• This record comes from PubMed

Bn2DT3A, a Chelator for 68Ga Positron Emission Tomography: Hydroxide Coordination Increases Biological Stability of [68Ga][Ga(Bn2DT3A)(OH)]

. 2022 Oct 31 ; 61 (43) : 17059-17067. [epub] 20221017

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
MR/T002573/1 Medical Research Council - United Kingdom

The chelator Bn2DT3A was used to produce a novel 68Ga complex for positron emission tomography (PET). Unusually, this system is stabilized by a coordinated hydroxide in aqueous solutions above pH 5, which confers sufficient stability for it to be used for PET. Bn2DT3A complexes Ga3+ in a hexadentate manner, forming a mer-mer complex with log K([Ga(Bn2DT3A)]) = 18.25. Above pH 5, the hydroxide ion coordinates the Ga3+ ion following dissociation of a coordinated amine. Bn2DT3A radiolabeling displayed a pH-dependent speciation, with [68Ga][Ga(Bn2DT3A)(OH)]- being formed above pH 5 and efficiently radiolabeled at pH 7.4. Surprisingly, [68Ga][Ga(Bn2DT3A)(OH)]- was found to show an increased stability in vitro (for over 2 h in fetal bovine serum) compared to [68Ga][Ga(Bn2DT3A)]. The biodistribution of [68Ga][Ga(Bn2DT3A)(OH)]- in healthy rats showed rapid clearance and excretion via the kidneys, with no uptake seen in the lungs or bones.

See more in PubMed

Basu S.; Kwee T. C.; Surti S.; Akin E. A.; Yoo D.; Alavi A. Fundamentals of PET and PET/CT Imaging. Ann. N. Y. Acad. Sci. 2011, 1228, 1–18. 10.1111/j.1749-6632.2011.06077.x. PubMed DOI

Jackson J. A.; Hungnes I. N.; Ma M. T.; Rivas C. Bioconjugates of Chelators with Peptides and Proteins in Nuclear Medicine: Historical Importance, Current Innovations and Future Challenges. Bioconjugate Chem. 2020, 31, 483–491. 10.1021/acs.bioconjchem.0c00015. PubMed DOI

Bartholomä M. D.; Louie A. S.; Valliant J. F.; Zubieta J. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chem. Rev. 2010, 110, 2903–2920. 10.1021/cr1000755. PubMed DOI

Velikyan I. 68Ga-Based Radiopharmaceuticals: Production and Application Relationship. Molecules 2015, 20, 12913–12943. 10.3390/molecules200712913. PubMed DOI PMC

Blower J. E.; Cooper M. S.; Imberti C.; Ma M. T.; Marshall C.; Young J. D.; Blower P. J.. The Radiopharmaceutical Chemistry of the Radionuclides of Gallium and Indium. In Radiopharmaceutical Chemistry; Lewis J. S., Windhorst A. D., Zeglis B. M., Eds.; Springer, Cham: Cham, 2019; pp. 255–271, 10.1007/978-3-319-98947-1_14. DOI

Lin M.; Waligorski G. J.; Lepera C. G. Production of Curie Quantities of 68Ga with a Medical Cyclotron via the 68Zn(p,n)68Ga Reaction. Appl. Radiat. Isot. 2018, 133, 1–3. 10.1016/j.apradiso.2017.12.010. PubMed DOI

Alves F.; Alves V. H. P.; Do Carmo S. J. C.; Neves A. C. B.; Silva M.; Abrunhosa A. J. Production of Copper-64 and Gallium-68 with a Medical Cyclotron Using Liquid Targets. Mod. Phys. Lett. A 2017, 32, 1740013.10.1142/S0217732317400132. DOI

Price T. W.; Greenman J.; Stasiuk G. J. Current Advances in Ligand Design for Inorganic Positron Emission Tomography Tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans. 2016, 45, 15702–15724. 10.1039/C5DT04706D. PubMed DOI

