Chromophores' Contribution to Color Changes of Thermally Modified Tropical Wood Species
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1/0117/22
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
PubMed
37836049
PubMed Central
PMC10574906
DOI
10.3390/polym15194000
PII: polym15194000
Knihovny.cz E-resources
- Keywords
- ThermoWood, UV-Vis diffuse reflectance, chemical degradation, extractives, optical properties, total color difference,
- Publication type
- Journal Article MeSH
This work examines the effect of thermal modification temperature (180, 200, and 220 °C) in comparison with reference (untreated) samples on selected optical properties of six tropical wood species-Sp. cedar (Cedrala odorata), iroko (Chlorophora excelsa), merbau (Intsia spp.), meranti (Shorea spp.), padouk (Pterocarpus soyauxii), and teak (Tectona grandis). The main goal is to expand the existing knowledge in the field of wood thermal modification by understanding the related degradation mechanisms associated with the formation of chromophoric structures and, above all, to focus on the change in the content of extractive substances. For solid wood, the CIELAB color space parameters (L*, a*, b*, and ΔE*), yellowness (Y), ISO brightness, and UV-Vis diffuse reflectance spectra were obtained. Subsequently, these wood samples were extracted into three individual solvents (acetone, ethanol, and ethanol-toluene). The yields of the extracted compounds, their absorption spectra, and again L*, a*, b*, ΔE*, and Yi parameters were determined. With increasing temperatures, the samples lose brightness and darken, while their total color difference grows (except merbau). The highest yield of extractives (mainly phenolic compounds, glycosides, and dyes) from thermally modified samples was usually obtained using ethanol. New types of extractives (e.g., 2-furaldehyde, lactones, formic acid, some monomer derivatives of phenols, etc.) are already created around a temperature of 180 °C and may undergo condensation reactions at higher temperatures. For padouk, merbau, teak, and partially iroko modified at temperatures of 200 and 220 °C, there was a detected similarity in the intensities of their UV-Vis DR spectra at the wavelength regions corresponding to phenolic aldehydes, unsaturated ketones, quinones, stilbenes, and other conjugated carbonyl structures. Overall, a statistical assessment using PCA sorted the samples into five clusters. Cluster 3 consists of almost all samples modified at 200 and 220 °C, and in the other four, the reference and thermally modified samples at 180 °C were distributed. The yellowness of wood (Y) has a very high dependence (r = 0.972) on its brightness (L*) and the yellowness index of the extractives in acetone Yi(Ac), whose relationship was described by the equation Y = -0.0951 × Y(Ac) + 23.3485.
See more in PubMed
Hon D.N.S., Minemura N. Color and discoloration. In: Hon D.N.S., Shiraishi N., editors. Wood and Cellulosic Chemistry. Marcel Dekker; New York, NY, USA: 2001. pp. 385–442.
Reinprecht L., Mamoňová M., Pánek M., Kačík F. The impact of natural and artificial weathering on the visual, color, and structural changes of seven tropical woods. Eur. J. Wood Wood Prod. 2018;76:175–190. doi: 10.1007/s00107-017-1228-1. DOI
Panshin A.J., de Zeeuw C. Textbook of Wood Technology. McGraw-Hill Book Company; New York, NY, USA: 1980. p. 722.
Rosenau T., Potthast A., Kosma P., Suess H.U., Nimmerfroh N. Chromophores in aged hardwood pulp—Their structure and degradation potential. Tappi J. 2008;1:24–30.
Tribulová T., Kačík F., Evtuguin D.V., Čabalová I. Assessment of Chromophores in Chemically Treated and Aged Wood by UV-Vis Diffuse Reflectance Spectroscopy. Cellul. Chem. Technol. 2016;50:659–667.
