Combined effects of valproate and naringin on kidney antioxidative markers and serum parameters of kidney function in C57BL6 mice
Jazyk angličtina Země Chorvatsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37791674
PubMed Central
PMC10549880
DOI
10.2478/aiht-2023-74-3764
PII: aiht-2023-74-3764
Knihovny.cz E-zdroje
- Klíčová slova
- calcium, catalase, hiperkalijemija, hyperkalaemia, kalcij, kalij, katalaza, malondialdehid, malondialdehyde, oksidacijski stres, oxidative stress, potassium, sodium, superoksid dismutaza, superoxide dismutase,
- MeSH
- antioxidancia * farmakologie MeSH
- hyperkalemie * MeSH
- katalasa metabolismus farmakologie MeSH
- kyselina valproová toxicita MeSH
- ledviny MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oxidační stres MeSH
- peroxidace lipidů MeSH
- superoxiddismutasa metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- katalasa MeSH
- kyselina valproová MeSH
- naringin MeSH Prohlížeč
- superoxiddismutasa MeSH
Valproate is known to disturb the kidney function, and high doses or prolonged intake may cause serum ion imbalance, kidney tubular acidosis, proteinuria, hyperuricosuria, polyuria, polydipsia, and dehydration. The aim of this in vivo study was to see whether naringin would counter the adverse effects of high-dose valproate in C57Bl/6 mice and to which extent. As expected, valproate (150 mg/kg bw a day for 10 days) caused serum hyperkalaemia, more in male than female mice. Naringin reversed (25 mg/kg bw a day for 10 days) the hyperkalaemia and activated antioxidative defence mechanisms (mainly catalase and glutathione), again more efficiently in females. In males naringin combined with valproate was not as effective and even showed some prooxidative effects.
Valproat je jedan od najčešće primjenjivanih antiepileptika, a poznato je da prouzročuje poremećenu funkciju proksimalnih bubrežnih tubula. Fiziološki poremećaji i nefrotoksični učinci u nekih bolesnika nakon visokih doza ili produljenog uzimanja valproata uključuju disbalans iona u serumu, bubrežnu tubularnu acidozu, proteinuriju, hiperurikozuriju, poliuriju, polidipsiju, dehidraciju i druge poremećaje. U okviru ovog eksperimentalnog rada primijenili smo visoke doze valproata i združeni tretman valproata i naringina u C57Bl/6 miševa. Naringin je poznati antioksidans i protuupalna flavonoidna molekula iz citrusnog voća. Cilj rada bio je utvrditi mogu li biološka svojstva naringina umanjiti štetne učinke na bubrege nakon tretmana valproatom. Valproat je in vivo prouzročio serumsku hiperkalijemiju, izraženiju u mužjaka nego u ženki miševa. Hiperkalijemija prouzročena valproatom bila je ublažena naringinom, a antioksidacijski obrambeni mehanizmi (uglavnom katalaza i smanjena glutationacija) bili su aktivirani, više u ženki. U mužjaka, zajednički tretman valproatom i naringinom nije bio tako učinkovit, a rezultati upućuju na moguće prooksidacijsko djelovanje u bubrežnom tkivu kada se obje tvari primjenjuju zajedno.
