Preventive Effect of 6-shogaol on D-galactosamine Induced Hepatotoxicity Through NF-?B/MAPK Signaling Pathway in Rats
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
37795887
PubMed Central
PMC10634558
DOI
10.33549/physiolres.935092
PII: 935092
Knihovny.cz E-resources
- MeSH
- Antioxidants pharmacology metabolism MeSH
- Galactosamine * toxicity MeSH
- Liver metabolism MeSH
- Rats MeSH
- Chemical and Drug Induced Liver Injury * prevention & control metabolism MeSH
- Lipopolysaccharides metabolism MeSH
- Rats, Wistar MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Galactosamine * MeSH
- Lipopolysaccharides MeSH
- shogaol MeSH Browser
This analysis aims to see whether 6-shogaol could protect rats against D-galactosamine (D-GalN)-induced Hepatotoxicity. The Wistar rats were divided into four groups (n=6). Group 1 received a standard diet, Group 2 received an oral administration of 6-shogaol (20 mg/kg b.wt), Group 3 received an intraperitoneal injection of D-GalN (400 mg/kg b.wt) on 21st day, and Group 4 received an oral administration of 6-shogaol (20mg/kg b.wt) for 21 days and D-GalN (400 mg/kg b.wt) injection only on 21st day. The hepatic marker enzymes activity, lipid peroxidative markers level increased significantly and antioxidant activity/level significantly reduced in D-GalN-induced rats. 6-shogaol Pretreatment effectively improves the above changes in D-GalN-induced rats. Further, inflammatory marker expression and MAPK signaling molecules were downregulated by 6-shogaol. These findings showed that 6-shogaol exerts hepatoprotective effects via the enhanced antioxidant system and attenuated the inflammation and MAPK signaling pathway in D-GalN-induced rats.
See more in PubMed
Koblihová E, Mrázová I, Vaňourková Z, Maxová H, Kikerlová S, Husková Z, Ryska M, Froněk J, Vernerová Z. 2020 Pharmacological stimulation of Wnt/β-catenin signaling pathway attenuates the course of thioacetamide-induced acute liver failure. Physiol Res. 2023;69:113. doi: 10.33549/physiolres.934071. PubMed DOI PMC
Ansari MA, Ahmad SF, Khan MR, Bakheet SA, Raish M, Bin Jardan YA, Shahid M, Haq N, Ahmad A. Sinapic acid ameliorates D-galactosamine/lipopolysaccharideinduced fulminant hepatitis in rats: Role of nuclear factor erythroidrelated factor 2/heme oxygenase-1 pathways. World J Gastroenterol. 2021;27:592–608. doi: 10.3748/wjg.v27.i7.592. PubMed DOI PMC
Mao J, Yi M, Wang R, Huang Y, Chen M. Protective effects of costunolide against D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Front Pharmacol. 2018;9:1469. doi: 10.3389/fphar.2018.01469. PubMed DOI PMC
Nair RR, Suja SR, Aneeshkumar AL, Bhaskar S, Vilash V, Rajasekharan S. Ameliorative effect of ethanolic extract of roots of Tetracera akara (Burm. f.) Merr. on D-galactosamine induced hepatotoxicity in Wistar rats by downregulation of inflammatory mediators like TNFα, COX-2 and iNOS. Indian J Exp Biol. 2020;58:161–171. doi: 10.56042/ijeb.v58i03.65448. DOI
Yu Z, Ding Y, Zeng T, Zhao X, Zhang C. Hepatoprotective effect of diallyl trisulfide against lipopolysaccharide and D-galactosamine induced acute liver failure in mice via suppressing inflammation and apoptosis. Toxicol Res (Camb) 2022;11(2):263–271. doi: 10.1093/toxres/tfac005. PubMed DOI PMC
