MiR-4649-5p acts as a tumor-suppressive microRNA in triple negative breast cancer by direct interaction with PIP5K1C, thereby potentiating growth-inhibitory effects of the AKT inhibitor capivasertib
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
W 1226
Austrian Science Fund FWF - Austria
PubMed
37803350
PubMed Central
PMC10559525
DOI
10.1186/s13058-023-01716-2
PII: 10.1186/s13058-023-01716-2
Knihovny.cz E-zdroje
- Klíčová slova
- AKT signaling, Capivasertib, Phosphatidylinositol-4-phosphate 5-kinase type 1 gamma (PIP5K1C), Triple negative breast cancer (TNBC), microRNA (miRNA),
- MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- pohyb buněk genetika MeSH
- proliferace buněk genetika MeSH
- protoonkogenní proteiny c-akt genetika metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- triple-negativní karcinom prsu * farmakoterapie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- capivasertib MeSH Prohlížeč
- fosfatidylinositol-3-kinasy MeSH
- mikro RNA * MeSH
- protoonkogenní proteiny c-akt MeSH
BACKGROUND: Triple negative breast cancer (TNBC) is a particularly aggressive and difficult-to-treat subtype of breast cancer that requires the development of novel therapeutic strategies. To pave the way for such developments it is essential to characterize new molecular players in TNBC. MicroRNAs (miRNAs) constitute interesting candidates in this regard as they are frequently deregulated in cancer and contribute to numerous aspects of carcinogenesis. METHODS AND RESULTS: Here, we discovered that miR-4649-5p, a miRNA yet uncharacterized in breast cancer, is associated with better overall survival of TNBC patients. Ectopic upregulation of the otherwise very low endogenous expression levels of miR-4646-5p significantly decreased the growth, proliferation, and migration of TNBC cells. By performing whole transcriptome analysis and physical interaction assays, we were able to identify the phosphatidylinositol phosphate kinase PIP5K1C as a direct target of miR-4649-5p. Downregulation or pharmacologic inhibition of PIP5K1C phenocopied the growth-reducing effects of miR-4649-5p. PIP5K1C is known to play an important role in migration and cell adhesion, and we could furthermore confirm its impact on downstream PI3K/AKT signaling. Combinations of miR-4649-5p upregulation and PIP5K1C or AKT inhibition, using the pharmacologic inhibitors UNC3230 and capivasertib, respectively, showed additive growth-reducing effects in TNBC cells. CONCLUSION: In summary, miR-4649-5p exerts broad tumor-suppressive effects in TNBC and shows potential for combined therapeutic approaches targeting the PIP5K1C/PI3K/AKT signaling axis.
Department for Biomedical Research Medical University of Graz Graz Austria
Department of Experimental Diagnostic and Specialty Medicine University of Bologna Bologna Italy
Division of Hematology Department of Internal Medicine Medical University of Graz Graz Austria
Division of Oncology Department of Internal Medicine Medical University of Graz Graz Austria
Translational Oncology 2 Med Clinics Hematology and Oncology Augsburg Germany
Zobrazit více v PubMed
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. doi: 10.1038/s41572-019-0111-2. PubMed DOI
Zagami P, Carey LA. Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer. 2022;8(1):95. doi: 10.1038/s41523-022-00468-0. PubMed DOI PMC
Yin L, Duan JJ, Bian XW, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5. PubMed DOI PMC
He L, Wick N, Germans SK, Peng Y. The role of breast cancer stem cells in chemoresistance and metastasis in triple-negative breast cancer. Cancers. 2021;13(24):6209. doi: 10.3390/cancers13246209. PubMed DOI PMC
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18. doi: 10.1038/nrc.2017.99. PubMed DOI PMC
Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA. The regulatory role of microRNAs in breast cancer. IJMS. 2019;20(19):4940. doi: 10.3390/ijms20194940. PubMed DOI PMC
Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6(3):235–246. doi: 10.1158/2159-8290.CD-15-0893. PubMed DOI PMC
Klinge C. Non-coding RNAs in breast cancer: intracellular and intercellular communication. NCRNA. 2018;4(4):40. doi: 10.3390/ncrna4040040. PubMed DOI PMC
Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(suppl_1):R17–29. doi: 10.1093/hmg/ddl046. PubMed DOI
Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J Integr Bioinform. 2019 doi: 10.1515/jib-2019-0027/html. PubMed DOI PMC
Bartel DP. MicroRNAs. Cell. 2004;116(2):281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 2015;34(48):5857–5868. doi: 10.1038/onc.2015.89. PubMed DOI PMC
Schwarzenbacher D, Klec C, Pasculli B, Cerk S, Rinner B, Karbiener M, et al. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res. 2019;21(1):20. doi: 10.1186/s13058-019-1104-5. PubMed DOI PMC
Surapaneni SK, Bhat ZR, Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation. Sci Rep. 2020;10(1):17954. doi: 10.1038/s41598-020-74847-7. PubMed DOI PMC
Ye Q, Wang X, Yuan M, Cui S, Chen Y, Hu Z, et al. miR-219-5p targets TBXT and inhibits breast cancer cell EMT and cell migration and invasion. Biosci Rep. 2021;41(8):BSR20210318. doi: 10.1042/BSR20210318. PubMed DOI PMC
Shen M, Dong C, Ruan X, Yan W, Cao M, Pizzo D, et al. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2. Cancer Res. 2019;79(14):3608–3621. doi: 10.1158/0008-5472.CAN-18-4055. PubMed DOI PMC
Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404(6775):293–296. doi: 10.1038/35005107. PubMed DOI
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–640. doi: 10.1016/j.cell.2005.10.022. PubMed DOI
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20(1):5–20. doi: 10.1038/s41580-018-0059-1. PubMed DOI
Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. IJMS. 2022;23(13):7167. doi: 10.3390/ijms23137167. PubMed DOI PMC
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-driven cancer nanotherapeutics. Cancers. 2022;14(15):3818. doi: 10.3390/cancers14153818. PubMed DOI PMC
Kogut S, Paculova H, Rodriguez P, Boyd J, Richman A, Palaria A, et al. Ikaros regulates microRNA networks in acute lymphoblastic leukemia. Epigenomes. 2022;6(4):37. doi: 10.3390/epigenomes6040037. PubMed DOI PMC
Lánczky A, Nagy Á, Bottai G, Munkácsy G, Szabó A, Santarpia L, et al. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat. 2016;160(3):439–446. doi: 10.1007/s10549-016-4013-7. PubMed DOI
Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–4109. doi: 10.1016/j.csbj.2021.07.014. PubMed DOI PMC
Ősz Á, Lánczky A, Győrffy B. Survival analysis in breast cancer using proteomic data from four independent datasets. Sci Rep. 2021;11(1):16787. doi: 10.1038/s41598-021-96340-5. PubMed DOI PMC
Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. IJMS. 2021;22(5):2622. doi: 10.3390/ijms22052622. PubMed DOI PMC
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC
Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697–697. doi: 10.1038/nmeth.3485. PubMed DOI
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131. doi: 10.1093/nar/gkz757. PubMed DOI PMC
Porciello N, Kunkl M, Viola A, Tuosto L. Phosphatidylinositol 4-phosphate 5-kinases in the regulation of T cell activation. Front Immunol. 2016 doi: 10.3389/fimmu.2016.00186/abstract. PubMed DOI PMC
Kanaho Y, Kobayashi-Nakano A, Yokozeki T. The phosphoinositide kinase PIP5K that produces the versatile signaling phospholipid PI4,5P2. Biol Pharm Bull. 2007;30(9):1605–1609. doi: 10.1248/bpb.30.1605. PubMed DOI
Wright BD, Loo L, Street SE, Ma A, Taylor-Blake B, Stashko MA, et al. The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron. 2014;82(4):836–847. doi: 10.1016/j.neuron.2014.04.006. PubMed DOI PMC
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–1274. doi: 10.1016/j.cell.2007.06.009. PubMed DOI PMC
Martorana F, Motta G, Pavone G, Motta L, Stella S, Vitale SR, et al. AKT inhibitors: New weapons in the fight against breast cancer? Front Pharmacol. 2021;29(12):662232. doi: 10.3389/fphar.2021.662232. PubMed DOI PMC
Andrikopoulou A, Chatzinikolaou S, Panourgias E, Kaparelou M, Liontos M, Dimopoulos MA, et al. The emerging role of capivasertib in breast cancer. Breast. 2022;63:157–167. doi: 10.1016/j.breast.2022.03.018. PubMed DOI PMC
Turner NC, Oliveira M, Howell SJ, Dalenc F, Cortes J, Gomez Moreno HL, et al. Capivasertib in hormone receptor-positive advanced breast cancer. N Engl J Med. 2023;388(22):2058–2070. doi: 10.1056/NEJMoa2214131. PubMed DOI PMC
Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial plasticity during human breast morphogenesis and cancer progression. J Mammary Gland Biol Neoplasia. 2016;21(3–4):139–148. doi: 10.1007/s10911-016-9366-3. PubMed DOI PMC
Zatzman M, Fuligni F, Ripsman R, Suwal T, Comitani F, Edward LM, et al. Widespread hypertranscription in aggressive human cancers. Sci Adv. 2022;8(47):eabn0238. doi: 10.1126/sciadv.abn0238. PubMed DOI PMC
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol Mech Dis. 2014;9(1):287–314. doi: 10.1146/annurev-pathol-012513-104715. PubMed DOI PMC
Piezzo M, Cocco S, Caputo R, Cianniello D, Gioia GD, Lauro VD, et al. Targeting cell cycle in breast cancer: CDK4/6 inhibitors. IJMS. 2020;21(18):6479. doi: 10.3390/ijms21186479. PubMed DOI PMC
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–374. doi: 10.1038/nrc1075. PubMed DOI
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–1033. doi: 10.1126/science.1160809. PubMed DOI PMC
Matsuo T, Dat LT, Komatsu M, Yoshimaru T, Daizumoto K, Sone S, et al. Early growth response 4 is involved in cell proliferation of small cell lung cancer through transcriptional activation of its downstream genes. PLoS ONE. 2014;9(11):e113606. doi: 10.1371/journal.pone.0113606. PubMed DOI PMC
Li L, Liu J, Xue H, Li C, Liu Q, Zhou Y, et al. A TGF-β-MTA1-SOX4-EZH2 signaling axis drives epithelial–mesenchymal transition in tumor metastasis. Oncogene. 2020;39(10):2125–2139. doi: 10.1038/s41388-019-1132-8. PubMed DOI
Liu C, Han J, Li X, Huang T, Gao Y, Wang B, et al. FOXP3 inhibits the metastasis of breast cancer by downregulating the expression of MTA1. Front Oncol. 2021;7(11):656190. doi: 10.3389/fonc.2021.656190. PubMed DOI PMC
Veena MS, Raychaudhuri S, Basak SK, Venkatesan N, Kumar P, Biswas R, et al. Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer. J Biol Chem. 2020;295(50):17169–17186. doi: 10.1074/jbc.RA120.014048. PubMed DOI PMC
Li H, Li K, Shu D, Shen M, Tan Z, Zhang W, et al. MED16 promotes tumour progression and tamoxifen sensitivity by modulating autophagy through the mTOR signalling pathway in ER-positive breast cancer. Life. 2022;12(10):1461. doi: 10.3390/life12101461. PubMed DOI PMC
Mandal K. Review of PIP2 in cellular signaling, functions and diseases. IJMS. 2020;21(21):8342. doi: 10.3390/ijms21218342. PubMed DOI PMC
Ling K, Schill NJ, Wagoner MP, Sun Y, Anderson RA. Movin’ on up: the role of PtdIns(4,5)P2 in cell migration. Trends Cell Biol. 2006;16(6):276–284. doi: 10.1016/j.tcb.2006.03.007. PubMed DOI
Peng JM, Lin SH, Yu MC, Hsieh SY. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Investig. 2021;131(1):e133525. doi: 10.1172/JCI133525. PubMed DOI PMC
Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature. 2002;420(6911):89–93. doi: 10.1038/nature01082. PubMed DOI
Li X, Zhou Q, Sunkara M, Kutys ML, Wu Z, Rychahou P, et al. Ubiquitination of PIPKIγ90 by HECTD1 regulates focal adhesion dynamics and cell migration. J Cell Sci. 2013;126:2617–2628. PubMed PMC
Sun Y, Turbin DA, Ling K, Thapa N, Leung S, Huntsman DG, et al. Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res. 2010;12(1):R6. doi: 10.1186/bcr2471. PubMed DOI PMC
Schill NJ, Anderson RA. Out, in and back again: PtdIns(4,5) P 2 regulates cadherin trafficking in epithelial morphogenesis. Biochem J. 2009;418(2):247–260. doi: 10.1042/BJ20081844. PubMed DOI PMC
Schill NJ, Hedman AC, Choi S, Anderson RA. PIPKIγi5 regulates the endosomal trafficking and degradation of E-cadherin. J Cell Sci. 2014;127:2189–2203. PubMed PMC
Loh CY, Chai J, Tang T, Wong W, Sethi G, Shanmugam M, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118. doi: 10.3390/cells8101118. PubMed DOI PMC
Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Trea Rev. 2004;30(2):193–204. doi: 10.1016/j.ctrv.2003.07.007. PubMed DOI
Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–619. doi: 10.1038/nrg1879. PubMed DOI
The Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi: 10.1038/nature11412. PubMed DOI PMC
Li H, Prever L, Hirsch E, Gulluni F. Targeting PI3K/AKT/mTOR signaling pathway in breast cancer. Cancers. 2021;13(14):3517. doi: 10.3390/cancers13143517. PubMed DOI PMC
Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. JCO. 2020;38(5):423–433. doi: 10.1200/JCO.19.00368. PubMed DOI