Czech Academy of Sciences Institute of Physiology Prague Czechia
Genos Ltd Glycoscience Research Laboratory Zagreb Croatia
Regionshospitalet Gødstrup Herning Denmark
University of Zagreb Faculty of Food Technology and Biotechnology Zagreb Croatia
Zobrazit více v PubMed
Anguissola G, Leu D, Simonetti GD, Simonetti BG, Lava SAG, Milani GP, Bianchetti MG, Scoglio M Kidney tubular injury induced by valproic acid: systematic literature review Pediatr Nephrol. 2023;38:1725. doi: 10.1007/s00467-022-05869-8. . . ; : –. . doi: PubMed DOI PMC
Karatzas A, Paridis D, Kozyrakis D, Tzortzis V, Samarinas M, Dailiana Z, Karachalios T Fanconi syndrome in the adulthood. The role of early diagnosis and treatment J Musculoskelet Neuronal Interact. 2017;17:303. . . ; : –. . PMCID: PMC5749037. PubMed PMC
Heidari R, Jafari F, Khodaei F, ShiraziYeganeh B, Niknahad H Mechanism of valproic acid induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney Nephrology. 2018;23:351. doi: 10.1111/nep.13012. . . ; : –. . doi: PubMed DOI
Ono H Sodium valproate-induced Fanconi syndrome in two severely disabled patients receiving carnitine supplementation Clin Exp Nephrol. 2019;23:148. doi: 10.1007/s10157-018-1581-3. . . ; : –. . doi: PubMed DOI
Gezginci-Oktayoglu S, Turkyilmaz IB, Ercin M, Yanardag R, Bolkent S Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties Protoplasma. 2016;253:127. doi: 10.1007/s00709-015-0796-3. . . ; : –. . doi: PubMed DOI
El-Shenawy NS, Hamza RZ Nephrotoxicity of sodium valproate and protective role of L-cysteine in rats at biochemical and histological levels J Basic Clin Physiol Pharmacol. 2016;27:497. doi: 10.1515/jbcpp-2015-0106. . . ; : –. . doi: PubMed DOI
Chaudhary S, Ganjoo P, Raiusddin S, Parvez S Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid Protoplasma. 2015;252:209. doi: 10.1007/s00709-014-0670-8. . . ; : –. . doi: PubMed DOI
Koroglu OF, Gunata M, Vardi N, Yildiz A, Ates B, Colak C, Tanriverdi LH, Parlakpinar H Protective effects of naringin on valproic acid-induced hepatotoxicity in rats Tissue Cell. 2021;72:101526. doi: 10.1016/j.tice.2021.101526. . . ; : . doi: PubMed DOI
Jutrić D, Đikić D, Boroš A, Odeh D, Drozdek SD, Gračan R, Dragičević P, Crnić I, Jurčević IL Effects of naringin and valproate interaction on liver steatosis and dyslipidaemia parameters in male C57BL6 mice Arh Hig Rada Toksikol. 2022;73:71. doi: 10.2478/aiht-2022-73-3608. . . ; : –. . doi: PubMed DOI PMC
Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J Naringin and naringenin: their mechanisms of action and the potential anticancer activities Biomedicines. 2022;10:1686. doi: 10.3390/biomedicines10071686. . . ; : . doi: PubMed DOI PMC
Amini N, Maleki M, Badavi M Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review Avicenna J Phytomed. 2022;12:357. doi: 10.22038/AJP.2022.19620. . . ; : –. . doi: PubMed DOI PMC
Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S, Dong D Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation Exp Ther Med. 2021;21:66. doi: 10.3892/etm.2020.9498. . . ; : . doi: PubMed DOI PMC
Elsawy H, Alzahrani AM, Alfwuaires M, Abdel-Moneim AM, Khalil M Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats Biomed Pharmacother. 2021;143:112180. doi: 10.1016/j.biopha.2021.112180. . . ; : . doi: PubMed DOI
Committee for the Update of the Guide for the Care and Use of Laboratory Animals . Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press; 2011. . . : ; .
