The Development and Validation of Radiopharmaceuticals Targeting Bacterial Infection
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R01 AI153349
NIAID NIH HHS - United States
R01 EB030897
NIBIB NIH HHS - United States
R01 AI145435
NIAID NIH HHS - United States
R01 EB025985
NIBIB NIH HHS - United States
R01 EB024014
NIBIB NIH HHS - United States
PubMed
37770110
PubMed Central
PMC10626374
DOI
10.2967/jnumed.123.265906
PII: jnumed.123.265906
Knihovny.cz E-resources
- Keywords
- antibiotics, development, infection, molecular imaging, radiotracer,
- MeSH
- Bacterial Infections * diagnostic imaging MeSH
- Humans MeSH
- Radiopharmaceuticals * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Radiopharmaceuticals * MeSH
The International Atomic Energy Agency organized a technical meeting at its headquarters in Vienna, Austria, in 2022 that included 17 experts representing 12 countries, whose research spanned the development and use of radiolabeled agents for imaging infection. The meeting focused largely on bacterial pathogens. The group discussed and evaluated the advantages and disadvantages of several radiopharmaceuticals, as well as the science driving various imaging approaches. The main objective was to understand why few infection-targeted radiotracers are used in clinical practice despite the urgent need to better characterize bacterial infections. This article summarizes the resulting consensus, at least among the included scientists and countries, on the current status of radiopharmaceutical development for infection imaging. Also included are opinions and recommendations regarding current research standards in this area. This and future International Atomic Energy Agency-sponsored collaborations will advance the goal of providing the medical community with innovative, practical tools for the specific image-based diagnosis of infection.
College of Pharmacy and Nutrition University of Saskatchewan Saskatoon Saskatchewan Canada
Department of Nuclear Sciences and Applications International Atomic Energy Agency Vienna Austria
Instituto Nacional de Investigaciones Nucleares Ocoyoacac Mexico
National Nuclear Energy Agency South Tangerang Indonesia
Radiopharmaceutical Program Board of Radiation and Isotope Technology Mumbai India
Radiopharmaceuticals Division Bhabha Atomic Research Centre Mumbai India
See more in PubMed
GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400:2221–2248. PubMed PMC
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–1788. PubMed PMC
Rudd KE, Johnson SC, Agesa KM, et al. . Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–211. PubMed PMC
O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance website. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf. Published May 2016. Accessed August 30, 2023.
Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–3910. PubMed PMC
Dhesi Z, Enne VI, Brealey D, et al. . Organisms causing secondary pneumonias in COVID-19 patients at 5 UK ICUs as detected with the FilmArray test. medRxiv website. https://www.medrxiv.org/content/10.1101/2020.06.22.20131573v1. Published June 23, 2020. Accessed August 31, 2023. DOI
Cassat JE, Moore JL, Wilson KJ, et al. . Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions. Sci Transl Med. 2018;10:eaan6361. PubMed PMC
Ordonez AA, Tucker EW, Anderson CJ, et al. . Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest. 2021;131:e145107. PubMed PMC
Ordonez AA, Wang H, Magombedze G, et al. . Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nat Med. 2020;26:529–534. PubMed PMC
Tucker EW, Guglieri-Lopez B, Ordonez AA, et al. . Noninvasive 11C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med. 2018;10:eaau0965. PubMed PMC
Ruiz-Bedoya CA, Mota F, Tucker EW, et al. . High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Invest. 2022;132:e155851. PubMed PMC
Jain SK, Andronikou S, Goussard P, et al. . Advanced imaging tools for childhood tuberculosis: potential applications and research needs. Lancet Infect Dis. 2020;20:e289–e297. PubMed PMC
Strosberg J, El-Haddad G, Wolin E, et al. . Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–135. PubMed PMC
