Inorganic Chemistry of the Tripodal Picolinate Ligand Tpaa with Gallium(III) and Radiolabeling with Gallium-68
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
MR/T002573/1
Medical Research Council - United Kingdom
PubMed
37793007
PubMed Central
PMC10731648
DOI
10.1021/acs.inorgchem.3c02459
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We report here the improved synthesis of the tripodal picolinate chelator Tpaa, with an overall yield of 41% over five steps, in comparison to the previously reported 6% yield. Tpaa was investigated for its coordination chemistry with Ga(III) and radiolabeling properties with gallium-68 (68Ga). The obtained crystal structure for [Ga(Tpaa)] shows that the three picolinate arms coordinate to the Ga(III) ion, fully occupying the octahedral coordination geometry. This is supported by 1H NMR which shows that the three arms are symmetrical when coordinated to Ga(III). Assessment of the thermodynamic stability through potentiometry gives log KGa-Tpaa = 21.32, with a single species being produced across the range of pH 3.5-7.5. Tpaa achieved >99% radiochemical conversion with 68Ga under mild conditions ([Tpaa] = 6.6 μM, pH 7.4, 37 °C) with a molar activity of 3.1 GBq μmol-1. The resulting complex, [68Ga][Ga(Tpaa)], showed improved stability over the previously reported [68Ga][Ga(Dpaa)(H2O)] in a serum challenge, with 32% of [68Ga][Ga(Tpaa)] remaining intact after 30 min of incubation with fetal bovine serum.
See more in PubMed
Fani M.; Andre J. P.; Maecke H. R. 68Ga-PET: A Powerful Generator-Based Alternative to Cyclotron-Based PET Radiopharmaceuticals. Contrast Media Mol. Imaging 2008, 3 (2), 53–63. 10.1002/cmmi.232. PubMed DOI
Rosch F. Past, Present and Future of Ge-68/Ga-68 Generators. Applied Radiation and Isotopes 2013, 76, 24–30. 10.1016/j.apradiso.2012.10.012. PubMed DOI
Bartholomä M. D.; Louie A. S.; Valliant J. F.; Zubieta J. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chem. Rev. 2010, 110 (5), 2903–2920. 10.1021/cr1000755. PubMed DOI
Price E. W.; Orvig C. Matching Chelators to Radiometals for Radiopharmaceuticals. Chem. Soc. Rev. 2014, 43 (1), 260–290. 10.1039/C3CS60304K. PubMed DOI
Stasiuk G. J.; Long N. J. The Ubiquitous DOTA and Its Derivatives: The Impact of 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid on Biomedical Imaging. Chem. Commun. 2013, 49, 2732–2746. 10.1039/c3cc38507h. PubMed DOI
Fellner M.; Baum R.; Kubíček V.; Hermann P.; Lukeš I.; Prasad V.; Rösch F. PET/CT Imaging of Osteoblastic Bone Metastases with 68Ga-Bisphosphonates: First Human Study. Eur. J. Nucl. Med. Mol. Imaging 2010, 37 (4), 834.10.1007/s00259-009-1355-y. PubMed DOI
Benesova M.; Schafer M.; Bauder-Wust U.; Afshar-Oromieh A.; Kratochwil C.; Mier W.; Haberkorn U.; Kopka K.; Eder M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56 (6), 914–920. 10.2967/jnumed.114.147413. PubMed DOI
Srirajaskanthan R.; Kayani I.; Quigley A. M.; Soh J.; Caplin M. E.; Bomanji J. The Role of 68Ga-DOTATATE PET in Patients with Neuroendocrine Tumors and Negative or Equivocal Findings on 111In-DTPA-Octreotide Scintigraphy. J. Nucl. Med. 2010, 51 (6), 875–882. 10.2967/jnumed.109.066134. PubMed DOI
