• This record comes from PubMed

An Obstructive Sleep Apnea - A Novel Public Health Threat

. 2023 Aug 31 ; 72 (4) : 415-423.

Language English Country Czech Republic Media print

Document type Journal Article, Review

In patients with obstructive sleep apnea (OSA) during obstructive events, episodes of hypoxia and hypercapnia may modulate the autonomic nervous system (ANS) by increasing sympathetic tone and irritability, which contributes to sympathovagal imbalance and ultimately dysautonomia. Because OSA can alter ANS function through biochemical changes, we can assume that heart rate variability (HRV) will be altered in patients with OSA. Most studies show that in both the time and frequency domains, patients with OSA have higher sympathetic components and lower parasympathetic dominance than healthy controls. These results confirm autonomic dysfunction in these patients, but also provide new therapeutic directions. Respiratory methods that modulate ANS, e.g., cardiorespiratory biofeedback, could be beneficial for these patients. Heart rate variability assessment can be used as a tool to evaluate the effectiveness of OSA treatment due to its association with autonomic impairment.

See more in PubMed

Roche F, Pichot V, Sforza E, Court-Fortune I, Duverney D, Costes F, et al. Predicting sleep apnoea syndrome from heart period: a time-frequency wavelet analysis. Eur Respir J. 2003;22:937–42. doi: 10.1183/09031936.03.00104902. PubMed DOI

Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med Rev. 2017;34:70–81. doi: 10.1016/j.smrv.2016.07.002. PubMed DOI

Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, Amaro AC, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension (Dallas, Tex:1979) 2011;58(5):811–817. doi: 10.1161/HYPERTENSIONAHA.111.179788. PubMed DOI

Brockbank JC. Update on pathophysiology and treatment of childhood obstructive sleep apnea syndrome. Paediatr Respir Rev. 2017;24:21–23. doi: 10.1016/j.prrv.2017.06.003. PubMed DOI

Motamedi KK, McClary AC, Amedee RG. Obstructive sleep apnea: a growing problem. Ochsner J. 2009;9:149–153. PubMed PMC

De Meyer MMD, Jacquet W, Vanderveken OM, Marks LAM. Systematic review of the different aspects of primary snoring. Sleep Med Rev. 2019;45:88–94. doi: 10.1016/j.smrv.2019.03.001. PubMed DOI

McGinley BM, Schwartz AR, Schneider H, Kirkness JP, Smith PL, Patil SP. Upper airway neuromuscular compensation during sleep is defective in obstructive sleep apnea. J Appl Physiol (1985) 2008;105(1):197–205. doi: 10.1152/japplphysiol.01214.2007. PubMed DOI PMC

Watanabe T, Isono S, Tanaka A, Tanzawa H, Nishino T. Contribution of body habitus and craniofacial characteristics to segmental closing pressures of the passive pharynx in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2002;165(2):260–265. doi: 10.1164/ajrccm.165.2.2009032. PubMed DOI

Heinzer RC, Stanchina ML, Malhotra A, Jordan AS, Patel SR, Lo YL, et al. Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax. 2006;61:435–439. doi: 10.1136/thx.2005.052084. PubMed DOI PMC

Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5:144–153. doi: 10.1513/pats.200707-114MG. PubMed DOI PMC

Chamberlin NL, Eikermann M, Fassbender P, White DP, Malhotra A. Genioglossus premotoneurons and the negative pressure reflex in rats. J Physiol. 2007;579(Pt 2):515–526. doi: 10.1113/jphysiol.2006.121889. PubMed DOI PMC

Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med. 2004;169:623–633. doi: 10.1164/rccm.200307-1023OC. PubMed DOI

Jordan AS, Wellman A, Heinzer RC, Lo YL, Schory K, Dover L, et al. Mechanisms used to restore ventilation after partial upper airway collapse during sleep in humans. Thorax. 2007;62:861–7. doi: 10.1136/thx.2006.070300. PubMed DOI PMC

Larkin EK, Patel SR, Redline S, Mignot E, Elston RC, Hallmayer J. Apolipoprotein E and obstructive sleep apnea: evaluating whether a candidate gene explains a linkage peak. Genet Epidemiol. 2006;30:101–110. doi: 10.1002/gepi.20127. PubMed DOI

Kheirandish-Gozal L, Bhattacharjee R, Gozal D. Autonomic alterations and endothelial dysfunction in pediatric obstructive sleep apnea. Sleep Med. 2010;11(7):714–20. doi: 10.1016/j.sleep.2009.12.013. PubMed DOI

Khayat R, Pleister A. Consequences of Obstructive Sleep Apnea: Cardiovascular risk of obstructive sleep apnea and whether continuous positive airway pressure reduces that risk. Sleep Med Clin. 2016;11(3):273–286. doi: 10.1016/j.jsmc.2016.05.002. PubMed DOI

Sequeira VCC, Bandeira PM, Azevedo JCM. Heart rate variability in adults with obstructive sleep apnea: a systematic review. Sleep Sci. 2019;12:214–221. doi: 10.5935/1984-0063.20190082. PubMed DOI PMC

Bauer A, Camm AJ, Cerutti S, Guzik P, Huikuri H, Lombardi F, et al. Reference values of heart rate variability. Heart rhythm. 2017;14:302–303. doi: 10.1016/j.hrthm.2016.12.015. PubMed DOI