Rowe SP, Gorin MA, Pomper MG. Imaging of prostate-specific membrane antigen with small-molecule PET radiotracers: from the bench to advanced clinical applications. Annu Rev Med. 2019;70:461–477. PubMed
Romanò CL, Petrosillo N, Argento G, et al. . The role of imaging techniques to define a peri-prosthetic hip and knee joint infection: multidisciplinary consensus statements. J Clin Med. 2020;9:2548. PubMed PMC
Lauri C, Signore A, Glaudemans AWJM, et al. . Evidence-based guideline of the European Association of Nuclear Medicine (EANM) on imaging infection in vascular grafts. Eur J Nucl Med Mol Imaging. 2022;49:3430–3451. PubMed PMC
Lauri C, Tamminga M, Glaudemans AWJM, et al. . Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care. 2017;40:1111–1120. PubMed
Steinsträsser A, Oberhausen E. Granulocyte labelling kit BW 250/183: results of the European multicenter trial. Nuklearmedizin. 1996;35:1–11. PubMed
Jamar F, Buscombe J, Chiti A, et al. . EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–658. PubMed
Welling M, Stokkel M, Balter J, Sarda-Mantel L, Meulemans A, Le Guludec D. The many roads to infection imaging. Eur J Nucl Med Mol Imaging. 2008;35:848–849. PubMed PMC
Polvoy I, Flavell RR, Rosenberg OS, Ohliger MA, Wilson DM. Nuclear imaging of bacterial infection: the state of the art and future directions. J Nucl Med. 2020;61:1708–1716. PubMed PMC
Langer O, Brunner M, Zeitlinger M, et al. . In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur J Nucl Med Mol Imaging. 2005;32:143–150. PubMed
Sarda L, Crémieux A-C, Lebellec Y, et al. . Inability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J Nucl Med. 2003;44:920–926. PubMed
Dumarey N, Blocklet D, Appelboom T, Tant L, Schoutens A. Infecton is not specific for bacterial osteo-articular infective pathology. Eur J Nucl Med Mol Imaging. 2002;29:530–535. PubMed
Pauwels EK, Welling MM, Lupetti A, Paulusma-Annema A, Nibbering PH, Balter HS. Concerns about 99mTc-labelled ciprofloxacin for infection detection. Eur J Nucl Med. 2000;27:1866. PubMed
Welling MM, Nibbering PH, Paulusma-Annema A, Hiemstra PS, Pauwels EK, Calame W. Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1. J Nucl Med. 1999;40:2073–2080. PubMed
Auletta S, Baldoni D, Varani M, et al. . Comparison of 99mTc-UBI 29-41, 99mTc-ciprofloxacin, 99mTc-ciprofloxacin dithiocarbamate and 111In-biotin for targeting experimental Staphylococcus aureus and Escherichia coli foreign-body infections: an ex-vivo study. Q J Nucl Med Mol Imaging. 2019;63:37–47. PubMed
Larikka MJ, Ahonen AK, Niemelä O, Junila JA, Hämäläinen MM, Syrjälä HP. Specificity of 99mTc-ciprofloxacin imaging [letter]. J Nucl Med. 2003;44:1368. PubMed
Alexander K, Drost WT, Mattoon JS, Kowalski JJ, Funk JA, Crabtree AC. Binding of ciprofloxacin labelled with technetium Tc 99m versus 99mTc-pertechnetate to a live and killed equine isolate of Escherichia coli . Can J Vet Res. 2005;69:272–277. PubMed PMC
Dutta P, Bhansali A, Mittal BR, Singh B, Masoodi SR. Instant 99mTc-ciprofloxacin scintigraphy for the diagnosis of osteomyelitis in the diabetic foot. Foot Ankle Int. 2006;27:716–722. PubMed
De Winter F, Gemmel F, Van Laere K, et al. . 99mTc-ciprofloxacin planar and tomographic imaging for the diagnosis of infection in the postoperative spine: experience in 48 patients. Eur J Nucl Med Mol Imaging. 2004;31:233–239. PubMed
Fuster D, Soriano A, Garcia S, et al. . Usefulness of 99mTc-ciprofloxacin scintigraphy in the diagnosis of prosthetic joint infections. Nucl Med Commun. 2011;32:44–51. PubMed
Gemmel F, De Winter F, Van Laere K, Vogelaers D, Uyttendaele D, Dierckx RA. 99mTc ciprofloxacin imaging for the diagnosis of infection in the postoperative spine. Nucl Med Commun. 2004;25:277–283. PubMed
Welch RA, Burland V, Plunkett G, et al. . Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli . Proc Natl Acad Sci USA. 2002;99:17020–17024. PubMed PMC
Polvoy I, Seo Y, Parker M, et al. . Imaging joint infections using D-methyl-11C-methionine PET/MRI: initial experience in humans. Eur J Nucl Med Mol Imaging. 2022;49:3761–3771. PubMed PMC
