Activation of Lactate Receptor Positively Regulates Skeletal Muscle Mass in Mice
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37795889
PubMed Central
PMC10634564
DOI
10.33549/physiolres.935004
PII: 935004
Knihovny.cz E-zdroje
- MeSH
- hypertrofie metabolismus MeSH
- kosterní svalová vlákna metabolismus MeSH
- kosterní svaly * metabolismus MeSH
- kyselina mléčná * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptory spřažené s G-proteiny MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina mléčná * MeSH
- receptory spřažené s G-proteiny MeSH
G protein-coupled receptor 81 (GPR81), a selective receptor for lactate, expresses in skeletal muscle cells, but the physiological role of GPR81 in skeletal muscle has not been fully elucidated. As it has been reported that the lactate administration induces muscle hypertrophy, the stimulation of GPR81 has been suggested to mediate muscle hypertrophy. To clarify the contribution of GPR81 activation in skeletal muscle hypertrophy, in the present study, we investigated the effect of GPR81 agonist administration on skeletal muscle mass in mice. Male C57BL/6J mice were randomly divided into control group and GPR81 agonist-administered group that received oral administration of the specific GPR81 agonist 3-Chloro-5-hydroxybenzoic acid (CHBA). In both fast-twitch plantaris and slow-twitch soleus muscles of mice, the protein expression of GPR81 was observed. Oral administration of CHBA to mice significantly increased absolute muscle weight and muscle weight relative to body weight in the two muscles. Moreover, both absolute and relative muscle protein content in the two muscles were significantly increased by CHBA administration. CHBA administration also significantly upregulated the phosphorylation level of p42/44 extracellular signal-regulated kinase-1/2 (ERK1/2) and p90 ribosomal S6 kinase (p90RSK). These observations suggest that activation of GRP81 stimulates increased the mass of two types of skeletal muscle in mice in vivo. Lactate receptor GPR81 may positively affect skeletal muscle mass through activation of ERK pathway.
Zobrazit více v PubMed
Goldspink G. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat. 1999;194:323–334. doi: 10.1046/j.1469-7580.1999.19430323.x. PubMed DOI PMC
Goldspink DF, Garlick PJ, McNurlan MA. Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem J. 1983;210:89–98. doi: 10.1042/bj2100089. PubMed DOI PMC
Mirzoev TM. Skeletal muscle recovery from disuse atrophy: protein turnover signaling and strategies for accelerating muscle regrowth. Int J Mol Sci. 2020;21:7940. doi: 10.3390/ijms21217940. PubMed DOI PMC
Williamson DL, Kubica N, Kimball SR, Jefferson LS. Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol. 2006;573:497–510. doi: 10.1113/jphysiol.2005.103481. PubMed DOI PMC
Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA. Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol. 2011;589:1831–1846. doi: 10.1113/jphysiol.2011.205658. PubMed DOI PMC
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014–1019. doi: 10.1038/ncb1101-1014. PubMed DOI
Siriguleng S, Koike T, Natsume Y, Iwama S, Oshida Y. Effect of prior chronic aerobic exercise on overload-induced skeletal muscle hypertrophy in mice. Physiol Res. 2018;67:765–775. doi: 10.33549/physiolres.933786. PubMed DOI
Siriguleng S, Koike T, Natsume Y, Jiang H, Mu L, Oshida Y. Eicosapentaenoic acid enhances skeletal muscle hypertrophy without altering the protein anabolic signaling pathway. Physiol Res. 2021;70:55–65. doi: 10.33549/physiolres.934534. PubMed DOI PMC
Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985) 2006;100:1460–1466. doi: 10.1152/japplphysiol.01267.2005. PubMed DOI
Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985) 2000;88:2097–2106. doi: 10.1152/jappl.2000.88.6.2097. PubMed DOI
Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985) 2000;88:61–65. doi: 10.1152/jappl.2000.88.1.61. PubMed DOI
Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7:33–44. doi: 10.1016/j.cmet.2007.11.011. PubMed DOI
Reihmane D, Dela F. Interleukin-6: possible biological roles during exercise. Eur J Sport Sci. 2014;14:242–250. doi: 10.1080/17461391.2013.776640. PubMed DOI
Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008;154:557–568. doi: 10.1038/bjp.2008.153. PubMed DOI PMC
Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558:5–30. doi: 10.1113/jphysiol.2003.058701. PubMed DOI PMC
Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol. 2009;587:5591–600. doi: 10.1113/jphysiol.2009.178350. PubMed DOI PMC
Bisetto S, Wright MC, Nowak RA, Lepore AC, Khurana TS, Loro E, Philp NJ. New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity. iScience. 2019;22:507–518. doi: 10.1016/j.isci.2019.11.041. PubMed DOI PMC
Oishi Y, Tsukamoto H, Yokokawa T, Hirotsu K, Shimazu M, Uchida K, Tomi H, Higashida K, Iwanaka N, Hashimoto T. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol (1985) 2015;118:742–749. doi: 10.1152/japplphysiol.00054.2014. PubMed DOI
Ohno Y, Oyama A, Kaneko H, Egawa T, Yokoyama S, Sugiura T, Ohira Y, Yoshioka T, Goto K. Lactate increases myotube diameter via activation of MEK/ERK pathway in C2C12 cells. Acta Physiol (Oxf) 2018;223:e13042. doi: 10.1111/apha.13042. PubMed DOI