Wei L.; Miao Y.; Gallazzi F.; Quinn T. P.; Welch M. J.; Vavere A. L.; Lewis J. S. Gallium-68-Labeled DOTA-Rhenium-Cyclized Alpha-Melanocyte-Stimulating Hormone Analog for Imaging of Malignant Melanoma. Nucl. Med. Biol. 2007, 34 (8), 945–953. 10.1016/j.nucmedbio.2007.07.003. PubMed DOI PMC
Kramer-Marek G.; Shenoy N.; Seidel J.; Griffiths G. L.; Choyke P.; Capala J. 68Ga-DOTA-Affibody Molecule for In Vivo Assessment of HER2/Neu Expression with PET. Eur. J. Nucl. Med. Mol. Imaging 2011, 38 (11), 1967–1976. 10.1007/s00259-011-1810-4. PubMed DOI PMC
Price T. W.; Greenman J.; Stasiuk G. J. Current Advances in Ligand Design for Inorganic Positron Emission Tomography Tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Transactions 2016, 45 (40), 15702–15724. 10.1039/C5DT04706D. PubMed DOI
Velikyan I.; Maecke H.; Langstrom B. Convenient Preparation of Ga-68-Based PET-Radiopharmaceuticals at Room Temperature. Bioconjugate Chem. 2008, 19 (2), 569–573. 10.1021/bc700341x. PubMed DOI
Berry D. J.; Ma Y. M.; Ballinger J. R.; Tavare R.; Koers A.; Sunassee K.; Zhou T.; Nawaz S.; Mullen G. E. D.; Hider R. C.; Blower P. J. Efficient Bifunctional Gallium-68 Chelators for Positron Emission Tomography: Tris(Hydroxypyridinone) Ligands. Chem. Commun. 2011, 47 (25), 7068–7070. 10.1039/c1cc12123e. PubMed DOI PMC
Seemann J.; Waldron B. P.; Roesch F.; Parker D. Approaching “Kit-Type’’ Labelling with Ga-68: The DATA Chelators.. ChemMedChem. 2015, 10 (6), 1019–1026. 10.1002/cmdc.201500092. PubMed DOI
Notni J.; Hermann P.; Havlickova J.; Kotek J.; Kubicek V.; Plutnar J.; Loktionova N.; Riss P. J.; Rosch F.; Lukes I. A Triazacyclononane-Based Bifunctional Phosphinate Ligand for the Preparation of Multimeric Ga-68 Tracers for Positron Emission Tomography. Chem. Eur. J. 2010, 16 (24), 7174–7185. 10.1002/chem.200903281. PubMed DOI
Dumont R. A.; Deininger F.; Haubner R.; Maecke H. R.; Weber W. A.; Fani M. Novel 64Cu- and 68Ga-Labeled RGD Conjugates Show Improved PET Imaging of 3 Integrin Expression and Facile Radiosynthesis. J. Nucl. Med. 2011, 52 (8), 1276–1284. 10.2967/jnumed.111.087700. PubMed DOI
Ray Banerjee S.; Chen Z.; Pullambhatla M.; Lisok A.; Chen J.; Mease R. C.; Pomper M. G. Preclinical Comparative Study of 68Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA. Bioconjug Chem. 2016, 27 (6), 1447–1455. 10.1021/acs.bioconjchem.5b00679. PubMed DOI PMC
Renard E.; Moreau M.; Bellaye P. S.; Guillemin M.; Collin B.; Prignon A.; Denat F.; Goncalves V. Positron Emission Tomography Imaging of Neurotensin Receptor-Positive Tumors with 68Ga-Labeled Antagonists: The Chelate Makes the Difference Again. J. Med. Chem. 2021, 64 (12), 8564–8578. 10.1021/acs.jmedchem.1c00523. PubMed DOI
Roosenburg S.; Laverman P.; Joosten L.; Cooper M. S.; Kolenc-Peitl P. K.; Foster J. M.; Hudson C.; Leyton J.; Burnet J.; Oyen W. J. G.; Blower P. J.; Mather S. J.; Boerman O. C.; Sosabowski J. K. PET and SPECT Imaging of a Radio Labeled Minigastrin Analogue Conjugated with DOTA, NOTA, and NODAGA and Labeled with Cu-64, Ga-68, and In-111. Mol. Pharmaceutics 2014, 11 (11), 3930–3937. 10.1021/mp500283k. PubMed DOI
