Interaction of surface cations of cleaved mica with water in vapor and liquid forms
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
37791454
PubMed Central
PMC10845011
DOI
10.1039/d3fd00093a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Natural minerals contain ions that become hydrated when they come into contact with water in vapor and liquid forms. Muscovite mica - a common phyllosilicate with perfect cleavage planes - is an ideal system to investigate the details of ion hydration. The cleaved mica surface is decorated by an array of K+ ions that can be easily exchanged with other ions or protons when immersed in an aqueous solution. Despite the vast interest in the atomic-scale hydration processes of these K+ ions, experimental data under controlled conditions have remained elusive. Here, atomically resolved non-contact atomic force microscopy (nc-AFM) is combined with X-ray photoelectron spectroscopy (XPS) to investigate the cation hydration upon dosing water vapor at 100 K in ultra-high vacuum (UHV). The cleaved surface is further exposed to ultra-clean liquid water at room temperature, which promotes ion mobility and partial ion-to-proton substitution. The results offer the first direct experimental views of the interaction of water with muscovite mica under UHV. The findings are in line with previous theoretical predictions.
See more in PubMed
Brown Jr G. E. Calas G. Geochem Perspect. 2012;1:483–484. doi: 10.7185/geochempersp.1.4. DOI
Fenter P. Zapol P. He H. Sturchio N. C. Geochim. Cosmochim. Acta. 2014;141:598–611. doi: 10.1016/j.gca.2014.06.019. DOI
Lackner K. S. Science. 2003;300:1677–1678. doi: 10.1126/science.1079033. PubMed DOI
Stumm W., Chemistry of the Solid-Water Interface: Processes at the Mineral- Water and Particle-Water Interface in Natural Systems, Wiley, 1992
Kiselev A. Bachmann F. Pedevilla P. Cox S. J. Michaelides A. Gerthsen D. Leisner T. Science. 2017;355:367–371. doi: 10.1126/science.aai8034. PubMed DOI
Kumar A. Marcolli C. Peter T. Atmos. Chem. Phys. 2019;19:6059–6084. doi: 10.5194/acp-19-6059-2019. DOI
Atkinson J. D. Murray B. J. Woodhouse M. T. Whale T. F. Baustian K. J. Carslaw K. S. Dobbie S. O’Sullivan D. Malkin T. L. Nature. 2013;498:355–358. doi: 10.1038/nature12278. PubMed DOI
Peng J. Guo J. Ma R. Jiang Y. Surf. Sci. Rep. 2022;77:100549. doi: 10.1016/j.surfrep.2021.100549. DOI
De Poel W. Pintea S. Drnec J. Carla F. Felici R. Mulder P. Elemans J. A. A. W. Van Enckevort W. J. P. Rowan A. E. Vlieg E. Surf. Sci. 2014;619:19–24. doi: 10.1016/j.susc.2013.10.008. DOI
Franceschi G. Kocán P. Conti A. Brandstetter S. Balajka J. Sokolović I. Valtiner M. Mittendorfer F. Schmid M. Setvín M. Diebold U. Nat. Commun. 2023;14:208. doi: 10.1038/s41467-023-35872-y. PubMed DOI PMC