Yue J, López JM. Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci. 2020;21:2346. doi: 10.3390/ijms21072346. PubMed DOI PMC
Aamani N, Bagheri A, Qajari NM, Shafaroudi MM, Khonakdar-Tarsi A. JNK and p38 gene and protein expression during liver ischemiareperfusion in a rat model treated with silibinin. Iran J Basic Med Sci. 2022;25:1373–13818. doi: 10.22038/IJBMS.2022.60550.13422. PubMed DOI PMC
Islam MS, Yu H, Miao L, Liu Z, He Y, Sun H. Hepatoprotective effect of the ethanol extract of Illicium henryi against acute liver injury in mice induced by lipopolysaccharide. Antioxidants. 2019;8:446. doi: 10.3390/antiox8100446. PubMed DOI PMC
Kou X, Wang X, Ji R, Liu L, Qiao Y, Lou Z, Ma C, Li S, Wang H, Ho CT. Occurrence, biological activity and metabolism of 6-shogaol. Food Funct. 2018;9:1310–1327. doi: 10.1039/C7FO01354J. PubMed DOI
Han HS, Kim KB, Jung JH, An IS, Kim YJ, An S. Anti-apoptotic, antioxidant and anti-aging effects of 6-shogaol on human dermal fibroblasts. Biomed Dermatol. 2018;27:2. doi: 10.1186/s41702-018-0037-4. DOI
Kode J, Maharana J, Dar AA, Mukherjee S, Gadewal N, Sigalapalli DK, Kumar S, Panda D, Ghosh S, Keshry SS, Mamidi P. 6-Shogaol Exhibits Anti-viral and Anti-inflammatory Activity in COVID-19-Associated Inflammation by Regulating NLRP3 Inflammasomes. ACS Omega. 2023;8:2618–2628. doi: 10.1021/acsomega.2c07138. PubMed DOI PMC
Annamalai G, Suresh K. [6]-Shogaol attenuates inflammation, cell proliferation via modulate NF-κB and AP-1 oncogenic signaling in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis. Biomed Pharmacother. 2018;98:484–490. doi: 10.1016/j.biopha.2017.12.009. PubMed DOI
Sapkota A, Park SJ, Choi JW. Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis. Biomol Ther (Seoul) 2019;27:152–159. doi: 10.4062/biomolther.2018.089. PubMed DOI PMC
Bischoff-Kont I, Primke T, Niebergall LS, Zech T, Fürst R. Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells. Front Pharmacol. 2022;13:844767. doi: 10.3389/fphar.2022.844767. PubMed DOI PMC
Hsu CM, Su HC, Yang MY, Tsai YT, Tsai MS, Yang YH, Wu CY, Chang SF. 6-shogaol is a potential treatment for Head and Neck Squamous Cell Carcinoma. Int J Med Sci. 2023;20:238–246. doi: 10.7150/ijms.80542. PubMed DOI PMC
Gratal P, Mediero A, Lamuedra A, Matamoros-Recio A, Herencia C, Herrero-Beaumont G, Martín-Santamaría S, Largo R. 6-Shogaol (enexasogoal) treatment improves experimental knee osteoarthritis exerting a pleiotropic effect over immune innate signaling responses in chondrocytes. Br J Pharmacol. 2022;179:5089–5108. doi: 10.1111/bph.15908. PubMed DOI
Najmi AK, Pillai KK, Pal SN, Aqil M. Free radical scavenging and hepatoprotective activity of jigrine against galactosamine induced hepatopathy in rats. J Ethnopharmacol. 2005;97:521–525. doi: 10.1016/j.jep.2004.12.016. PubMed DOI
Radhiga T, Sundaresan A, Viswanathan P, Pugalendi KV. Effect of protocatechuic acid on lipid profile and DNA damage in D-galactosamine-induced hepatotoxic rats. J Basic Clin Physiol Pharmacol. 2016;27:505–514. doi: 10.1515/jbcpp-2015-0135. PubMed DOI