Bourgois J., Bartholin M.C., Guyonnet R. Thermal treatment of wood: Analysis of the obtained product. Wood Sci. Technol. 1989;23:303–310. doi: 10.1007/BF00353246. DOI
Hill C., Altgen M., Rautkari L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021;56:6581–6614. doi: 10.1007/s10853-020-05722-z. DOI
Reinprecht L., Vidholdová Z. ThermoWood–Preparing, Properties and Applications. Technical University in Zvolen; Zvolen, Slovakia: 2008. p. 89. (In Slovak)
Tjeerdsma B.F., Boonstra M., Pizzi A., Tekely P., Militz H. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Als Roh-Und Werkst. 1998;56:149–153. doi: 10.1007/s001070050287. DOI
Chen Y., Fan Y., Gao J., Stark N.M. The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. BioResources. 2012;7:1157–1170. doi: 10.15376/biores.7.1.1157-1170. DOI
Chen Y., Gao J., Fan Y., Tshabalala M.A., Stark N.M. Heat-induced chemical and color changes of extractive-free black locust (Robinia pseudoacacia) wood. BioResources. 2012;7:2236–2248. doi: 10.15376/biores.7.2.2236-2248. DOI
Huang X., Kocaefe D., Kocaefe Y., Boluk Y., Pichette A. A spectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering. Appl. Surf. Sci. 2012;258:5360–5369. doi: 10.1016/j.apsusc.2012.02.005. DOI
Taraborelli C., Monteoliva S., Keil G., Spavento E. Effect of heat treatment on hardness, density and color of Populus× canadensis ‘I-214′wood. For. Syst. 2022;31:e023. doi: 10.5424/fs/2022313-19558. DOI
Bakar B.F.A., Hiziroglu S., Tahir P.M. Properties of some thermally modified wood species. Mater. Des. 2013;43:348–355. doi: 10.1016/j.matdes.2012.06.054. DOI
Zaman A., Alén R., Kotilainen R. Thermal behavior of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230. Wood Fiber Sci. 2000;32:138–143.
Yildiz S., Gezer E.D., Yildiz U.C. Mechanical and chemical behavior of spruce wood modified by heat. Build. Environ. 2006;41:1762–1766. doi: 10.1016/j.buildenv.2005.07.017. DOI
Majano-Majano A., Hughes M., Fernandez-Cabo J.L. The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci. Technol. 2012;46:5–21. doi: 10.1007/s00226-010-0389-4. DOI
Brito A.F., Calonego F.W., Bond B.H., Severo E.T.D. Color changes, EMC, and biological resistance of thermally modified yellow poplar. Wood Fiber Sci. 2018;50:439–446. doi: 10.22382/wfs-2018-055. DOI
Kačíková D., Kubovský I., Gaff M., Kačík F. Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process. Polymers. 2021;13:993. doi: 10.3390/polym13070993. PubMed DOI PMC
Kačíková D., Kubovský I., Ulbriková N., Kačík F. The impact of thermal treatment on structural changes of teak and iroko wood lignins. Appl. Sci. 2020;10:5021. doi: 10.3390/app10145021. DOI
Gašparík M., Gaff M., Kačík F., Sikora A. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources. 2019;14:2667–2683. doi: 10.15376/biores.14.2.2667-2683. DOI
Gaff M., Kubovský I., Sikora A., Kačíková D., Li H., Kubovský M., Kačík F. Impact of thermal modification on color and chemical changes of African padauk, merbau, mahogany, and iroko wood species. Rev. Adv. Mater. Sci. 2023;62:20220277. doi: 10.1515/rams-2022-0277. DOI
Korkut S. Performance of three thermally treated tropical wood species commonly used in Turkey. Ind. Crops Prod. 2012;36:355–362. doi: 10.1016/j.indcrop.2011.10.004. DOI
Mburu F., Dumarçay S., Huber F., Petrissans M., Gérardin P. Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance. Bioresour. Technol. 2007;98:3478–3486. doi: 10.1016/j.biortech.2006.11.006. PubMed DOI
Lengowski E.C., Bonfatti Júnior E.A., Nisgoski S., Bolzon de Muñiz G.I., Klock U. Properties of thermally modified teakwood. Maderas Cienc. Y Tecnol. 2021;23 doi: 10.4067/S0718-221X2021000100410. DOI
Esteves B., Videira R., Pereira H. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Sci. Technol. 2011;45:661–676.