Dotatate P. FDA Approves 18F-Fluciclovine and 68Ga-DOTATATE Products. J. Nucl. Med. 2016, 57, 9N. PubMed

Deroose C. M.; Hindié E.; Kebebew E.; Goichot B.; Pacak K.; Taïeb D.; Imperiale A. Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J. Nucl. Med. 2016, 57, 1949–1956. 10.2967/jnumed.116.179234. PubMed DOI PMC

Afshar-Oromieh A.; Haberkorn U.; Eder M.; Eisenhut M.; Zechmann C. M. [68Ga]Gallium-Labelled PSMA Ligand as Superior PET Tracer for the Diagnosis of Prostate Cancer: Comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1085–1086. 10.1007/s00259-012-2069-0. PubMed DOI

Eder M.; Neels O.; Müller M.; Bauder-Wüst U.; Remde Y.; Schäfer M.; Hennrich U.; Eisenhut M.; Afshar-Oromieh A.; Haberkorn U.; Kopka K. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals 2014, 7, 779.10.3390/ph7070779. PubMed DOI PMC

Hofman M. S.; Lawrentschuk N.; Francis R. J.; Tang C.; Vela I.; Thomas P.; Rutherford N.; Martin J. M.; Frydenberg M.; Shakher R.; Wong L.-M.; Taubman K.; Lee S. T.; Hsiao E.; Roach P.; Nottage M.; Kirkwood I.; Murphy D. G. Prostate-Specific Membrane Antigen PET-CT in Patients with High-Risk Prostate Cancer before Curative-Intent Surgery or Radiotherapy (ProPSMA): A Prospective , Randomised , Multi-Centre Study. The Lancet 2020, 395, 1208–1216. 10.1016/S0140-6736(20)30314-7. PubMed DOI

Weineisen M.; Schottelius M.; Simecek J.; Baum R. P.; Yildiz A.; Beykan S.; Kulkarni H. R.; Lassmann M.; Klette I.; Eiber M.; Schwaiger M.; Wester H.-J. 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J. Nucl. Med. 2015, 56, 1169–1176. 10.2967/jnumed.115.158550. PubMed DOI

Hofman M. S.; Eu P.; Jackson P.; Hong E.; Binns D.; Iravani A.; Murphy D.; Mitchell C.; Siva S.; Hicks R. J.; Young J. D.; Blower P.; Mullen G. E. Cold Kit PSMA PET Imaging: Phase I Study of 68Ga-THP-PSMA PET/CT in Patients with Prostate Cancer. J. Nucl. Med. 2017, 59, 625–631. 10.2967/jnumed.117.199554. PubMed DOI PMC

Kostelnik T. I.; Orvig C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019, 119, 902–956. 10.1021/acs.chemrev.8b00294. PubMed DOI

Notni J.; Šimeček J.; Hermann P.; Wester H.-J. TRAP, a Powerful and Versatile Framework for Gallium-68 Radiopharmaceuticals. Chem. – Eur. J. 2011, 17, 14718–14722. 10.1002/chem.201103503. PubMed DOI

Ferreira C. L.; Lamsa E.; Woods M.; Duan Y.; Fernando P.; Bensimon C.; Kordos M.; Guenther K.; Jurek P.; Kiefer G. E. Evaluation of Bifunctional Chelates for the Development of Gallium-Based Radiopharmaceuticals. Bioconjugate Chem. 2010, 21, 531–536. 10.1021/bc900443a. PubMed DOI

Weekes D. M.; Ramogida C. F.; Jaraquemada-Peláez M. D. G.; Patrick B. O.; Apte C.; Kostelnik T. I.; Cawthray J. F.; Murphy L.; Orvig C. Dipicolinate Complexes of Gallium(III) and Lanthanum(III). Inorg. Chem. 2016, 55, 12544–12558. 10.1021/acs.inorgchem.6b02357. PubMed DOI

Velikyan I.; Maecke H.; Langstrom B. Convenient Preparation of Ga-68-Based PET-Radiopharmaceuticals at Room Temperature. Bioconjugate Chem. 2008, 19, 569–573. 10.1021/bc700341x. PubMed DOI