Thangaiyan R, Arjunan S, Govindasamy K, Khan HA, Alhomida AS, Prasad NR. Galangin attenuates isoproterenol-induced inflammation and fibrosis in the cardiac tissue of albino wistar rats. Front Pharmacol. 2020;11:585163. doi: 10.3389/fphar.2020.585163. PubMed DOI PMC
Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. Livers. 2022;2:283–314. doi: 10.3390/livers2040023. DOI
Wang L, Wang X, Kong L, Wang S, Huang K, Wu J, Wang C, Sun H, Liu K, Meng Q. Isoliquiritigenin alleviates LPS/D-GalN-induced acute liver failure by activating the PGC-1α/Nrf2 pathway to reduce oxidative stress and inflammatory response. Int Immuno pharmacol. 2021;100:108159. doi: 10.1016/j.intimp.2021.108159. PubMed DOI
Huang S, Mo C, Zeng T, Lai Y, Zhou C, Xie S, Chen L, Wang Y, Chen Y, Huang S, Gao L, Lv Z. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging (Albany NY) 2021;13:6592–6605. doi: 10.18632/aging.202409. PubMed DOI PMC
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative stress in drug-induced liver injury (DILI): From mechanisms to biomarkers for use in clinical practice. Antioxidants. 2021;10:390. doi: 10.3390/antiox10030390. PubMed DOI PMC
Suresh K, Manoharan S, Vijayaanand MA, Sugunadevi G. Chemopreventive and antioxidant efficacy of (6)-paradol in 7, 12-dimethylbenz (a) anthracene induced hamster buccal pouch carcinogenesis. Pharmacol Rep. 2010;62:1178–85. doi: 10.1016/S1734-1140(10)70380-7. PubMed DOI
Dong W, Song E, Song Y. Co-administration of lipopolysaccharide and D-galactosamine induces genotoxicity in mouse liver. Sci Rep. 2021;11:1733. doi: 10.1038/s41598-021-81383-5. PubMed DOI PMC
Gong J, Tu W, Liu J, Tian D. Hepatocytes: A key role in liver inflammation. Front Immunol. 2023;13:1083780. doi: 10.3389/fimmu.2022.1083780. PubMed DOI PMC
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18:45–56. doi: 10.1038/s41423-020-00558-8. PubMed DOI PMC
Kemelo MK, Canová NK, Horinek A, Farghali H. Sirtuin-activating compounds (STACs) alleviate D-galactosamine/lipopolysaccharide-induced hepatotoxicity in rats: involvement of sirtuin 1 and heme oxygenase 1. Physiol Res. 2017;66:497–505. doi: 10.33549/physiolres.933488. PubMed DOI
Ren Y, Wang LH, Deng FS, Li JS, Jiang L. Protective effect and mechanism of alpha-lipoic acid on partial hepatic ischemia-reperfusion injury in adult male rats. Physiol Res. 2019;68:739–745. doi: 10.33549/physiolres.934095. PubMed DOI
Westenberger G, Sellers J, Fernando S, Junkins S, Han SM, Min K, Lawan A. Function of Mitogen-Activated Protein Kinases in Hepatic Inflammation. J Cell Signal. 2021;2:172–180. PubMed PMC
Heslop KA, Rovini A, Hunt EG, Fang D, Morris ME, Christie CF, Gooz MB, DeHart DN, Dang Y, Lemasters JJ, Maldonado EN. JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells. Biochem Pharmacol. 2020;171:113728. doi: 10.1016/j.bcp.2019.113728. PubMed DOI PMC
Shojaie L, Iorga A, Dara L. Cell death in liver diseases: a review. Int J Mol Sci. 2020;21:9682. doi: 10.3390/ijms21249682. PubMed DOI PMC
Ghorbanpour A, Salari S, Baluchnejadmojarad T, Roghani M. Capsaicin protects against septic acute liver injury by attenuation of apoptosis and mitochondrial dysfunction. Heliyon. 2023;9:e14205. doi: 10.1016/j.heliyon.2023.e14205. PubMed DOI PMC