Piernik M., Woźniak M., Pinkowski G., Szentner K., Ratajczak I., Krauss A. Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood. Materials. 2022;15:5425. doi: 10.3390/ma15155425. PubMed DOI PMC
Kačík F., Kubovský I., Bouček J., Hrčka R., Gaff M., Kačíková D. Color and Chemical Changes of Black Locust Wood during Heat Treatment. Forests. 2022;14:73.
Meier E. The Wood Dictionary: From Acacia to Ziricote, a Guide to the World’s Wood. Sierra’s Ascent Publisher; San Francisco, CA, USA: 2021. p. 272.
Wagenführ R. Holzatlas. 6th ed. Fachbuchverlag Publisher; Leipzig, Germany: 2007. p. 816.
International Thermowood Association . Thermowood Handbook. International Thermowood Association; Helsinki, Finland: 2021. p. 55.
Tappi Tappi Press Atlanta; Atlanta, GA, USA: 2011. Sampling and Preparing Wood for Analysis. Technical Association of the Pulp and Paper Industry.
American Society for Testing and Materials; Philadelphia, PA, USA: 2021. Standard Test Method for Ethanol-Toluene Solubility of Wood.
International Organization for Standardization; London, UK: 1990. Paper, board, and pulps—Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples.
International Organization for Standardization; London, UK: 2011. Colorimetry–Part 4: CIE 1976 L*a*b* colour space.
ISO/CIE 11664-6. International Organization for Standardization; London, UK: 2014. Colorimetry–Part 6: CIEDE2000 Color-difference formula.
Kubelka P. New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 1948;38:448–457. doi: 10.1364/JOSA.38.000448. PubMed DOI
TAPPI T 280 pm-99. Tappi Press Atlanta; Atlanta, GA, USA: 2000. Acetone extractives of wood and pulp. Technical Association of the Pulp and Paper Industry.
TAPPI T 204 cm-97. Tappi Press Atlanta; Atlanta, GA, USA: 1997. Solvent extractives of wood and pulp. Technical Association of the Pulp and Paper Industry.
TAPPI T 264 cm-97. Tappi Press Atlanta; Atlanta, GA, USA: 1997. Preparation of wood for chemical analysis. Technical Association of the Pulp and Paper Industry.
Lo Monaco A., Pelosi C., Agresti G., Picchio R., Rubino G. Influence of thermal treatment on selected properties of chestnut wood and full range of its visual features. Drewno. 2020;63:1–20.
Correal-Mòdol E., Wimmer T., Huber H., Schnabel T. Approach for color homogenisation of chestnut (Castanea sativa [Mill.]) by thermal modification. Int. Wood Prod. J. 2014;5:69–73. doi: 10.1179/2042645313Y.0000000056. DOI
Gonzáles-Peña M.M., Hale M.D.C. Color in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Color evolution and color changes. Holzforshung. 2009;63:385–393. doi: 10.1515/HF.2009.078. DOI
Tudorović N., Popović Z., Milić G., Popadić R. Estimation of heat treated wood properties by color change. Bioresources. 2012;7:799–815. doi: 10.15376/biores.7.1.799-815. DOI
ASTM E313. American Society for Testing and Materials; Philadelphia, PA, USA: 2015. Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates.
Yu J., Huang X., Wu C., Wu X., Wang G., Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer. 2012;53:471–480. doi: 10.1016/j.polymer.2011.12.040. DOI
Baar J., Gryc V. Color of tropical wood and discoloration due to simulated sunlight. Acta Univ. Agric. Silvic. Mendel. Brun. 2010;58:13–20. doi: 10.11118/actaun201058050013. DOI
Cuccui I., Negro F., Zanuttini R., Espinoza M., Allegretti O. Thermo-vacuum modification of teak wood from fast-growth plantation. BioResources. 2017;12:1903–1915. doi: 10.15376/biores.12.1.1903-1915. DOI
Sehistedt-Persson M. Color responses to heat-treatment of extractives and sap from pine and spruce; In Proceeding of the International IUFRO Wood Drying Conference; Brasov, Romania. 25 October 2003.