Neumann KD, Villanueva-Meyer JE, Mutch CA, et al. . Imaging active infection in vivo using D-amino acid derived PET radiotracers. Sci Rep. 2017;7:7903. PubMed PMC
Stewart MN, Parker MFL, Jivan S, et al. . High enantiomeric excess in-loop synthesis of D-[methyl-11C]methionine for use as a diagnostic positron emission tomography radiotracer in bacterial infection. ACS Infect Dis. 2020;6:43–49. PubMed PMC
Parker MFL, Luu JM, Schulte B, et al. . Sensing living bacteria in vivo using d-alanine-derived 11C radiotracers. ACS Cent Sci. 2020;6:155–165. PubMed PMC
Weinstein EA, Ordonez AA, DeMarco VP, et al. . Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med. 2014;6:259ra146. PubMed PMC
Ordonez AA, Wintaco LM, Mota F, et al. . Imaging Enterobacterales infections in patients using pathogen-specific positron emission tomography. Sci Transl Med. 2021;13:eabe9805. PubMed PMC
Ordonez AA, Weinstein EA, Bambarger LE, et al. . A systematic approach for developing bacteria-specific imaging tracers. J Nucl Med. 2017;58:144–150. PubMed PMC
Webb EW, Scott PJH. Potential applications of artificial intelligence and machine learning in radiochemistry and radiochemical engineering. PET Clin. 2021;16:525–532. PubMed PMC
Mota F, Ordonez AA, Firth G, Ruiz-Bedoya CA, Ma MT, Jain SK. Radiotracer development for bacterial imaging. J Med Chem. 2020;63:1964–1977. PubMed PMC
Parker MFL, Flavell RR, Luu JM, Rosenberg OS, Ohliger MA, Wilson DM. Small molecule sensors targeting the bacterial cell wall. ACS Infect Dis. 2020;6:1587–1598. PubMed PMC
Gouws AC, Kruger HG, Gheysens O, et al. . Antibiotic-derived radiotracers for positron emission tomography: nuclear or “unclear” infection imaging? Angew Chem Int Ed. 2022;61:e202204955. PubMed PMC
Lawal I, Zeevaart J, Ebenhan T, et al. . Metabolic imaging of infection. J Nucl Med. 2017;58:1727–1732. PubMed
Vermeulen K, Vandamme M, Bormans G, Cleeren F. Design and challenges of radiopharmaceuticals. Semin Nucl Med. 2019;49:339–356. PubMed
Halouska S, Zhang B, Gaupp R, et al. . Revisiting protocols for the NMR analysis of bacterial metabolomes. J Integr OMICS. 2013;3:120–137. PubMed PMC
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol. 2022;20:143–160. PubMed PMC
Namavari M, Gowrishankar G, Srinivasan A, Gambhir SS, Haywood T, Beinat C. A novel synthesis of 6″-[18F]-fluoromaltotriose as a PET tracer for imaging bacterial infection. J Labelled Comp Radiopharm. 2018;61:408–414. PubMed PMC
Everitt JI, Berridge BR. The role of the IACUC in the design and conduct of animal experiments that contribute to translational success. ILAR J. 2017;58:129–134. PubMed
Signore A, Artiko V, Conserva M, et al. . Imaging bacteria with radiolabelled probes: is it feasible? J Clin Med. 2020;9:2372. PubMed PMC
Aarntzen EHJG, Noriega-Álvarez E, Artiko V, et al. . EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases. EJNMMI Res. 2021;11:85. PubMed PMC
Auletta S, Galli F, Varani M, et al. . In vitro and in vivo evaluation of 99mTc-polymyxin B for specific targeting of gram-bacteria. Biomolecules. 2021;11:232. PubMed PMC
Madeja ZE, Pawlak P, Piliszek A. Beyond the mouse: non-rodent animal models for study of early mammalian development and biomedical research. Int J Dev Biol. 2019;63:187–201. PubMed
Esteves PJ, Abrantes J, Baldauf H-M, et al. . The wide utility of rabbits as models of human diseases. Exp Mol Med. 2018;50:1–10. PubMed PMC
Via LE, Schimel D, Weiner DM, et al. . Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using [18F]2-fluoro-deoxy-D-glucose positron emission tomography and computed tomography. Antimicrob Agents Chemother. 2012;56:4391–4402. PubMed PMC
Ordonez AA, Parker MF, Miller RJ, et al. . 11C-para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans. JCI Insight. 2022;7:e154117. PubMed PMC
Elgazzar AH, Dannoon S, Sarikaya I, Farghali M, Junaid TA. Scintigraphic patterns of indium-111 oxine-labeled white blood cell imaging of gram-negative versus gram-positive vertebral osteomyelitis. Med Princ Pract. 2017;26:415–420. PubMed PMC
Walker RL, Eggel M. From mice to monkeys? Beyond orthodox approaches to the ethics of animal model choice. Animals (Basel). 2020;10:77. PubMed PMC
‘t Hart BA, Abbott DH, Nakamura K, Fuchs E. The marmoset monkey: a multi-purpose preclinical and translational model of human biology and disease. Drug Discov Today. 2012;17:1160–1165. PubMed PMC
Hatziioannou T, Evans DT. Animal models for HIV/AIDS research. Nat Rev Microbiol. 2012;10:852–867. PubMed PMC
Coleman MT, Maiello P, Tomko J, et al. . Early changes by 18fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun. 2014;82:2400–2404. PubMed PMC
Mattila JT, Maiello P, Sun T, Via LE, Flynn JL. Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Microbiol. 2015;17:1085–1097. PubMed PMC
Toyohara J, Sakata M, Tago T, Colabufo NA, Luurtsema G. Automated synthesis, preclinical toxicity, and radiation dosimetry of [18F]MC225 for clinical use: a tracer for measuring P-glycoprotein function at the blood-brain barrier. EJNMMI Res. 2020;10:84. PubMed PMC
Prado C, Kazi A, Bennett A, MacVittie T, Prado K. Mean organ doses resulting from non-human primate whole thorax lung irradiation prescribed to mid-line tissue. Health Phys. 2015;109:367–373. PubMed PMC
Ebenhan T, Sathekge MM, Lengana T, et al. . 68Ga-NOTA-functionalized ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT imaging of infections. J Nucl Med. 2018;59:334–339. PubMed
Tanner R, White AD, Boot C, et al. . A non-human primate in vitro functional assay for the early evaluation of TB vaccine candidates. NPJ Vaccines. 2021;6:3. PubMed PMC
Uno Y, Uehara S, Yamazaki H. Utility of non-human primates in drug development: comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem Pharmacol. 2016;121:1–7. PubMed
Orsi A, Rees D, Andreini I, Venturella S, Cinelli S, Oberto G. Overview of the marmoset as a model in nonclinical development of pharmaceutical products. Regul Toxicol Pharmacol. 2011;59:19–27. PubMed PMC
Seyedmousavi S, Bosco S de MG, de Hoog S, et al. . Fungal infections in animals: a patchwork of different situations. Med Mycol. 2018;56(suppl 1):165–187. PubMed PMC
Vamathevan JJ, Hall MD, Hasan S, et al. . Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development. Toxicol Appl Pharmacol. 2013;270:149–157. PubMed
Signore A, Casali M, Lauri C. An easy and practical guide for imaging infection/inflammation by [18F]FDG PET/CT. Clin Transl Imaging. 2021;9:283–297. PubMed PMC
Corrales-Medina VF, deKemp RA, Chirinos JA, et al. . Persistent lung inflammation after clinical resolution of community-acquired pneumonia as measured by 18FDG-PET/CT imaging. Chest. 2021;160:446–453. PubMed PMC
Baldoni D, Waibel R, Bläuenstein P, et al. . Evaluation of a novel Tc-99m labelled vitamin B12 derivative for targeting Escherichia coli and Staphylococcus aureus in vitro and in an experimental foreign-body infection model. Mol Imaging Biol. 2015;17:829–837. PubMed PMC
Aulakh GK, Brocos Duda JA, Guerrero Soler CM, Snead E, Singh J. Characterization of low-dose ozone-induced murine acute lung injury. Physiol Rep. 2020;8:e14463. PubMed PMC
Aulakh GK, Kaur M, Brown V, Ekanayake S, Khan B, Fonge H. Quantification of regional murine ozone-induced lung inflammation using [18F]F-FDG microPET/CT imaging. Sci Rep. 2020;10:15699. PubMed PMC
Duda JAB, Kaur M, Aulakh GK. Visualizing lung cellular adaptations during combined ozone and LPS induced murine acute lung injury. J Vis Exp. 2021;(169). PubMed
Henneberg S, Hasenberg A, Maurer A, et al. . Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat Commun. 2021;12:1707. PubMed PMC
Welling MM, Duszenko N, van Willigen DM, et al. . Cyclodextrin/adamantane-mediated targeting of inoculated bacteria in mice. Bioconjug Chem. 2021;32:607–614. PubMed PMC
Cho SY, Pomper MG. Clinical translation of molecular imaging probes. In: Chen A, ed. Molecular Imaging Probes for Cancer Research. World Scientific; 2012:1041–1065.
Wester H-J. Nuclear imaging probes: from bench to bedside. Clin Cancer Res. 2007;13:3470–3481. PubMed
Liu CH, Sastre A, Conroy R, Seto B, Pettigrew RI. NIH workshop on clinical translation of molecular imaging probes and technology: meeting report. Mol Imaging Biol. 2014;16:595–604. PubMed PMC