Ohno Y, Ando K, Ito T, Suda Y, Matsui Y, Oyama A, Kaneko H, Yokoyama S, Egawa T, Goto K. Lactate stimulates a potential for hypertrophy and regeneration of mouse skeletal muscle. Nutrients. 2019;11:869. doi: 10.3390/nu11040869. PubMed DOI PMC
Goldspink DF, Garlick PJ, McNurlan MA, Biochem J. Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem J. 1983;210:89–98. doi: 10.1042/bj2100089. PubMed DOI PMC
Li J, Johnson SE. ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochem Biophys Res Commun. 2006;345:1425–1433. doi: 10.1016/j.bbrc.2006.05.051. PubMed DOI
Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, Sutton SW, Li X, Yun SJ, Mirzadegan T, Mazur C, Kamme F, Lovenberg TW. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem. 2009;284:2811–2822. doi: 10.1074/jbc.M806409200. PubMed DOI
Nordström F, Liegnell R, Apró W, Blackwood SJ, Katz A, Moberg M. The lactate receptor GPR81 is predominantly expressed in type II human skeletal muscle fibers: potential for lactate autocrine signaling. Am J Physiol Cell Physiol. 2023;324:C477–C487. doi: 10.1152/ajpcell.00443.2022. PubMed DOI
Li G, Wang HQ, Wang LH, Chen RP, Liu JP. Distinct pathways of ERK1/2 activation by hydroxy-carboxylic acid receptor-1. PLoS One. 2014;9:e93041. doi: 10.1371/journal.pone.0093041. PubMed DOI PMC
Muthny T, Kovarik M, Sispera L, Tilser I, Holecek M. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation. Int J Exp Pathol. 2008;89:64–71. doi: 10.1111/j.1365-2613.2007.00553.x. PubMed DOI PMC
Holecek M, Sispera L. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids. 2014;46:1377–1384. doi: 10.1007/s00726-014-1701-7. PubMed DOI
Holeček M, Mičuda S. Amino acid concentrations and protein metabolism of two types of rat skeletal muscle in postprandial state and after brief starvation. Physiol Res. 2017;66:959–967. doi: 10.33549/physiolres.933638. PubMed DOI
Juel C, Halestrap AP. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol. 1999;517:633–642. doi: 10.1111/j.1469-7793.1999.0633s.x. PubMed DOI PMC
Bonen A. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol. 2001;86:6–11. doi: 10.1007/s004210100516. PubMed DOI
Dvorak CA, Liu C, Shelton J, Kuei C, Sutton SW, Lovenberg TW, Carruthers NI. Identification of hydroxybenzoic acids as selective lactate receptor (GPR81) agonists with antilipolytic effects. ACS Med Chem Lett. 2012;3:637–639. doi: 10.1021/ml3000676. PubMed DOI PMC
Zan X, Fan K, Chen K, Zhi Y, Li L, Yang Y, Hu K, Lin L, Tang L, Liu G, Zhang L. Activation of GPR81 aggravates remote organ injury during hepatic ischemia-reperfusion injury. Transplant Proc. 2022;54:1992–1997. doi: 10.1016/j.transproceed.2022.04.024. PubMed DOI
Ohno Y, Egawa T, Yokoyama S, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice. Acta Physiol (Oxf) 2015;215:191–203. doi: 10.1111/apha.12600. PubMed DOI
Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K. Lactate promotes myoblast differentiation and myotube hypertrophy via a pathway involving MyoD in vitro and enhances muscle regeneration in vivo. Int J Mol Sci. 2018;19:3649. doi: 10.3390/ijms19113649. PubMed DOI PMC
Shirai T, Uemichi K, Hidaka Y, Kitaoka Y, Takemasa T. Effect of lactate administration on mouse skeletal muscle under calorie restriction. Curr Res Physiol. 2021;4:202–208. doi: 10.1016/j.crphys.2021.09.001. PubMed DOI PMC
Shirai T, Kitaoka Y, Uemichi K, Tokinoya K, Takeda K, Takemasa T. Effects of lactate administration on hypertrophy and mTOR signaling activation in mouse skeletal muscle. Physiol Rep. 2022;10:e15436. doi: 10.14814/phy2.15436. PubMed DOI PMC
Yasuhara K, Ohno Y, Kojima A, Uehara K, Beppu M, Sugiura T, Fujimoto M, Nakai A, Ohira Y, Yoshioka T, Goto K. Absence of heat shock transcription factor 1 retards the regrowth of atrophied soleus muscle in mice. J Appl Physiol. 2011;111:1142–9. doi: 10.1152/japplphysiol.00471.2011. PubMed DOI
Liu X, Cheng C, Deng B, Liu M. Ellagic acid attenuates muscle atrophy in STZ-induced diabetic mice. Physiol Res. 2022;71:631–641. doi: 10.33549/physiolres.934918. PubMed DOI PMC
Degens H, Alway SE. Skeletal muscle function and hypertrophy are diminished in old age. Muscle Nerve. 2003;27:339–347. doi: 10.1002/mus.10314. PubMed DOI
Ballak SB, Jaspers RT, Deldicque L, Chalil S, Peters EL, de Haan A, Degens H. Blunted hypertrophic response in old mouse muscle is associated with a lower satellite cell density and is not alleviated by resveratrol. Exp Gerontol. 2015;62:23–31. doi: 10.1016/j.exger.2014.12.020. PubMed DOI
Ballak SB, Busé-Pot T, Harding PJ, Yap MH, Deldicque L, de Haan A, Jaspers RT, Degens H. Blunted angiogenesis and hypertrophy are associated with increased fatigue resistance and unchanged aerobic capacity in old overloaded mouse muscle. Age (Dordr) 2016;38:39. doi: 10.1007/s11357-016-9894-1. PubMed DOI PMC
Hendrickse PW, Krusnauskas R, Hodson-Tole E, Venckunas T, Degens H. Regular endurance exercise of overloaded muscle of young and old male mice does not attenuate hypertrophy and improves fatigue resistance. Geroscience. 2021;43:741–757. doi: 10.1007/s11357-020-00224-x. PubMed DOI PMC