Theoretical Magnetic Relaxation and Spin-Phonon Coupling Study in a Series of Molecular Engineering Designed Bridged Dysprosocenium Analogues
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37812145
PubMed Central
PMC10598879
DOI
10.1021/acs.inorgchem.3c02916
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A detailed computational study of hypothetical sandwich dysprosium double-decker complexes, bridged by various numbers of aliphatic linkers, was performed to evaluate the effect of the structural modifications on their ground-state magnetic sublevels and assess their potential as candidates for single-molecule magnets (SMMs). The molecular structures of seven complexes were optimized using the TPSSh functional, and the electronic structure and magnetic properties were investigated using the complete active space self-consistent field method (CASSCF). Estimates of the magnetic moment blocking barrier (Ueff) and blocking temperatures (TB) are reported. In addition, a new method based on computed derivatives of effective demagnetization barriers Ueff with respect to vibrational normal modes was introduced and applied to evaluate the impact of spin-phonon coupling on the SMM properties. On the basis of the computed parameters, we have identified promising candidates with properties superior to those of the existing single-molecule magnets.
Institute of General and Inorganic Chemistry Bulgarian Academy of Sciences Sofia 1113 Bulgaria
Max Planck Institut für Kohlenforschung Mülheim an der Ruhr D 45470 Germany
Zobrazit více v PubMed
Liu J.; Chen Y.-C.; Liu J.; Vieru V.; Ungur L.; Jia J.; Chibotaru L. F.; Lan Y.; Wernsdorfer W.; Gao S.; Chen X.-M.; Tong M. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J. Am. Chem. Soc. 2016, 138 (16), 5441–5450. 10.1021/jacs.6b02638. PubMed DOI
Ding Y.-S.; Chilton N. F.; Winpenny R. E. P.; Zheng Y.-Z. On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. Angew. Chem., Int. Ed. 2016, 55 (52), 16071–16074. 10.1002/anie.201609685. PubMed DOI
Chen Y.-C.; Liu J.-L.; Ungur L.; Liu J.; Li Q.-W.; Wang L.-F.; Ni Z.-P.; Chibotaru L. F.; Chen X.-M.; Tong M.-L. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. J. Am. Chem. Soc. 2016, 138 (8), 2829–2837. 10.1021/jacs.5b13584. PubMed DOI
Goodwin C. A. P.; Ortu F.; Reta D.; Chilton N. F.; Mills D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548 (7668), 439–442. 10.1038/nature23447. PubMed DOI
Guo F.; Day B. M.; Chen Y.; Tong M.; Mansikkamäki A.; Layfield R. A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362 (6421), 1400–1403. 10.1126/science.aav0652. PubMed DOI
Evans P.; Reta D.; Whitehead G. F. S.; Chilton N. F.; Mills D. P. Bis-Monophospholyl Dysprosium Cation Showing Magnetic Hysteresis at 48 K. J. Am. Chem. Soc. 2019, 141 (50), 19935–19940. 10.1021/jacs.9b11515. PubMed DOI PMC
Gould C. A.; McClain K. R.; Yu J. M.; Groshens T. J.; Furche F.; Harvey B. G.; Long J. R. Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II). J. Am. Chem. Soc. 2019, 141 (33), 12967–12973. 10.1021/jacs.9b05816. PubMed DOI
Münzfeld L.; Schoo C.; Bestgen S.; Moreno-Pineda E.; Köppe R.; Ruben M.; Roesky P. W. Synthesis, Structures and Magnetic Properties of [(Η9-C9H9)Ln(Η8-C8H8)] Super Sandwich Complexes. Nat. Commun. 2019, 10 (1), 3135.10.1038/s41467-019-10976-6. PubMed DOI PMC
