars and Landraces. In: Ceccarelli S., Grando S., editors. Proceedings of the 10th International Barley Genetics Symposium; Alexandria, Egypt. 5–10 April 2008; Alexandria, Egypt: ICARDA; 2008. pp. 298–310.
Russell J., Fuller J., Young G., Thomas B., Taramino G., Macaulay M., Waugh R., Powell W. Discriminating between barley genotypes using microsatellite markers. Genome. 1997;40:442–450. doi: 10.1139/g97-059. PubMed DOI
Ramsay L., Macaulay M., Ivanissevich S.d., MacLean K., Cardle L., Fuller J., Edwards K.J., Tuvesson S., Morgante M., Massari A., et al. A Simple Sequence Repeat-Based Linkage Map of Barley. Genetics. 2000;156:1997–2005. doi: 10.1093/genetics/156.4.1997. PubMed DOI PMC
Sanchez-Martin J., Keller B. Contribution of recent technological advances to future resistance breeding. Theor. Appl. Genet. 2019;132:713–732. doi: 10.1007/s00122-019-03297-1. PubMed DOI
Osman M., He X., Capettini F., Helm J., Singh P.K. Phenotypic Characterization of Canadian Barley Advanced Breeding Lines for Multiple Disease Resistance. Cereal Res. Commun. 2019;47:484–495. doi: 10.1556/0806.47.2019.19. DOI
von Korff M., Wang H., Léon J., Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor. Appl. Genet. 2004;109:1736–1745. doi: 10.1007/s00122-004-1818-2. PubMed DOI
Li J.Z., Huang X.Q., Heinrichs F., Ganal M.W., Röder M.S. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome. 2006;49:454–466. doi: 10.1139/g05-128. PubMed DOI
Rubiales D., Ramírez M.C., Niks R.E. Avoidance of leaf rust fungi in wild relatives of cultivated cereals. Euphytica. 1996;87:1–6. doi: 10.1007/BF00022958. DOI
Rehman S., Amouzoune M., Hiddar H., Aberkane H., Benkirane R., Filali-Maltouf A., Al-Jaboobi M., Acqbouch L., Tsivelikas A., Verma R.P.S., et al. Trait discovery in Hordeum vulgare sbsp. spontaneum accessions and in lines derived from interspecific crosses with wild Hordeum species for enhancing barley breeding efforts. Crop Sci. 2021;61:219–233. doi: 10.1002/csc2.20360. DOI
Yu X.H., Casonato S., Jones E., Butler R.C., Johnston P.A., Chng S. Phenotypic characterization of the Hordeum bulbosum derived leaf rust resistance genes Rph22 and Rph26 in barley. J. Appl. Microbiol. 2022;133:2083–2094. doi: 10.1111/jam.15710. PubMed DOI PMC
Chen Y., Kistler H., Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. Annu. Rev. Phytopathol. 2019;57:15–39. doi: 10.1146/annurev-phyto-082718-100318. PubMed DOI
Salacova L., Faltusova Z., Ovesna J. Mechanisms Used by Plants for Defence against Fungal Pathogens. Chem. Listy. 2015;109:613–618.
Moretti A., Pascale M., Logrieco A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019;84:38–40. doi: 10.1016/j.tifs.2018.03.008. DOI
Valverde-Bogantes E., Bianchini A., Herr J.R., Rose D.J., Wegulo S.N., Hallen-Adams H.E. Recent population changes of Fusarium head blight pathogens: Drivers and implications. Can. J. Plant Pathol. 2020;42:315–329. doi: 10.1080/07060661.2019.1680442. DOI
Kolawole O., Meneely J., Petchkongkaew A., Elliott C. A review of mycotoxin biosynthetic pathways: Associated genes and their expressions under the influence of climatic factors. Fungal Biol. Rev. 2021;37:8–26. doi: 10.1016/j.fbr.2021.04.003. DOI
Spunarova M., Ovesna J., Tvaruzek L., Kucera L., Spunar J., Hollerova I. The use of molecular markers for characterisation of spring barley for breeding to Fusarium head blight resistance. Plant Soil. Environ. 2005;51:483–490. doi: 10.17221/3621-PSE. DOI
Sato K., Hori K., Takeda K. Detection of Fusarium head blight resistance QTLs using five populations of top-cross progeny derived from two-row x two-row crosses in barley. Mol. Breed. 2008;22:517–526. doi: 10.1007/s11032-008-9195-1. DOI
Liu M., Li Y., Ma Y.L., Zhao Q., Stiller J., Feng Q., Tian Q.L., Liu D.C., Han B., Liu C.J. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnol. J. 2020;18:443–456. doi: 10.1111/pbi.13210. PubMed DOI PMC
Backes G., Madsen L.H., Jaiser H., Stougaard J., Herz M., Mohler V., Jahoor A. Localisation of genes for resistance against Blumeria graminis f.sp hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp spontaneum) line. Theor. Appl. Genet. 2003;106:353–362. doi: 10.1007/s00122-002-1148-1. PubMed DOI