Landeka Jurčević I, Dora M, Guberović I, Petras M, Rimac S, Brnčić, Đikić D Polyphenols from wine lees as a novel functional bioactive compound in the protection against oxidative stress and hyperlipidaemia Food Technol Biotechnol. 2017;55:109. doi: 10.17113/ftb.55.01.17.4894. . . ; : –. . doi: PubMed DOI PMC
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ Protein measurement with the Folin phenol reagent J Biol Chem. 1951;193:265. doi: 10.1016/S0021-9258(19)52451-6. . . ; : –. . doi: PubMed DOI
Flohé L, Ötting F Superoxide dismutase assays Meth Enzymol. 1984;105:93. doi: 10.1016/s0076-6879(84)05013-8. . . ; : –. . doi: PubMed DOI
Aebi H Catalase in vitro Meth Enzymol. 1984;105:121. doi: 10.1016/s0076-6879(84)05016-3. . . ; : –. . doi: PubMed DOI
Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E Molar absorption coefficients for the reduced Ellman reagent: reassessment Anal Biochem. 2003;312:224. doi: 10.1016/s0003-2697(02)00506-7. . . ; : –. . doi: PubMed DOI
Pirahanchi Y, Jessu R, Aeddula NR . Physiology, sodium potassium pump. Treasure Island (FL): StatPearls Publishing; 2022. . . . ; . PubMed
White KE, Gesek FA, Nesbitt T, Drezner MK, Friedman PA Molecular dissection of Ca2+ efflux in immortalized proximal tubule cells J Gen Physiol. 1997;109:217. doi: 10.1085/jgp.109.2.217. . . ; : –. . doi: PubMed DOI PMC
Curry JN, Yu ASL Paracellular calcium transport in the proximal tubule and the formation of kidney stones Am J Physiol Renal Physiol. 2019;316:966. doi: 10.1152/ajprenal.00519.2018. . . ; : –. . doi: PubMed DOI PMC
Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS The renal H+-K+-ATPases: physiology, regulation, and structure Am J Physiol Renal Physiol. 2010;298:12. doi: 10.1152/ajprenal.90723.2008. . . ; : –. . doi: PubMed DOI PMC
Đikić D, Jutrić D, Dominko K The dual nature of the antiepileptic drug valproic acid, with possible beneficial effects in Alzheimer’s disease SEEMEDJ. 2017;1:74. doi: 10.26332/seemedj.v1i1.26. . . ; : –. . doi: DOI
Monostory K, Nagy A, Tóth K, Bűdi T, Kiss Á, Déri M, Csukly G Relevance of CYP2C9 function in valproate therapy Curr Neuropharmacol. 2019;17:99. doi: 10.2174/1570159X15666171109143654. . . ; : –. . doi: PubMed DOI PMC
Knights KM, Rowland A, Miners JO Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) Br J Clin Pharmacol. 2013;76:587. doi: 10.1111/bcp.12086. . . ; : –. . doi: PubMed DOI PMC
Ding S, Qiu H, Huang J, Chen R, Zhang J, Huang B, Zou X, Cheng O, Jiang Q Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy Chem Biol Interact. 2019;307:116. doi: 10.1016/j.cbi.2019.05.004. . . ; : –. . doi: PubMed DOI
Oyagbemi AA, Omobowale TO, Adejumobi OA, Owolabi AM, Ogunpolu BS, Falayi OO, Hassan FO, Ogunmiluyi IO, Asenuga ER, Ola-Davies OE, Soetan KO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/angiotensin converting enzyme (ACE)/kidney injury molecule (Kim-1) signaling pathway Eur J Pharmacol. 2020;880:173142. doi: 10.1016/j.ejphar.2020.173142. . . ; : . doi: PubMed DOI
Amudha K, Pari L Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats Chem Biol Interact. 2011;193:57. doi: 10.1016/j.cbi.2011.05.003. . . ; : –. . doi: PubMed DOI
Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage Environ Sci Pollut Res Int. 2018;25:20968. doi: 10.1007/s11356-018-2242-5. . . ; : –. . doi: PubMed DOI
Singh D, Chander V, Chopra K Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney Toxicology. 2004;201:143. doi: 10.1016/j.tox.2004.04.018. . . ; : –. . doi: PubMed DOI
Amini N, Sarkaki A, Dianat M, Mard SA, Ahangarpour A, Badavi M The renoprotective effects of naringin and trimetazidine on renal ischemia/reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a Biomed Pharmacother. 2019;112:108568. doi: 10.1016/j.biopha.2019.01.029. . . ; : . doi: PubMed DOI
Galati G, Chan T, Wu B, O’Brien PJ Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redoxcycling of flavonoids Chem Res Toxicol. 1999;12:521. doi: 10.1021/tx980271b. . . ; : –. . doi: PubMed DOI