Tada Y, Yoshizaki T, Tomata Y, Yokoyama Y, Sunami A, Hida A, et al. The impact of menstrual cycle phases on cardiac autonomic nervous system activity: an observational study considering lifestyle (diet, physical activity, and sleep) among female college students. J Nutr Sci Vitaminol (Tokyo) 2017;63:249–255. doi: 10.3177/jnsv.63.249. PubMed DOI

Taralov ZZ, Terziyski KV, Kostianev SS. Heart rate variability as a method for assessment of the autonomic nervous system and the adaptations to different physiological and pathological conditions. Folia Med (Plovdiv) 2015;57:173–180. doi: 10.1515/folmed-2015-0036. PubMed DOI

Kim YS, Kim SY, Park DY, Wu HW, Hwang GS, Kim HJ. Clinical implication of heart rate variability in obstructive sleep apnea syndrome patients. J Craniofac Surg. 2015;26:1592–1595. doi: 10.1097/SCS.0000000000001782. PubMed DOI

Campos-Rodriguez F, Martínez-García MA, Reyes-Nuñez N, Selma-Ferrer MJ, Punjabi NM, Farre R. Impact of different hypopnea definitions on obstructive sleep apnea severity and cardiovascular mortality risk in women and elderly individuals. Sleep Med. 2016;27–28:54–58. doi: 10.1016/j.sleep.2016.05.020. PubMed DOI

Hietakoste S, Korkalainen H, Kainulainen S, Sillanmäki S, Nikkonen S, Myllymaa S, et al. Longer apneas and hypopneas are associated with greater ultra-short-term HRV in obstructive sleep apnea. Sci Rep. 2020;10:21556. doi: 10.1038/s41598-020-77780-x. PubMed DOI PMC

Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Frontiers in public health. 2017;5:258. doi: 10.3389/fpubh.2017.00258. PubMed DOI PMC

Ucak S, Dissanayake HU, Sutherland K, de Chazal P, Cistulli PA. Heart rate variability and obstructive sleep apnea: Current perspectives and novel technologies. J Sleep Res. 2021;30(4):e13274. doi: 10.1111/jsr.13274. PubMed DOI

Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177:385–390. doi: 10.1046/j.1365-201X.2003.01091.x. PubMed DOI

Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998;32:1039–1043. doi: 10.1161/01.HYP.32.6.1039. PubMed DOI

Zhang L, Wu H, Zhang X, Wei X, Hou F, Ma Y. Sleep heart rate variability assists the automatic prediction of long-term cardiovascular outcomes. Sleep Med. 2020;67:217–224. doi: 10.1016/j.sleep.2019.11.1259. PubMed DOI PMC

Karimi Moridani M. A novel clinical method for detecting obstructive sleep apnea using of nonlinear mapping. J Biomed Phys Eng. 2022;12:31–34. doi: 10.31661/jbpe.v0i0.1211. PubMed DOI PMC

Dingli K, Assimakopoulos T, Wraith PK, Fietze I, Witt C, Douglas NJ. Spectral oscillations of RR intervals in sleep apnoea/hypopnoea syndrome patients. Eur Respir J. 2003;22:943–950. doi: 10.1183/09031936.03.00098002. PubMed DOI

Penzel T. Is heart rate variability the simple solution to diagnose sleep apnoea? Eur Respir J. 2003;22(6):870–871. doi: 10.1183/09031936.03.00102003. PubMed DOI

Lujan MR, Perez-Pozuelo I, Grandner MA. Past, Present, and future of multisensory wearable technology to monitor sleep and circadian rhythms. Front Digit Health. 2021;3:721919. doi: 10.3389/fdgth.2021.721919. PubMed DOI PMC

Penzel T, McNames J, Murray A, de Chazal P, Moody G, Raymond B. Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med Biol Eng Comput. 2002;40:402–407. doi: 10.1007/BF02345072. PubMed DOI

Spiesshoefer J, Becker S, Tuleta I, Mohr M, Diller GP, Emdin M, et al. Impact of simulated hyperventilation and periodic breathing on sympatho-vagal balance and hemodynamics in patients with and without heart failure. respiration. 2019;98:482–494. doi: 10.1159/000502155. PubMed DOI

Festic N, Zuberi M, Bansal V, Fredrickson P, Festic E. Correlation between oxygen saturation and pulse tracing patterns on overnight oximetry with normal desaturation index is an independent predictor of obstructive sleep apnea. J Clin Sleep Med. 2019;15(2):195–200. doi: 10.5664/jcsm.7614. PubMed DOI PMC

Correia FJ, Martins LEB, Barreto DM, Pithon KR. Repercussion of medium and long treatment period with continuous positive airways pressure therapy in heart rate variability of obstructive sleep apnea. Sleep Sci. 2019;12:110–115. doi: 10.5935/1984-0063.20190068. PubMed DOI PMC

Guo W, Lv T, She F, Miao G, Liu Y, He R, et al. The impact of continuous positive airway pressure on heart rate variability in obstructive sleep apnea patients during sleep: A meta-analysis. Heart Lung. 2018;47:516–524. doi: 10.1016/j.hrtlng.2018.05.019. PubMed DOI

Kufoy E, Palma JA, Lopez J, Alegre M, Urrestarazu E, Artieda J, et al. Changes in the heart rate variability in patients with obstructive sleep apnea and its response to acute CPAP treatment. PloS one. 2012;7:e33769. doi: 10.1371/journal.pone.0033769. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...