Blower P. J.; Cusnir R.; Darwesh A.; Long N. J.; Ma M. T.; Osborne B. E.; Price T. W.; Reid G.; Southworth R.; Stasiuk G. J.; Terry S. Y. A.; de Rosales R. T. M.. Chapter 1 - Gallium: New Developments and Applications in Radiopharmaceutics, 1st ed.; Hubbard C. D., van Eldik R., Eds.; Elsevier, 2021, 10.1016/bs.adioch.2021.04.002. DOI

Tsionou M. I.; Knapp C. E.; Foley C. A.; Munteanu C. R.; Cakebread A.; Imberti C.; Eykyn T. R.; Young J. D.; Paterson B. M.; Blower P. J.; Ma M. T. Comparison of Macrocyclic and Acyclic Chelators for Gallium-68 Radiolabelling. RSC Adv. 2017, 7, 49586–49599. 10.1039/C7RA09076E. PubMed DOI PMC

Berry D. J.; Ma Y.; Ballinger J. R.; Tavaré R.; Koers A.; Sunassee K.; Zhou T.; Nawaz S.; Mullen G. E. D.; Hider R. C.; Blower P. J. Efficient Bifunctional Gallium-68 Chelators for Positron Emission Tomography: Tris(Hydroxypyridinone) Ligands. Chem. Commun. 2011, 47, 7068–7070. 10.1039/c1cc12123e. PubMed DOI PMC

Imberti C.; Chen Y.-L.; Foley C. A.; Ma M. T.; Paterson B. M.; Wang Y.; Young J. D.; Hider R. C.; Blower P. J. Tuning the Properties of Tris(Hydroxypyridinone) Ligands: Efficient 68Ga Chelators for PET Imaging. Dalton Trans. 2019, 48, 4299–4313. 10.1039/c8dt04454f. PubMed DOI PMC

Seemann J.; Waldron B. P.; Roesch F.; Parker D. Approaching “kit-Type” Labelling with 68Ga: The DATA Chelators. ChemMedChem 2015, 10, 1019–1026. 10.1002/cmdc.201500092. PubMed DOI

Schuhmacher J.; Klivényi G.; Matys R.; Stadler M.; Regiert T.; Hauser H.; Doll J.; Maier-Borst W.; Zöller M. Multistep Tumor Targeting in Nude Mice Using Bispecific Antibodies and a Gallium Chelate Suitable for Immunoscintigraphy with Positron Emission Tomography. Cancer Res. 1995, 55, 115–123. PubMed

Ray Banerjee S.; Chen Z.; Pullambhatla M.; Lisok A.; Chen J.; Mease R. C.; Pomper M. G. Preclinical Comparative Study of 68Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA. Bioconjugate Chem. 2016, 27, 1447–1455. 10.1021/acs.bioconjchem.5b00679. PubMed DOI PMC

Dumont R. A.; Deininger F.; Haubner R.; Maecke H. R.; Weber W. A.; Fani M. Novel 64Cu- and 68Ga-Labeled RGD Conjugates Show Improved PET Imaging of 3 Integrin Expression and Facile Radiosynthesis. J. Nucl. Med. 2011, 52, 1276–1284. 10.2967/jnumed.111.087700. PubMed DOI

Lee J. Y.; Jeong J. M.; Kim Y. J.; Jeong H. J.; Lee Y. S.; Lee D. S.; Chung J. K. Preparation of Ga-68-NOTA as a Renal PET Agent and Feasibility Tests in Mice. Nucl. Med. Biol. 2014, 41, 210–215. 10.1016/j.nucmedbio.2013.11.005. PubMed DOI

Chakravarty R.; Chakraborty S.; Dash A.; Pillai M. R. A. Detailed Evaluation on the Effect of Metal Ion Impurities on Complexation of Generator Eluted 68Ga with Different Bifunctional Chelators. Nucl. Med. Biol. 2013, 40, 197–205. 10.1016/j.nucmedbio.2012.11.001. PubMed DOI