Henningsen E., Sallam A.H., Matny O., Szinyei T., Figueroa M., Steffenson B.J. Rpg7: A New Gene for Stem Rust Resistance from Hordeum vulgare ssp. spontaneum. Phytopathology. 2021;111:548–558. doi: 10.1094/PHYTO-08-20-0325-R. PubMed DOI
Tyryshkin L.G. Genetic control of effective leaf rust resistance in collection accessions of barley Hordeum vulgare L. Russ. J. Genet. 2009;45:376–378. doi: 10.1134/S1022795409030181. PubMed DOI
Amouzoune M., Rehman S., Benkirane R., Verma S., Gyawali S., Al-Jaboobi M., Verma R.P.S., Kehel Z., Amri A. Genome-Wide Association Study of Leaf Rust Resistance at Seedling and Adult Plant Stages in a Global Barley Panel. Agriculture. 2022;12:1829. doi: 10.3390/agriculture12111829. DOI
Sallam A.H., Tyagi P., Brown-Guedira G., Muehlbauer G.J., Hulse A., Steffenson B.J. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp spontaneum. G3-Genes Genomes Genet. 2017;7:3491–3507. doi: 10.1534/g3.117.300222. PubMed DOI PMC
Clare S.J., Oguz A.C., Effertz K., Poudel R.S., See D., Karakaya A., Brueggeman R.S. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3-Genes Genomes Genet. 2021;11:jkab280. doi: 10.1093/g3journal/jkab280. PubMed DOI PMC
Vasighzadeh A., Sharifnabi B., Javan-Nikkhah M., Stukenbrock E.H. Infection experiments of Pyrenophora teres f. maculata on cultivated and wild barley indicate absence of host specificity. Eur. J. Plant Pathol. 2022;163:749–759. doi: 10.1007/s10658-022-02496-9. DOI
Afanasenko O., Rozanova I., Gofman A., Lashina N., Novakazi F., Mironenko N., Baranova O., Zubkovich A. Validation of Molecular Markers of Barley Net Blotch Resistance Loci on Chromosome 3H for Marker-Assisted Selection. Agriculture. 2022;12:439. doi: 10.3390/agriculture12040439. DOI
Backes A., Guerriero G., Barka E.A., Jacquard C. Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. Front. Plant Sci. 2021;12:614951. doi: 10.3389/fpls.2021.614951. PubMed DOI PMC
Novakazi F., Afanasenko O., Anisimova A., Platz G.J., Snowdon R., Kovaleva O., Zubkovich A., Ordon F. Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres) Theor. Appl. Genet. 2019;132:2633–2650. doi: 10.1007/s00122-019-03378-1. PubMed DOI
Sato K., Takeda K. Net blotch resistance in wild species of Hordeum. Euphytica. 1997;95:179–185. doi: 10.1023/A:1002958924439. DOI
Davila J.A., Loarce Y., Ramsay L., Waugh R., Ferrer E. Comparison of RAMP and SSR markers for the study of wild barley genetic diversity. Hereditas. 1999;131:5–13. doi: 10.1111/j.1601-5223.1999.00005.x. PubMed DOI
Jilal A., Grando S., Henry R.J., Lee L.S., Rice N., Hill H., Baum M., Ceccarelli S. Genetic diversity of ICARDA’s worldwide barley landrace collection. Genet. Resour. Crop Evol. 2008;55:1221–1230. doi: 10.1007/s10722-008-9322-1. DOI
Shakhatreh Y., Baum M., Haddad N., Alrababah M., Ceccarelli S. Assessment of genetic diversity among Jordanian wild barley (Hordeum spontaneum) genotypes revealed by SSR markers. Genet. Resour. Crop Evol. 2016;63:813–822. doi: 10.1007/s10722-015-0285-8. DOI
Trubacheeva N.V., Badaeva E.D., Osadchaya T.S., Pershina L.A. Use of H. vulgare EST Markers, GISH and C-banding to Study Bread Wheat—H. marinum subsp. gussoneanum (2n = 28) Introgression Lines. Cereal Res. Commun. 2019;47:593–603. doi: 10.1556/0806.47.2019.37. DOI
Ben Romdhane M., Riahi L., Yazidi R., Mliki A., Zoghlami N. Cross transferability of barley nuclear SSRs to pearl millet genome provides new molecular tools for genetic analyses and marker assisted selection. Open Agric. 2022;7:668–678. doi: 10.1515/opag-2022-0132. DOI
Löve Á. Conspectus of the Triticeae. Feddes Repert. 1984;95:425–521. doi: 10.1002/fedr.4910950702. DOI
Jacobsen N., Vonbothmer R. Supraspecific groups in the genus hordeum. Hereditas. 1992;116:21–24. doi: 10.1111/j.1601-5223.1992.tb00794.x. DOI
Celik Oguz A. Resistance of wild barley (Hordeum spontaneum) and barley landraces to leaf stripe (Drechslera graminea) Phytopathol. Mediterr. 2019;58:485–495.