Gaines G. L. J. Phys. Chem. 1957;61:1408–1413. doi: 10.1021/j150556a033. DOI
de Poel W. Vaessen S. L. Drnec J. Engwerda A. H. J. Townsend E. R. Pintea S. de Jong A. E. F. Jankowski M. Carlà F. Felici R. Elemans J. A. A. W. van Enckevort W. J. P. Rowan A. E. Vlieg E. Surf. Sci. 2017;665:56–61. doi: 10.1016/j.susc.2017.08.013. DOI
Xu L. Salmeron M. Langmuir. 1998;14:5841–5843. doi: 10.1021/la980529y. DOI
Lee S. S. Fenter P. Nagy K. L. Sturchio N. C. Langmuir. 2012;28:8637–8650. doi: 10.1021/la300032h. PubMed DOI
Prakash A. Pfaendtner J. Chun J. Mundy C. J. J. Phys. Chem. C. 2017;121:18496–18504. doi: 10.1021/acs.jpcc.7b03229. DOI
Odelius M. Bernasconi M. Parrinello M. Phys. Rev. Lett. 1997;78:2855. doi: 10.1103/PhysRevLett.78.2855. DOI
Feibelman P. J. J. Chem. Phys. 2013;139:074705. doi: 10.1063/1.4818587. PubMed DOI
Wang J. Kalinichev A. G. Kirkpatrick R. J. Cygan R. T. J. Phys. Chem. B. 2005;109:15893–15905. doi: 10.1021/jp045299c. PubMed DOI
Debbarma R. Malani A. Langmuir. 2016;32:1034. doi: 10.1021/acs.langmuir.5b04131. PubMed DOI
Ou X. Wang X. Lin Z. Li J. J. Phys. Chem. C. 2017;121:6813–6819. doi: 10.1021/acs.jpcc.7b00855. DOI
Adapa S. Swamy D. R. Kancharla S. Pradhan S. Malani A. Langmuir. 2018;34:14472–14488. doi: 10.1021/acs.langmuir.8b01128. PubMed DOI
Fukuma T. Ueda Y. Yoshioka S. Asakawa H. Phys. Rev. Lett. 2010;104:016101. doi: 10.1103/PhysRevLett.104.016101. PubMed DOI
Kimura K. Ido S. Oyabu N. Kobayashi K. Hirata Y. Imai T. Yamada H. J. Chem. Phys. 2010;132:194705. doi: 10.1063/1.3408289. PubMed DOI
Martin-Jimenez D. Chacon E. Tarazona P. Garcia R. Nat. Commun. 2016;7:12164. doi: 10.1038/ncomms12164. PubMed DOI PMC
Arai T. Sato K. Iida A. Tomitori M. Sci. Rep. 2017;7:4054. doi: 10.1038/s41598-017-04376-3. PubMed DOI PMC
Kobayashi K. Oyabu N. Kimura K. Ido S. Suzuki K. Imai T. Tagami K. Tsukada M. Yamada H. J. Chem. Phys. 2013;138:184704. doi: 10.1063/1.4803742. PubMed DOI
Ichii T. Ichikawa S. Yamada Y. Murata M. Utsunomiya T. Sugimura H. Jpn. J. Appl. Phys. 2020;59:SN1003. doi: 10.35848/1347-4065/ab80a6. DOI
Ricci M. Spijker P. Voïtchovsky K. Nat. Commun. 2014;5:4400. doi: 10.1038/ncomms5400. PubMed DOI
Martin-Jimenez D. Garcia R. J. Phys. Chem. Lett. 2017;8:5707–5711. doi: 10.1021/acs.jpclett.7b02671. PubMed DOI
Jin S. Liu Y. Deiseroth M. Liu J. Backus E. H. G. Li H. Xue H. Zhao L. Zeng X. C. Bonn M. Wang J. J. Am. Chem. Soc. 2020;142:17956–17965. doi: 10.1021/jacs.0c00920. PubMed DOI
Lata N. N. Zhou J. Hamilton P. Larsen M. Sarupria S. Cantrell W. J. Phys. Chem. Lett. 2020;11:8682. doi: 10.1021/acs.jpclett.0c02121. PubMed DOI
Soni A. Patey G. N. J. Phys. Chem. C. 2021;125:26927–26941. doi: 10.1021/acs.jpcc.1c08269. DOI