Sundqvist B. Ph.D. Thesis. Luleå Tekniska Universitet; Luleå, Sweden: 2004. Color Changes and Acid Formation in Wood During.
Polcin J., Rapson W.H. The interpretation of UV and visible spectrum of lignin; In Proceeding of the 55th Annual Meeting of the Technical Section; Montreal, QC, Canada. 1969. pp. 28–31.
Keating J., Johansson C.I., Saddler J.N., Beatson R.P. The nature of chromophores in high-extractives mechanical pulps: Western red cedar (Thuja plicata Donn) chemithermomechanical pulp (CTMP) Holzforschung. 2006;60:365–371. doi: 10.1515/HF.2006.057. DOI
Chen X., Li Y. Effect of heat treatment on microstructure and mechanical properties of high boron white cast iron. Mater. Sci. Eng. 2010;528:770–775. doi: 10.1016/j.msea.2010.09.092. DOI
Diouf P.N., Stevanovic T., Boutin Y. The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts. Ind. Crops Prod. 2009;30:297–303. doi: 10.1016/j.indcrop.2009.05.008. DOI
Bekhta P., Niemz P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung. 2003;57:539–546. doi: 10.1515/HF.2003.080. DOI
Čabalová I., Kačík F., Tribulová T. The effects of heat treatment on the chemical alterations of oak wood. Key Eng. Mater. 2016;688:44–49. doi: 10.4028/www.scientific.net/KEM.688.44. DOI
Lai Y.Z. Chemical degradation. In: Hon D.N.S., Shiraishi N., editors. Wood and Cellulosic Chemistry. Marcel Dekker; New York, NY, USA: 1991. pp. 455–524.
Saha J.B.T., Abia D., Dumarçay S., Ndikontar M.K., Gérardin P., Noah J.N., Perrin D. Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus) Ind. Crops Prod. 2013;41:71–77.
Diouf P.N., Merlin A., Perrin D. Antioxidant properties of wood extracts and color stability of woods. Ann. For. Sci. 2006;63:525–534. doi: 10.1051/forest:2006035. DOI
Hafizoglu H., Holmbom B. Chemical composition of extractives from Abies nordmanniana. Holz Als Roh-Und Werkst. 1995;53:273–275. doi: 10.1007/s001070050088. DOI
Fengel D., Wegener G. Wood: Chemistry, Ultrastructure, Reactions. Walter De Gruyter; Berlin, Germany: 1989. p. 626.
Stenius P., Gullichsen J., Paulapuro H. Papermaking Science and Technology. In: Stenius P., editor. Forest Products Chemistry. 3rd ed. Faper Oy; Helsinki, Finland: 2000. p. 350.
Nuopponen M., Vuorinen T., Jämsä S., Viitaniemi P. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J. Wood Chem. Technol. 2005;24:13–26. doi: 10.1081/WCT-120035941. DOI
Faix O., Meier D., Fortmann I. Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin-derived products. Holz Als Roh-Und Werkst. 1990;48:281–285. doi: 10.1007/BF02626519. DOI
Červenka E., Král Z., Tomis B. Chemistry of Wood and Cellulose I–III. The University of Chemical Technology in Pardubice; Pardubice, Czech Republic: 1980. p. 228. (In Czech)
Chow P., Nakayama F.S., Blahnik B., Youngquist J.A., Coffelt T.A. Chemical constituents and physical properties of guayule wood and bark. Ind. Crops Prod. 2008;28:303–308. doi: 10.1016/j.indcrop.2008.03.006. DOI
Ayadi N., Lejeune F., Charrier F., Charrier B., Merlin A. Color stability of heat-treated wood during artificial weathering. Holz Als Roh-Und Werkst. 2003;61:221–226. doi: 10.1007/s00107-003-0389-2. DOI
Van Nguyen T.H., Nguyen T.T., Ji X., Guo M. Predicting Color Change in Wood During Heat Treatment Using an Artificial Neural Network Model. BioResources. 2018;13:6250–6264. doi: 10.15376/biores.13.3.6250-6264. DOI
Cirule D., Sansonetti E., Andersone I., Kuka E., Andersons B. Enhancing Thermally Modified Wood Stability against Discoloration. Coatings. 2021;11:81. doi: 10.3390/coatings11010081. DOI
Palaiogiannis D., Chatzimitakos T., Athanasiadis V., Bozinou E., Makris D.P., Lalas S.I. Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus creticus L. Leaves. Oxygen. 2023;3:274–286. doi: 10.3390/oxygen3030018. DOI
Hon D.N., Shiraishi N. Wood, and Cellulosic Chemistry, Revised, and Expanded. 2nd ed. CRC Press; Boca Raton, FL, USA: 2000. p. 928.