Sanei M., Pickering R., Fuchs J., Moghaddam A.M.B., Dziurlikowska A., Houben A. Interspecific Hybrids of Hordeum marinum ssp marinum x H. bulbosum Are Mitotically Stable and Reveal No Gross Alterations in Chromatin Properties. Cytogenet. Genome Res. 2010;129:110–116. doi: 10.1159/000313641. PubMed DOI
Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S.R., Varshney R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022;40:412–431. doi: 10.1016/j.tibtech.2021.08.009. PubMed DOI
Lekeš J.Z.P., Bareš I., Sehnalová J., Vlasák M. Descriptor list genus Hordeum L. 2023. [(accessed on 15 January 2022)]. Available online: https://www.gzr.cz/descriptor-lists/?lang=en.
Stakman E.C., Stewart D.M., Loegering W.Q. Identification of Physiologic Races of Puccinia Graminis Var. Tritici. United States Department of Agriculture, Agricultural Research Service; Beltsville, MD, USA: 1962.
Chrpová J., Šíp V., Štočková L., Stemberková L., Tvarůžek L. Resistance to Fusarium head blight in spring barley. Czech J. Genet. Plant Breed. 2011;47:58–63. doi: 10.17221/129/2010-CJGPB. DOI
Šíp V.S.S., Stuchlíková E., Chrpová J. The effect of infection with Fusarium culmorum L. on deoxynivalenol content in grain of selected winter wheat varieties. J. Appl. Genet. 2002;43A:319–332.
Palicová-Šárová J., Hanzalová A. Reaction of 50 Winter Wheat Cultivars Grown in the Czech Republic to Pyrenophora tritici-repentis Races 1, 3, and 6. Czech J. Genet. Plant Breed. 2006;42:31–37. doi: 10.17221/3651-CJGPB. DOI
Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA. 1984;81:8014–8018. doi: 10.1073/pnas.81.24.8014. PubMed DOI PMC
Becker J., Heun M. Barley microsatellites: Allele variation and mapping. Plant Mol. Biol. 1995;27:835–845. doi: 10.1007/BF00020238. PubMed DOI
Liu Z.W., Biyashev R.M., Maroof M.A. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor. Appl. Genet. 1996;93:869–876. doi: 10.1007/BF00224088. PubMed DOI
Brunner S., Keller B., Feuillet C. Molecular mapping of the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.) Theor. Appl. Genet. 2000;101:783–788. doi: 10.1007/s001220051544. DOI
Derevnina L., Fetch T., Singh D., Brueggeman R., Dong C., Park R.F. Analysis of Stem Rust Resistance in Australian Barley Cultivars. Plant Dis. 2014;98:1485–1493. doi: 10.1094/PDIS-11-13-1174-RE. PubMed DOI
Eckstein P.R.B., Scoles G. Allele-Specific Markers within the Barley Stem Rust Resistance Gene (Rpg1) Volume 33 Department of Plant Sciences/Crop Development Centre, University of Saskatchewan; Saskatoon, SK, Canada: 2003.
Nei M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA. 1973;70:3321–3323. doi: 10.1073/pnas.70.12.3321. PubMed DOI PMC
Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32:314–331. PubMed PMC
Tessier C., David J., This P., Boursiquot J.M., Charrier A. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor. Appl. Genet. 1999;98:171–177. doi: 10.1007/s001220051054. DOI
Belaj A., Satovic Z., Cipriani G., Baldoni L., Testolin R., Rallo L., Trujillo I. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor. Appl. Genet. 2003;107:736–744. doi: 10.1007/s00122-003-1301-5. PubMed DOI
Sokal R.R., Michener C.D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958;38:1409.
Farris J.S. On the Cophenetic Correlation Coefficient. Syst. Biol. 1969;18:279–285. doi: 10.2307/2412324. DOI
Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 13 June 2022)]. Available online: https://www.R-project.org.
Galili T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31:3718–3720. doi: 10.1093/bioinformatics/btv428. PubMed DOI PMC