Ostendorf F. Schmitz C. Hirth S. Kühnle A. Kolodziej J. J. Reichling M. Nanotechnology. 2008;19:305705. doi: 10.1088/0957-4484/19/30/305705. PubMed DOI
Pürckhauer K. Weymouth A. J. Pfeffer K. Kullmann L. Mulvihill E. Krahn M. P. Müller D. J. Giessibl F. J. Sci. Rep. 2018;8:9330. doi: 10.1038/s41598-018-27608-6. PubMed DOI PMC
Balmer T. E. Christenson H. K. Spencer N. D. Heuberger M. Langmuir. 2008;24:1566–1569. doi: 10.1021/la702391m. PubMed DOI
Sides P. J. Faruqui D. Gellman A. J. Langmuir. 2009;25:1475–1481. doi: 10.1021/la802752g. PubMed DOI
Christenson H. K. Thomson N. H. Surf. Sci. Rep. 2016;71:367–390. doi: 10.1016/j.surfrep.2016.03.001. DOI
Peng J. Cao D. He Z. Guo J. Hapala P. Ma R. Cheng B. Chen J. Xie W. J. Li X. Z. Jelínek P. Xu L. M. Gao Y. Q. Wang E. G. Jiang Y. Nature. 2018;557:701–705. doi: 10.1038/s41586-018-0122-2. PubMed DOI
Lee S. S. Fenter P. Park C. Sturchio N. C. Nagy K. L. Langmuir. 2010;26:16647–16651. doi: 10.1021/la1032866. PubMed DOI
Ončák M. Włodarczyk R. Sauer J. J. Phys. Chem. Lett. 2015;6:2310–2314. doi: 10.1021/acs.jpclett.5b00885. PubMed DOI
Cabrera-Sanfelix P. Portal D. S. Verdaguer A. Darling G. R. Salmeron M. Arnau A. J. Phys. Chem. C. 2007;111:8000–8004. doi: 10.1021/jp070548t. DOI
Balajka J. Pavelec J. Komora M. Schmid M. Diebold U. Rev. Sci. Instrum. 2018;89:083906. doi: 10.1063/1.5046846. PubMed DOI
Shchukarev A. V. Korolkov D. V. Cent. Eur. J. Chem. 2004;2:347–362.
Jakub Z. Kraushofer F. Bichler M. Balajka J. Hulva J. Pavelec J. Sokolović I. Müllner M. Setvin M. Schmid M. Diebold U. Blaha P. Parkinson G. S. ACS Energy Lett. 2019;4:390–396. doi: 10.1021/acsenergylett.8b02324. DOI
Meier M. Hulva J. Jakub Z. Pavelec J. Setvin M. Bliem R. Schmid M. Diebold U. Franchini C. Parkinson G. S. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E5642–E5650. PubMed PMC
Davidson A. T. Vickers A. F. J. Phys. C: Solid State Phys. 1972;5:879. doi: 10.1088/0022-3719/5/8/014. DOI
Bhattacharyya K. G. J. Electron Spectrosc. Relat. Phenom. 1993;63:289–306. doi: 10.1016/0368-2048(93)87010-W. DOI
Huber F. Giessibl F. J. Rev. Sci. Instrum. 2017;88:073702. doi: 10.1063/1.4993737. PubMed DOI
Giessibl F. J. Rev. Sci. Instrum. 2019;90:011101. doi: 10.1063/1.5052264. PubMed DOI
Setvín M. Javorský J. Turčinková D. Matolínová I. Sobotík P. Kocán P. Ošt’ádal I. Ultramicroscopy. 2012;113:152–157. doi: 10.1016/j.ultramic.2011.10.005. DOI
Gross L. Mohn F. Moll N. Liljeroth P. Meyer G. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Kornfeld M. I. J. Phys. D: Appl. Phys. 1978;11:1295–1301. doi: 10.1088/0022-3727/11/9/007. DOI
Obreimoff J. W. Proc. R. Soc. London, Ser. A. 1930;127:290–297.
Metsik M. S. Golub L. M. J. Appl. Phys. 1975;46:1983–1986. doi: 10.1063/1.321878. DOI