Tjeerdsma B.F., Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Eur. J. Wood Wood Prod. 2005;63:102–111. doi: 10.1007/s00107-004-0532-8. DOI
Lundquist K. Acid degradation of lignin. Acta Chem. Scand. 1970;24:889–907. doi: 10.3891/acta.chem.scand.24-0889. PubMed DOI
Dünisch O., Richter H.G., Koch G. Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Sci. Technol. 2010;44:301–313. doi: 10.1007/s00226-009-0275-0. DOI
Charrier B., Haluk J.P., Metche M. Characterization of European Oakwood Constituents Acting in the Brown Discolouration during Kiln Drying. Holzforschung. 1995;49:168–172. doi: 10.1515/hfsg.1995.49.2.168. DOI
Tenorio C., Moya R. Evaluation of wood properties of four ages of Cedrela odorata trees growing in agroforestry systems with Theobroma cacao in Costa Rica. Agrofor. Syst. 2019;93:973–988. doi: 10.1007/s10457-018-0194-x. DOI
Biwôlé J.J.E., Biwolé A.B., Mfomo J.Z., Segovia C., Pizzi A., Chen X., Meausoone P.J. Causes of differential behavior of extractives on the natural cold water durability of the welded joints of three tropical woods. J. Adhes. Sci. Technol. 2022;36:1314–1331. doi: 10.1080/01694243.2021.1970318. DOI
Biwôlé J.J.E., Biwolé A.B., Mfomo J.Z., Pizzi A., Segovia C., Abessolo D., Meausoone P.J. Iroko wood (Milicia excelsa CC berg), a good candidate for high-speed rotation-induced wood dowel welding: An assessment of its welding potential and the water resistance of its welded joints. Int. J. Adhes. Adhes. 2023;123:103360. doi: 10.1016/j.ijadhadh.2023.103360. DOI
Yasuda S., Imai T., Fukushima K., Hamaguchi E. Effect of the extractives of yellow meranti wood on the manufacture of plywood. Eur. J. Wood Wood Prod. 1998;56:87–89. doi: 10.1007/s001070050271. DOI
Geevananda Y.A., Gunawardana P., Sultanbawa M.U.S., Balasubramaniam S. Distribution of some triterpenes and phenolic compounds in the extractives of endemic Dipterocarpaceae species of Sri Lanka. Phytochemistry. 1980;19:1099–1102. doi: 10.1016/0031-9422(80)83063-9. DOI
Kilic A., Niemz P. Extractives in some tropical woods. Eur. J. Wood Wood Prod. 2012;70:79. doi: 10.1007/s00107-010-0489-8. DOI
Malik J., Santoso A., Ozarska B. Polymerised Merbau Extractives as Impregnating Material for Wood Properties Enhancement; In Proceeding of the Materials Science and Engineering; Bogor, Indonesia. 1 September 2020.
Myo Aung U. A Preliminary Study of Anthraquinone Extractives in Teak. Leaflet No. 8/87-88. Forest Research Institute; Yezin, Myanmar: 1988. p. 39.
Simatupang M.H., Yamamoto K. Properties of teakwood (Tectona grandis L.f.) as influenced by wood extractives and its importance for tree breeding; Proceedings of the Regional Seminar on Site, Technology and Productivity od Teak Plantations; Chiang Mai, Thailand. 26–29 January 1999.
Bhat P.T.K. Chemical extractive compounds determining the brown-rot decay resistance of teak wood. Holz Als Roh-Und Werkst. 2007;65:121–124.