Ungur L.; Le Roy J. J.; Korobkov I.; Murugesu M.; Chibotaru L. F. Fine-Tuning the Local Symmetry to Attain Record Blocking Temperature and Magnetic Remanence in a Single-Ion Magnet. Angew. Chem., Int. Ed. 2014, 53 (17), 4413–4417. 10.1002/anie.201310451. PubMed DOI
Castro-Alvarez A.; Gil Y.; Llanos L.; Aravena D. High Performance Single-Molecule Magnets, Orbach or Raman Relaxation Suppression?. Inorg. Chem. Front. 2020, 7, 2478–2486. 10.1039/D0QI00487A. DOI
Lunghi A.; Sanvito S. How Do Phonons Relax Molecular Spins?. Sci. Adv. 2019, 5 (9), 1–8. 10.1126/sciadv.aax7163. PubMed DOI PMC
Randall McClain K.; Gould C. A.; Chakarawet K.; Teat S. J.; Groshens T. J.; Long J. R.; Harvey B. G. High-Temperature Magnetic Blocking and Magneto-Structural Correlations in a Series of Dysprosium(III) Metallocenium Single-Molecule Magnets. Chem. Sci. 2018, 9 (45), 8492–8503. 10.1039/C8SC03907K. PubMed DOI PMC
Aravena D. Ab Initio Prediction of Tunneling Relaxation Times and Effective Demagnetization Barriers in Kramers Lanthanide Single-Molecule Magnets. J. Phys. Chem. Lett. 2018, 9 (18), 5327–5333. 10.1021/acs.jpclett.8b02359. PubMed DOI
Angeli C.; Evangelisti S.; Cimiraglia R.; Maynau D. A Novel Perturbation-Based Complete Active Space-Self-Consistent-Field Algorithm: Application to the Direct Calculation of Localized Orbitals. J. Chem. Phys. 2002, 117 (23), 10525–10533. 10.1063/1.1521434. DOI
Angeli C.; Cimiraglia R.; Evangelisti S.; Leininger T.; Malrieu J.-P. Introduction of n-Electron Valence States for Multireference Perturbation Theory. J. Chem. Phys. 2001, 114 (23), 10252–10264. 10.1063/1.1361246. DOI
Angeli C.; Cimiraglia R.; Malrieu J.-P. N -Electron Valence State Perturbation Theory: A Spinless Formulation and an Efficient Implementation of the Strongly Contracted and of the Partially Contracted Variants. J. Chem. Phys. 2002, 117 (20), 9138–9153. 10.1063/1.1515317. DOI
Finley J.; Malmqvist P.-Å.; Roos B. O.; Serrano-Andrés L. The Multi-State CASPT2 Method. Chem. Phys. Lett. 1998, 288 (2–4), 299–306. 10.1016/S0009-2614(98)00252-8. DOI
Yin B.; Li C.-C. A Method to Predict Both the Relaxation Time of Quantum Tunneling of Magnetization and the Effective Barrier of Magnetic Reversal for a Kramers Single-Ion Magnet. Phys. Chem. Chem. Phys. 2020, 22 (18), 9923–9933. 10.1039/D0CP00933D. PubMed DOI
Kotrle K.; Herchel R. Are Inorganic Single-Molecule Magnets a Possibility? A Theoretical Insight into Dysprosium Double-Deckers with Inorganic Ring Systems. Inorg. Chem. 2019, 58 (20), 14046–14057. 10.1021/acs.inorgchem.9b02039. PubMed DOI
Ortu F.; Reta D.; Ding Y. S.; Goodwin C. A. P.; Gregson M. P.; McInnes E. J. L.; Winpenny R. E. P.; Zheng Y. Z.; Liddle S. T.; Mills D. P.; Chilton N. F. Studies of Hysteresis and Quantum Tunnelling of the Magnetisation in Dysprosium(III) Single Molecule Magnets. Dalton Trans. 2019, 48 (24), 8541–8545. 10.1039/C9DT01655D. PubMed DOI
Ullah A.; Cerdá J.; Baldoví J. J.; Varganov S. A.; Aragó J.; Gaita-Ariño A. In Silico Molecular Engineering of Dysprosocenium-Based Complexes to Decouple Spin Energy Levels from Molecular Vibrations. J. Phys. Chem. Lett. 2019, 10 (24), 7678–7683. 10.1021/acs.jpclett.9b02982. PubMed DOI