von Witting E.; Garousi J.; Lindbo S.; Vorobyeva A.; Altai M.; Oroujeni M.; Mitran B.; Orlova A.; Hober S.; Tolmachev V. Selection of the Optimal Macrocyclic Chelators for Labeling with 111In and 68Ga Improves Contrast of HER2 Imaging Using Engineered Scaffold Protein ADAPT6. Eur. J. Pharm. Biopharm. 2019, 140 (May), 109–120. 10.1016/j.ejpb.2019.05.008. PubMed DOI
Lin M.; Welch M. J.; Lapi S. E. Effects of Chelator Modifications on 68Ga-Labeled [Tyr 3]Octreotide Conjugates. Mol. Imaging Biol. 2013, 15 (5), 606–613. 10.1007/s11307-013-0627-x. PubMed DOI PMC
Price T. W.; Gallo J.; Kubíček V.; Böhmová Z.; Prior T. J.; Greenman J.; Hermann P.; Stasiuk G. J. Amino Acid Based Gallium-68 Chelators Capable of Radiolabeling at Neutral pH. Dalton Transactions 2017, 46 (48), 16973–16982. 10.1039/C7DT03398B. PubMed DOI
Yap S. Y.; Price T. W.; Savoie H.; Boyle R. W.; Stasiuk G. J. Selective Radiolabelling with 68Ga under Mild Conditions: A Route towards a Porphyrin PET/PDT Theranostic Agent. Chem. Commun. 2018, 54, 7952–7954. 10.1039/C8CC03897J. PubMed DOI
Weekes D. M.; Ramogida C. F.; Jaraquemada-Peláez M. de G.; Patrick B. O.; Apte C.; Kostelnik T. I.; Cawthray J. F.; Murphy L.; Orvig C. Dipicolinate Complexes of Gallium(III) and Lanthanum(III). Inorg. Chem. 2016, 55 (24), 12544–12558. 10.1021/acs.inorgchem.6b02357. PubMed DOI
Boros E.; Ferreira C. L.; Cawthray J. F.; Price E. W.; Patrick B. O.; Wester D. W.; Adam M. J.; Orvig C. Acyclic Chelate with Ideal Properties for 68Ga PET Imaging Agent Elaboration. J. Am. Chem. Soc. 2010, 132 (14), 15726–15733. 10.1021/ja106399h. PubMed DOI
Ramogida C. F.; Cawthray J. F.; Boros E.; Ferreira C. L.; Patrick B. O.; Adam M. J.; Orvig C. H2CHXdedpa and H4CHXoctapa-Chiral Acyclic Chelating Ligands for Ga-67/68 and In-111 Radiopharmaceuticals. Inorg. Chem. 2015, 54 (4), 2017–2031. 10.1021/ic502942a. PubMed DOI
Choudhary N.; Scheiber H.; Zhang J.; Patrick B. O.; De Guadalupe Jaraquemada-Peláez M.; Orvig C. H4HBEDpa: Octadentate Chelate after A. E. Martell. Inorg. Chem. 2021, 60 (17), 12855–12869. 10.1021/acs.inorgchem.1c01175. PubMed DOI
Ferreira C. L.; Lamsa E.; Woods M.; Duan Y.; Fernando P.; Bensimon C.; Kordos M.; Guenther K.; Jurek P.; Kiefer G. E. Evaluation of Bifunctional Chelates for the Development of Gallium-Based Radiopharmaceuticals. Bioconjugate Chem. 2010, 21 (3), 531–536. 10.1021/bc900443a. PubMed DOI
Farkas E.; Vagner A.; Negri R.; Lattuada L.; Toth I.; Colombo V.; Esteban-Gomez D.; Platas-Iglesias C.; Notni J.; Baranyai Z.; Giovenzana G. B. PIDAZTA: Structurally Constrained Chelators for Efficient Formation of Stable Gallium-68 Complexes at Physiological PH. Chem. Eur. J. 2019, 25, 10698.10.1002/chem.201901512. PubMed DOI
Price T. W.; Renard I.; Prior T. J.; Kubíček V.; Benoit D. M.; Archibald S. J.; Seymour A. M.; Hermann P.; Stasiuk G. J. Bn2DT3A, a Chelator for 68Ga Positron Emission Tomography: Hydroxide Coordination Increases Biological Stability of [68Ga][Ga(Bn2DT3A)(OH)]-. Inorg. Chem. 2022, 61 (43), 17059–17067. 10.1021/acs.inorgchem.2c01992. PubMed DOI PMC