Koop B.; Reske S. N.; Neumaier B. Labelling of a Monoclonal Antibody with 68Ga Using Three DTPA-Based Bifunctional Ligands and Their in Vitro Evaluation for Application in Radioimmunotherapy. Radiochim. Acta 2007, 95, 39–42. 10.1524/ract.2007.95.1.39. DOI

Wüstemann T.; Bauder-wüst U.; Schäfer M.; Eder M.; Benesova M.; Leotta K.; Kratochwil C.; Haberkorn U.; Kopka K.; Mier W. Design of Internalizing PSMA-Specific Glu-Ureido-Based Radiotherapeuticals. Theranostics 2016, 6, 1085–1095. 10.7150/thno.13448. PubMed DOI PMC

Wadas T. J.; Wong E. H.; Weisman G. R.; Anderson C. J. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chem. Rev. 2010, 110, 2858–2902. 10.1021/cr900325h. PubMed DOI PMC

Gros G.; Hasserodt J. Multigram Four-Step Synthesis of 1,4,7-Triazacyclononanes with 2Ra/Rb N-Functionalization Pattern by Starting from Diethylenetriamine. Eur. J. Org. Chem. 2015, 2015, 183–87. 10.1002/ejoc.201402821. DOI

Price E. W.; Cawthray J. F.; Bailey G. A.; Ferreira C. L.; Boros E.; Adam M. J.; Orvig C. H4octapa: An Acyclic Chelator for In-111 Radiopharmaceuticals. J. Am. Chem. Soc. 2012, 134, 8670–8683. 10.1021/ja3024725. PubMed DOI

Viola N. A.; Rarig R. S. Jr.; Ouellette W.; Doyle R. P. Synthesis, Structure and Thermal Analysis of the Gallium Complex of 1,4,7,10-Tetraazacyclo-Dodecane-N,N′,N″,N‴-Tetraacetic Acid (DOTA). Polyhedron 2006, 25, 3457–3462. 10.1016/j.poly.2006.06.039. DOI

Moore D. A.; Fanwick P. E.; Welch M. J. A Novel Hexachelating Amino–Thiol Ligand and Its Complex with Gallium(III). Inorg. Chem. 1990, 29, 672–676. 10.1021/ic00329a022. DOI

Jung W.-S.; Chung Y. K.; Shin D. M.; Kim S.-D. Crystal- and Solution-Structure Characteristics of Ethylene Diaminetetraacetatoaluminate (III) and Gallate (III). Bull. Chem. Soc. Jpn. 2002, 1267, 1263–1267. 10.1246/bcsj.75.1263. DOI

Price T. W.; Gallo J.; Kubíček V.; Böhmová Z.; Prior T. J.; Greenman J.; Hermann P.; Stasiuk G. J. Amino Acid Based Gallium-68 Chelators Capable of Radiolabeling at Neutral PH. Dalton Trans. 2017, 46, 16973–16982. 10.1039/C7DT03398B. PubMed DOI

Delgado R.; Do Carmo Figueira M.; Quintino S.; Figueira M. D.; Quintino S. Redox Method for the Determination of Stability Constants of Some Trivalent Metal Complexes. Talanta 1997, 45, 451–462. 10.1016/s0039-9140(97)00157-4. PubMed DOI

National Institute of Standards and Technology: Gaithersburg, M. D . NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes) Version 7.0, 2003.