Hailes R. L. N.; Musgrave R. A.; Kilpatrick A. F. R.; Russell A. D.; Whittell G. R.; O’Hare D.; Manners I. Ring-Opening Polymerisation of Low-Strain Nickelocenophanes: Synthesis and Magnetic Properties of Polynickelocenes with Carbon and Silicon Main Chain Spacers. Chem. - Eur. J. 2019, 25 (4), 1044–1054. 10.1002/chem.201804326. PubMed DOI
Buchowicz W.; Jerzykiewicz L. B.; Krasińska A.; Losi S.; Pietrzykowski A.; Zanello P. Ansa -Nickelocenes by the Ring-Closing Metathesis Route: Syntheses, X-Ray Crystal Structures, and Physical Properties. Organometallics 2006, 25 (21), 5076–5082. 10.1021/om060423v. DOI
Hüerländer D.; Kleigrewe N.; Kehr G.; Erker G.; Fröhlich R. Synthesis, Structural and Chemical Characterization of Unsaturated C4- and C10-Bridged Group-4 Ansa-Metallocenes Obtained through a Ring-Closing Olefin Metathesis Reaction. Eur. J. Inorg. Chem. 2002, 2633–2642. 10.1002/1099-0682(200210)2002:10<2633::AID-EJIC2633>3.0.CO;2-4. DOI
Schaefer C.; Scholz G.; Gleiter R.; Oeser T.; Rominger F. Endohedral Metallocenophanes of Rhodium and Cobalt. Eur. J. Inorg. Chem. 2005, (7), 1274–1281. 10.1002/ejic.200400851. DOI
Bhattacharyya S. An Expedient, Mild, Reductive Method for the Preparation of Alkylferrocenes. J. Chem. Soc., Dalton Trans. 1996, 4617–4619. 10.1039/dt9960004617. DOI
Talham D. R.; Cowan D. O. Synthesis of New Biferrocene Derivatives Containing Interannular Bridges and Their Mixed-Valence Analogs. Organometallics 1987, 6 (5), 932–937. 10.1021/om00148a006. DOI
Hillman M.; Fujita E.; Dauplaise H.; Kvick A.; Kerber R. C. Bridged Ferrocenes. 10. Structural Phenomena. Organometallics 1984, 3 (8), 1170–1177. 10.1021/om00086a006. DOI
Hisatome M.; Watanabe J.; Yamakawa K.; Iitaka Y. [45](1,2,3,4,5)Ferrocenophane: Superferrocenophane. J. Am. Chem. Soc. 1986, 108 (6), 1333–1334. 10.1021/ja00266a054. DOI
Hisatome M.; Watanabe J.; Kawajiri Y.; Yamakawa K.; Iitaka Y. Synthesis and Molecular Structure of [45](1,2,3,4,5)Ferrocenophane ([4]Superferrocenophane). Organometallics 1990, 9 (2), 497–503. 10.1021/om00116a029. DOI
Ohba S.; Saito Y.; Kamiyama S.; Kasahara A. Structure of 1,3-(1,1’-Ruthenocenediyl)Propane, C13H14Ru, and 1,4-(1,1’-Ruthenocenediyl)Butane, C14H16Ru. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1984, 40 (1), 53–55. 10.1107/S0108270184002997. DOI
Kamiyama S.; Kasahara A. Synthesis of [3](1,1′)[3](3,3′)- and [4](1,1′)[4](3,3′)Ruthenocenophanes. Bull. Chem. Soc. Jpn. 1984, 57 (3), 719–724. 10.1246/bcsj.57.719. DOI
Neese F. The ORCA Program System. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2 (1), 73–78. 10.1002/wcms.81. DOI
Neese F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8 (1), e132710.1002/wcms.1327. DOI
Neese F.; Wennmohs F.; Becker U.; Riplinger C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152 (22), 224108.10.1063/5.0004608. PubMed DOI
Neese F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12 (5), e1606.10.1002/wcms.1606. DOI
Tao J.; Perdew J. P.; Staroverov V. N.; Scuseria G. E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91 (14), 146401.10.1103/PhysRevLett.91.146401. PubMed DOI
Aravena D.; Neese F.; Pantazis D. A. Improved Segmented All-Electron Relativistically Contracted Basis Sets for the Lanthanides. J. Chem. Theory Comput. 2016, 12 (3), 1148–1156. 10.1021/acs.jctc.5b01048. PubMed DOI
Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297–3305. 10.1039/b508541a. PubMed DOI
van Lenthe E.; Baerends E. J.; Snijders J. G. Relativistic Total Energy Using Regular Approximations. J. Chem. Phys. 1994, 101 (11), 9783–9792. 10.1063/1.467943. DOI
Neese F.; Wennmohs F.; Hansen A.; Becker U. Efficient, Approximate and Parallel Hartree-Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree-Fock Exchange. Chem. Phys. 2009, 356 (1–3), 98–109. 10.1016/j.chemphys.2008.10.036. DOI
Izsák R.; Neese F. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys. 2011, 135 (14), 144105.10.1063/1.3646921. PubMed DOI
Dutta A. K.; Neese F.; Izsak R. Accelerating the Coupled-Cluster Singles and Doubles Method Using the Chain-of-Sphere Approximation. Mol. Phys. 2018, 116 (11), 1428–1434. 10.1080/00268976.2017.1416201. DOI
Pantazis D. A.; Neese F. All-Electron Scalar Relativistic Basis Sets for the Lanthanides. J. Chem. Theory Comput. 2009, 5 (9), 2229–2238. 10.1021/ct900090f. PubMed DOI
Roca-Sabio A.; Regueiro-Figueroa M.; Esteban-Gómez D.; de Blas A.; Rodríguez-Blas T.; Platas-Iglesias C. Density Functional Dependence of Molecular Geometries in Lanthanide(III) Complexes Relevant to Bioanalytical and Biomedical Applications. Comput. Theor. Chem. 2012, 999 (iii), 93–104. 10.1016/j.comptc.2012.08.020. DOI
Malmqvist P.-Å.; Roos B. O. The CASSCF State Interaction Method. Chem. Phys. Lett. 1989, 155 (2), 189–194. 10.1016/0009-2614(89)85347-3. DOI
Noro T.; Sekiya M.; Koga T. Sapporo-(DKH3)-NZP (n = D, T, Q) Sets for the Sixth Period s-d-and p-Block Atoms. Theor. Chem. Acc. 2013, 132 (5), 1363.10.1007/s00214-013-1363-7. DOI
Stoychev G. L.; Auer A. A.; Neese F. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017, 13 (2), 554–562. 10.1021/acs.jctc.6b01041. PubMed DOI
Atanasov M.; Ganyushin D.; Sivalingam K.; Neese F. A Modern First-Principles View on Ligand Field Theory through the Eyes of Correlated Multireference Wavefunctions. Struct. Bonding (Berlin) 2011, 143, 149–220. 10.1007/430_2011_57. DOI
Lang L.; Atanasov M.; Neese F. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. J. Phys. Chem. A 2020, 124 (5), 1025–1037. 10.1021/acs.jpca.9b11227. PubMed DOI PMC
Hess B. A. Relativistic Electronic-Structure Calculations Employing a Two-Component No-Pair Formalism with External-Field Projection Operators. Phys. Rev. A 1986, 33 (6), 3742–3748. 10.1103/PhysRevA.33.3742. PubMed DOI
Douglas M.; Kroll N. M. Quantum Electrodynamical Corrections to the Fine Structure of Helium. Ann. Phys. 1974, 82 (1), 89–155. 10.1016/0003-4916(74)90333-9. DOI
Chibotaru L. F.; Ungur L.; Soncini A. The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment. Angew. Chem., Int. Ed. 2008, 47, 4126–4129. 10.1002/anie.200800283. PubMed DOI
Ungur L.; Van Den Heuvel W.; Chibotaru L. F. Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J. Chem. 2009, 33, 1224–1230. 10.1039/b903126j. DOI
Chibotaru L. F.; Ungur L.; Aronica C.; Elmoll H.; Pilet G.; Luneau D. Structure, magnetism, and theoretical study of a mixed-valence CoII3CoIII4 heptanuclear wheel: Lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455. 10.1021/ja8029416. PubMed DOI