Pellissier A.; Bretonnière Y.; Chatterton N.; Pécaut J.; Delangle P.; Mazzanti M. Relating Structural and Thermodynamic Effects of the Pb(II) Lone Pair: A New Picolinate Ligand Designed to Accommodate the Pb(II) Lone Pair Leads to High Stability and Selectivity. Inorg. Chem. 2007, 46 (9), 3714–3725. 10.1021/ic061823d. PubMed DOI
Gerey B.; Gennari M.; Goure E.; Pecaut J.; Blackman A.; Pantazis D. A.; Neese F.; Molton F.; Fortage J.; Duboc C.; Collomb M.-N. Calcium and Heterometallic Manganese-Calcium Complexes Supported by Tripodal Pyridine-Carboxylate Ligands: Structural, EPR and Theoretical Investigations. Dalton Trans. 2015, 44 (28), 12757–12770. 10.1039/C5DT01776A. PubMed DOI
Martin-Diaconescu V.; Gennari M.; Gerey B.; Tsui E.; Kanady J.; Tran R.; Pécaut J.; Maganas D.; Krewald V.; Gouré E.; Duboc C.; Yano J.; Agapie T.; Collomb M. N.; Debeer S. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems. Inorg. Chem. 2015, 54 (4), 1283–1292. 10.1021/ic501991e. PubMed DOI PMC
Gateau C.; Mazzanti M.; Pecaut J.; Dunand F. A.; Helm L. Solid-State and Solution Properties of the Lanthanide Complexes of a New Tripodal Ligand Derived from 1,4,7-Triazacyclononane. Dalton Transactions 2003, 12 (12), 2428–2433. 10.1039/B303079B. DOI
Bretonniere Y.; Mazzanti M.; Pecaut J.; Dunand F. A.; Merbach A. E. A New Heptadentate Tripodal Ligand Leading to a Gadolinium Complex with an Improved Relaxation Efficiency. Chem. Commun. 2001, (7), 621–622. 10.1039/b100657f. PubMed DOI
Fornasier R.; Milani D.; Scrimin P.; Tonellato U. Functional Micellar Catalysis. Part 8. Catalysis of the Hydrolysis of p-Nitrophenyl Picolinate by Metal-Chelating Micelles Containing Copper(II) or Zinc(II). Journal of the Chemical Society, Perkin Transactions 2 1986, (2), 233–237. 10.1039/p29860000233. DOI
Labbé G.; Krismanich A. P.; De Groot S.; Rasmusson T.; Shang M.; Brown M. D. R.; Dmitrienko G. I.; Guillemette J. G. Development of Metal-Chelating Inhibitors for the Class II Fructose 1,6-Bisphosphate (FBP) Aldolase. J. Inorg. Biochem 2012, 112, 49–58. 10.1016/j.jinorgbio.2012.02.032. PubMed DOI
Kubíček V.; Havlíčková J.; Kotek J.; Tircsó G.; Hermann P.; Tóth E.; Lukeš I. Gallium(III) Complexes of DOTA and DOTA-Monoamide: Kinetic and Thermodynamic Studies. Inorg. Chem. 2010, 49 (23), 10960–10969. 10.1021/ic101378s. PubMed DOI
Drahoš B.; Kubíček V.; Bonnet C. S.; Hermann P.; Lukeš I.; Tóth E. Dissociation Kinetics of Mn2+ Complexes of NOTA and DOTA. Dalton Trans 2011, 40 (9), 1945–1951. 10.1039/c0dt01328e. PubMed DOI
Kubíček V.; Böhmová Z.; Ševčíková R.; Vaněk J.; Přemysl L.; Poláková Z.; Michalicová R.; Kotek J.; Hermann P. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies. Inorg. Chem. 2018, 57, 3061–3072. 10.1021/acs.inorgchem.7b02929. PubMed DOI
Blessing R. H. An Empirical Correction for Absorption Anisotropy. Acta Crystallogr., Sect. A 1995, 51 (1), 33–38. 10.1107/S0108767394005726. PubMed DOI
Sheldrick G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct Chem. 2015, C71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC