• This record comes from PubMed

Interaction of surface cations of cleaved mica with water in vapor and liquid forms

. 2024 Feb 06 ; 249 (0) : 84-97. [epub] 20240206

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Natural minerals contain ions that become hydrated when they come into contact with water in vapor and liquid forms. Muscovite mica - a common phyllosilicate with perfect cleavage planes - is an ideal system to investigate the details of ion hydration. The cleaved mica surface is decorated by an array of K+ ions that can be easily exchanged with other ions or protons when immersed in an aqueous solution. Despite the vast interest in the atomic-scale hydration processes of these K+ ions, experimental data under controlled conditions have remained elusive. Here, atomically resolved non-contact atomic force microscopy (nc-AFM) is combined with X-ray photoelectron spectroscopy (XPS) to investigate the cation hydration upon dosing water vapor at 100 K in ultra-high vacuum (UHV). The cleaved surface is further exposed to ultra-clean liquid water at room temperature, which promotes ion mobility and partial ion-to-proton substitution. The results offer the first direct experimental views of the interaction of water with muscovite mica under UHV. The findings are in line with previous theoretical predictions.

See more in PubMed

Brown Jr G. E. Calas G. Geochem Perspect. 2012;1:483–484. doi: 10.7185/geochempersp.1.4. DOI

Fenter P. Zapol P. He H. Sturchio N. C. Geochim. Cosmochim. Acta. 2014;141:598–611. doi: 10.1016/j.gca.2014.06.019. DOI

Lackner K. S. Science. 2003;300:1677–1678. doi: 10.1126/science.1079033. PubMed DOI

Stumm W., Chemistry of the Solid-Water Interface: Processes at the Mineral- Water and Particle-Water Interface in Natural Systems, Wiley, 1992

Kiselev A. Bachmann F. Pedevilla P. Cox S. J. Michaelides A. Gerthsen D. Leisner T. Science. 2017;355:367–371. doi: 10.1126/science.aai8034. PubMed DOI

Kumar A. Marcolli C. Peter T. Atmos. Chem. Phys. 2019;19:6059–6084. doi: 10.5194/acp-19-6059-2019. DOI

Atkinson J. D. Murray B. J. Woodhouse M. T. Whale T. F. Baustian K. J. Carslaw K. S. Dobbie S. O’Sullivan D. Malkin T. L. Nature. 2013;498:355–358. doi: 10.1038/nature12278. PubMed DOI

Peng J. Guo J. Ma R. Jiang Y. Surf. Sci. Rep. 2022;77:100549. doi: 10.1016/j.surfrep.2021.100549. DOI

De Poel W. Pintea S. Drnec J. Carla F. Felici R. Mulder P. Elemans J. A. A. W. Van Enckevort W. J. P. Rowan A. E. Vlieg E. Surf. Sci. 2014;619:19–24. doi: 10.1016/j.susc.2013.10.008. DOI

Franceschi G. Kocán P. Conti A. Brandstetter S. Balajka J. Sokolović I. Valtiner M. Mittendorfer F. Schmid M. Setvín M. Diebold U. Nat. Commun. 2023;14:208. doi: 10.1038/s41467-023-35872-y. PubMed DOI PMC

Gaines G. L. J. Phys. Chem. 1957;61:1408–1413. doi: 10.1021/j150556a033. DOI

de Poel W. Vaessen S. L. Drnec J. Engwerda A. H. J. Townsend E. R. Pintea S. de Jong A. E. F. Jankowski M. Carlà F. Felici R. Elemans J. A. A. W. van Enckevort W. J. P. Rowan A. E. Vlieg E. Surf. Sci. 2017;665:56–61. doi: 10.1016/j.susc.2017.08.013. DOI

Xu L. Salmeron M. Langmuir. 1998;14:5841–5843. doi: 10.1021/la980529y. DOI

Lee S. S. Fenter P. Nagy K. L. Sturchio N. C. Langmuir. 2012;28:8637–8650. doi: 10.1021/la300032h. PubMed DOI

Prakash A. Pfaendtner J. Chun J. Mundy C. J. J. Phys. Chem. C. 2017;121:18496–18504. doi: 10.1021/acs.jpcc.7b03229. DOI

Odelius M. Bernasconi M. Parrinello M. Phys. Rev. Lett. 1997;78:2855. doi: 10.1103/PhysRevLett.78.2855. DOI

Feibelman P. J. J. Chem. Phys. 2013;139:074705. doi: 10.1063/1.4818587. PubMed DOI

Wang J. Kalinichev A. G. Kirkpatrick R. J. Cygan R. T. J. Phys. Chem. B. 2005;109:15893–15905. doi: 10.1021/jp045299c. PubMed DOI

Debbarma R. Malani A. Langmuir. 2016;32:1034. doi: 10.1021/acs.langmuir.5b04131. PubMed DOI

Ou X. Wang X. Lin Z. Li J. J. Phys. Chem. C. 2017;121:6813–6819. doi: 10.1021/acs.jpcc.7b00855. DOI

Adapa S. Swamy D. R. Kancharla S. Pradhan S. Malani A. Langmuir. 2018;34:14472–14488. doi: 10.1021/acs.langmuir.8b01128. PubMed DOI

Fukuma T. Ueda Y. Yoshioka S. Asakawa H. Phys. Rev. Lett. 2010;104:016101. doi: 10.1103/PhysRevLett.104.016101. PubMed DOI

Kimura K. Ido S. Oyabu N. Kobayashi K. Hirata Y. Imai T. Yamada H. J. Chem. Phys. 2010;132:194705. doi: 10.1063/1.3408289. PubMed DOI

Martin-Jimenez D. Chacon E. Tarazona P. Garcia R. Nat. Commun. 2016;7:12164. doi: 10.1038/ncomms12164. PubMed DOI PMC

Arai T. Sato K. Iida A. Tomitori M. Sci. Rep. 2017;7:4054. doi: 10.1038/s41598-017-04376-3. PubMed DOI PMC

Kobayashi K. Oyabu N. Kimura K. Ido S. Suzuki K. Imai T. Tagami K. Tsukada M. Yamada H. J. Chem. Phys. 2013;138:184704. doi: 10.1063/1.4803742. PubMed DOI

Ichii T. Ichikawa S. Yamada Y. Murata M. Utsunomiya T. Sugimura H. Jpn. J. Appl. Phys. 2020;59:SN1003. doi: 10.35848/1347-4065/ab80a6. DOI

Ricci M. Spijker P. Voïtchovsky K. Nat. Commun. 2014;5:4400. doi: 10.1038/ncomms5400. PubMed DOI

Martin-Jimenez D. Garcia R. J. Phys. Chem. Lett. 2017;8:5707–5711. doi: 10.1021/acs.jpclett.7b02671. PubMed DOI

Jin S. Liu Y. Deiseroth M. Liu J. Backus E. H. G. Li H. Xue H. Zhao L. Zeng X. C. Bonn M. Wang J. J. Am. Chem. Soc. 2020;142:17956–17965. doi: 10.1021/jacs.0c00920. PubMed DOI

Lata N. N. Zhou J. Hamilton P. Larsen M. Sarupria S. Cantrell W. J. Phys. Chem. Lett. 2020;11:8682. doi: 10.1021/acs.jpclett.0c02121. PubMed DOI

Soni A. Patey G. N. J. Phys. Chem. C. 2021;125:26927–26941. doi: 10.1021/acs.jpcc.1c08269. DOI

Ostendorf F. Schmitz C. Hirth S. Kühnle A. Kolodziej J. J. Reichling M. Nanotechnology. 2008;19:305705. doi: 10.1088/0957-4484/19/30/305705. PubMed DOI

Pürckhauer K. Weymouth A. J. Pfeffer K. Kullmann L. Mulvihill E. Krahn M. P. Müller D. J. Giessibl F. J. Sci. Rep. 2018;8:9330. doi: 10.1038/s41598-018-27608-6. PubMed DOI PMC

Balmer T. E. Christenson H. K. Spencer N. D. Heuberger M. Langmuir. 2008;24:1566–1569. doi: 10.1021/la702391m. PubMed DOI

Sides P. J. Faruqui D. Gellman A. J. Langmuir. 2009;25:1475–1481. doi: 10.1021/la802752g. PubMed DOI

Christenson H. K. Thomson N. H. Surf. Sci. Rep. 2016;71:367–390. doi: 10.1016/j.surfrep.2016.03.001. DOI

Peng J. Cao D. He Z. Guo J. Hapala P. Ma R. Cheng B. Chen J. Xie W. J. Li X. Z. Jelínek P. Xu L. M. Gao Y. Q. Wang E. G. Jiang Y. Nature. 2018;557:701–705. doi: 10.1038/s41586-018-0122-2. PubMed DOI

Lee S. S. Fenter P. Park C. Sturchio N. C. Nagy K. L. Langmuir. 2010;26:16647–16651. doi: 10.1021/la1032866. PubMed DOI

Ončák M. Włodarczyk R. Sauer J. J. Phys. Chem. Lett. 2015;6:2310–2314. doi: 10.1021/acs.jpclett.5b00885. PubMed DOI

Cabrera-Sanfelix P. Portal D. S. Verdaguer A. Darling G. R. Salmeron M. Arnau A. J. Phys. Chem. C. 2007;111:8000–8004. doi: 10.1021/jp070548t. DOI

Balajka J. Pavelec J. Komora M. Schmid M. Diebold U. Rev. Sci. Instrum. 2018;89:083906. doi: 10.1063/1.5046846. PubMed DOI

Shchukarev A. V. Korolkov D. V. Cent. Eur. J. Chem. 2004;2:347–362.

Jakub Z. Kraushofer F. Bichler M. Balajka J. Hulva J. Pavelec J. Sokolović I. Müllner M. Setvin M. Schmid M. Diebold U. Blaha P. Parkinson G. S. ACS Energy Lett. 2019;4:390–396. doi: 10.1021/acsenergylett.8b02324. DOI

Meier M. Hulva J. Jakub Z. Pavelec J. Setvin M. Bliem R. Schmid M. Diebold U. Franchini C. Parkinson G. S. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E5642–E5650. PubMed PMC

Davidson A. T. Vickers A. F. J. Phys. C: Solid State Phys. 1972;5:879. doi: 10.1088/0022-3719/5/8/014. DOI

Bhattacharyya K. G. J. Electron Spectrosc. Relat. Phenom. 1993;63:289–306. doi: 10.1016/0368-2048(93)87010-W. DOI

Huber F. Giessibl F. J. Rev. Sci. Instrum. 2017;88:073702. doi: 10.1063/1.4993737. PubMed DOI

Giessibl F. J. Rev. Sci. Instrum. 2019;90:011101. doi: 10.1063/1.5052264. PubMed DOI

Setvín M. Javorský J. Turčinková D. Matolínová I. Sobotík P. Kocán P. Ošt’ádal I. Ultramicroscopy. 2012;113:152–157. doi: 10.1016/j.ultramic.2011.10.005. DOI

Gross L. Mohn F. Moll N. Liljeroth P. Meyer G. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Kornfeld M. I. J. Phys. D: Appl. Phys. 1978;11:1295–1301. doi: 10.1088/0022-3727/11/9/007. DOI

Obreimoff J. W. Proc. R. Soc. London, Ser. A. 1930;127:290–297.

Metsik M. S. Golub L. M. J. Appl. Phys. 1975;46:1983–1986. doi: 10.1063/1.321878. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...