Hanwell M. D.; Curtis D. E.; Lonie D. C.; Vandermeersch T.; Zurek E.; Hutchison G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminf. 2012, 4 (1), 17.10.1186/1758-2946-4-17. PubMed DOI PMC
Macrae C. F.; Edgington P. R.; McCabe P.; Pidcock E.; Shields G. P.; Taylor R.; Towler M.; van de Streek J. Mercury : Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39 (3), 453–457. 10.1107/S002188980600731X. DOI
Momma K.; Izumi F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44 (6), 1272–1276. 10.1107/S0021889811038970. DOI
Momma K.; Izumi F. VESTA : A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 2008, 41 (3), 653–658. 10.1107/S0021889808012016. DOI
Hisatome M.; Kawajiri Y.; Yamakawa K.; Kozawa K.; Uchida T. Organometallic Compounds. J. Organomet. Chem. 1982, 236 (3), 359–365. 10.1016/S0022-328X(00)86910-7. DOI
Hisatome M.; Kawajiri Y.; Yamakawa K.; Harada Y.; Iitaka Y. A Package Compound of a Metal Atom with a Hydrocarbon [4] [4] [4] [4] [3](1,2,3,4,5)Ferrocenophane. Tetrahedron Lett. 1982, 23 (16), 1713–1716. 10.1016/S0040-4039(00)87197-X. DOI
Aravena D.; Ruiz E. Spin Dynamics in Single-Molecule Magnets and Molecular Qubits. Dalton Trans. 2020, 49 (29), 9916–9928. 10.1039/D0DT01414A. PubMed DOI
Ungur L.; Chibotaru L. F. Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. Inorg. Chem. 2016, 55 (20), 10043–10056. 10.1021/acs.inorgchem.6b01353. PubMed DOI
Lunghi A.; Totti F.; Sanvito S.; Sessoli R. Intra-Molecular Origin of the Spin-Phonon Coupling in Slow-Relaxing Molecular Magnets. Chem. Sci. 2017, 8 (9), 6051–6059. 10.1039/C7SC02832F. PubMed DOI PMC
Escalera-Moreno L.; Baldoví J. J.; Gaita-Ariño A.; Coronado E. Spin States, Vibrations and Spin Relaxation in Molecular Nanomagnets and Spin Qubits: A Critical Perspective. Chem. Sci. 2018, 9 (13), 3265–3275. 10.1039/C7SC05464E. PubMed DOI PMC
Staab J. K.; Chilton N. F. Analytic Linear Vibronic Coupling Method for First-Principles Spin-Dynamics Calculations in Single-Molecule Magnets. J. Chem. Theory Comput. 2022, 18, 6588–6599. 10.1021/acs.jctc.2c00611. PubMed DOI PMC
Kragskow J. G. C.; Mattioni A.; Staab J. K.; Reta D.; Skelton J. M.; Chilton N. F. Spin-Phonon Coupling and Magnetic Relaxation in Single-Molecule Magnets. Chem. Soc. Rev. 2023, 52, 4567–4585. 10.1039/D2CS00705C. PubMed DOI PMC
Albino A.; Benci S.; Tesi L.; Atzori M.; Torre R.; Sanvito S.; Sessoli R.; Lunghi A. First-Principles Investigation of Spin-Phonon Coupling in Vanadium-Based Molecular Spin Quantum Bits. Inorg. Chem. 2019, 58 (15), 10260–10268. 10.1021/acs.inorgchem.9b01407. PubMed DOI
Briganti M.; Santanni F.; Tesi L.; Totti F.; Sessoli R.; Lunghi A. A Complete Ab Initio View of Orbach and Raman Spin-Lattice Relaxation in a Dysprosium Coordination Compound. J. Am. Chem. Soc. 2021, 143 (34), 13633–13645. 10.1021/jacs.1c05068. PubMed DOI PMC
Reta D.; Kragskow J. G. C.; Chilton N. F. Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets. J. Am. Chem. Soc. 2021, 143 (15), 5943–5950. 10.1021/jacs.1c01410. PubMed DOI
Bunting P. C.; Atanasov M.; Damgaard-Møller E.; Perfetti M.; Crassee I.; Orlita M.; Overgaard J.; van Slageren J.; Neese F.; Long J. R. A Linear Cobalt(II) Complex with Maximal Orbital Angular Momentum from a Non-Aufbau Ground State. Science 2018, 362 (6421), eaat731910.1126/science.aat7319. PubMed DOI