Costa J.; Ruloff R.; Burai L.; Helm L.; Merbach A. E. Rigid MIIL2Gd2III (M = Fe, Ru) Complexes of a Terpyridine-Based Heteroditopic Chelate: A Class of Candidates for MRI Contrast Agents. J. Am. Chem. Soc. 2005, 127, 5147–5157. 10.1021/ja0424169. PubMed DOI

McMurry T. J.; Pippin C. G.; Wu C.; Deal K. A.; Brechbiel M. W.; Mirzadeh S.; Gansow O. A. Physical Parameters and Biological Stability of Yttrium(III) Diethylenetriaminepentaacetic Acid Derivative Conjugates. J. Med. Chem. 1998, 41, 3546–3549. 10.1021/jm980152t. PubMed DOI

Šimeček J.; Schulz M.; Notni J.; Plutnar J.; Kubíček V.; Havlíčková J.; Hermann P. Complexation of Metal Ions with TRAP (1,4,7-Triazacyclononane Phosphinic Acid) Ligands and 1,4,7-Triazacyclononane-1,4,7-Triacetic Acid: Phosphinate-Containing Ligands as Unique Chelators for Trivalent Gallium. Inorg. Chem. 2012, 51, 577–590. 10.1021/ic202103v. PubMed DOI

Kubíček V.; Böhmová Z.; Ševčíková R.; Vaněk J.; Lubal P.; Poláková Z.; Michalicová R.; Kotek J.; Hermann P. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies. Inorg. Chem. 2018, 57, 3061–3072. 10.1021/acs.inorgchem.7b02929. PubMed DOI

Guranda D. T.; Ushakov G. A.; Yolkin P. G.; Švedas V. K. Thermodynamics of Phenylacetamides Synthesis: Linear Free Energy Relationship with the PK of Amine. J. Mol. Catal. B: Enzym. 2012, 74, 48–53. 10.1016/j.molcatb.2011.08.013. DOI

Arrowsmith C. H.; Guo H.-X.; Kresge A. J. Hydrogen Isotope Fractionation Factors for Benzylamine and Benzylammonium Ion. Comparison of Fractionation Factors for Neutral and Positively-Charged Nitrogen-Hydrogen Bonds. J. Am. Chem. Soc. 1994, 116, 8890–8894. 10.1021/ja00099a005. DOI

Drahoš B.; Kubíček V.; Bonnet C. S.; Hermann P.; Lukeš I.; Tóth É. Dissociation Kinetics of Mn2+ Complexes of NOTA and DOTA. Dalton Trans. 2011, 40, 1945–1951. 10.1039/c0dt01328e. PubMed DOI

Šimeček J.; Zemek O.; Hermann P.; Notni J.; Wester H.-J. Tailored Gallium(III) Chelator NOPO: Synthesis, Characterization, Bioconjugation, and Application in Preclinical Ga-68-PET Imaging. Mol. Pharmaceutics 2014, 11, 3893–3903. 10.1021/mp400642s. PubMed DOI

Farkas E.; Vágner A.; Negri R.; Lattuada L.; Tóth I.; Colombo V.; Esteban-Gómez D.; Platas-Iglesias C.; Notni J.; Baranyai Z.; Giovenzana G. B. PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Gallium-68 Complexes at Physiological pH. Chem. – Eur. J. 2019, 25, 10698–10709. 10.1002/chem.201901512. PubMed DOI

Autio A.; Virtanen H.; Tolvanen T.; Liljenbäck H.; Oikonen V.; Saanijoki T.; Siitonen R.; Käkelä M.; Schüssele A.; Teräs M.; Roivainen A. Absorption, Distribution and Excretion of Intravenously Injected 68Ge/68Ga Generator Eluate in Healthy Rats, and Estimation of Human Radiation Dosimetry. EJNMMI Res. 2015, 5, 40.10.1186/s13550-015-0117-z. PubMed DOI PMC

Steinberg J. D.; Raju A.; Chandrasekharan P.; Yang C.-T.; Khoo K.; Abastado J.-P.; Robins E. G.; Townsend D. W. Negative Contrast Cerenkov Luminescence Imaging of Blood Vessels in a Tumor Mouse Model Using [68Ga]Gallium Chloride. EJNMMI Res 2014, 4, 15.10.1186/2191-219X-4-15. PubMed DOI PMC

Coles S. J.; Gale P. A. Changing and Challenging Times for Service Crystallography. Chem. Sci. 2012, 3, 683–689. 10.1039/c2sc00955b. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...