Potential toxicity of Schisandra chinensis to water environment: acute toxicity tests with water crustaceans
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37837583
PubMed Central
PMC10643315
DOI
10.1007/s11356-023-30182-8
PII: 10.1007/s11356-023-30182-8
Knihovny.cz E-zdroje
- Klíčová slova
- Acute toxicity, Adaptogen, Lignan, Schisandrin, Zooplankton,
- MeSH
- Anostraca MeSH
- chemické látky znečišťující vodu * toxicita MeSH
- Daphnia MeSH
- ekosystém MeSH
- lidé MeSH
- Schisandra * MeSH
- testy akutní toxicity MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- voda MeSH
Fruits of Schisandra chinensis, an East Asian liana plant, are currently more and more used to produce nutrient supplements that positively affect human health due to the content of various secondary metabolites. On the other hand, these substances because of their bioactivity can cause possible allelopathic or toxic effects concerning other organisms (algae, plants, animals). But the ecotoxicological properties of S. chinensis outside its area of origin have yet to be sufficiently verified. Two crustaceans, Daphnia magna and Thamnocephalus platyurus, were selected as model aquatic organisms to test the potential impact of S. chinensis active compounds on the aquatic environment. Crude water extract from S. chinensis fruits, simulating the natural leakage of active substances in water, was tested in treatments from 0.0045 to 45 mg/L (according to the content of schisandrin as the dominating lignan). Effective concentration (EC50) causing 50% lethal effect for D. magna was established to 0.0448 mg/L after 24 h and 0.0152 mg/L after 48 h. EC50 for T. platyurus reached 0.4572 mg/L after 24 h, i.e. more than ten times higher than for D. magna. This study showed that the potential environmentally relevant concentrations of S. chinensis bioactive compounds could represent a severe risk to aquatic ecosystems.
Zobrazit více v PubMed
Alvarenga P, Mourinha C, Farto M, Palma P, Sengo J, Morais MC, Cunha-Queda C. Ecotoxicological assessment of the potential impact on soil porewater, surface and groundwater from the use of organic wastes as soil amendments. Ecotox Environ Safe. 2016;126:102–110. doi: 10.1016/j.ecoenv.2015.12.019. PubMed DOI
Cangiano T, Dellagreca M, Fiorentino A, Isidori M, Monaco P, Zarrelli A. Effect of ent-labdane diterpenes from Potamogetonaceae on Selenastrum capricornutum and other aquatic organisms. J Chem Ecol. 2002;28:1091–1102. doi: 10.1023/A:1016213630957. PubMed DOI
Choi SI, Kang HM, Sato N. A study of the Schisandra production structure in Korea. J Fac Agr Kyushu U. 2015;60:553–561.
Costa RO, Vieira BH, Espindola ELG, Ribeiro AI, Ferro JLR, Fernandes JB, Matos D.D (2021) Toxicity of rhizomes of the invasive Hedychium coronarium (Zingiberaceae) on aquatic species. Biol Invasions 23:2221-2231. 10.1007/s10530-021-02501-y
Costas-Gil A, Reigosa MJ, Sanchez-Moreiras AM. The natural compound podophyllotoxin induces growth inhibition and microtubule condensation on Arabidopsis roots. Allelopathy J. 2018;45:255–262. doi: 10.26651/allelo.j./2018-45-2-1191. DOI
Hancke JL, Burgos RA, Ahumada F. Schisandra chinensis (Turcz.) Baill. Fitoterapia. 1999;70:451–471. doi: 10.1016/S0367-326X(99)00102-1. DOI
Ishimota M, Nakajima D, Sakamoto M, Miyabara Y. Water-soluble bioactive natural compounds in Trapa japonica leaves: temporal changes in chemical composition and effects on cladocerans. Ecol Res. 2019;34:328–335. doi: 10.1111/1440-1703.1274. DOI
ISO 14380:2011 Water quality — Determination of the acute toxicity to Thamnocephalus platyurus (Crustacea, Anostraca)
ISO 6341:2012 Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — acute toxicity test
Ji D, Liu J, Li L, Mao CQ, Yin FZ, Lu TL. Simultaneous quantification of schisandrin, deoxyschisandrin and schisandrin B in rat bile, urine, and feces and application to excretion study. Lat Am J Pharm. 2014;33:797–803.
Kerberova V, Gargosova HZ, Caslavsky J. Occurrence and ecotoxicity of selected artificial sweeteners in the Brno city waste water. Int J Environ Sci Te. 2022;19:9055–9066. doi: 10.1007/s13762-021-03771-8. DOI
Kim YJ, Lee HJ, Kim CY, Han SY, Chin YW, Choi YH. Simultaneous determination of nine lignans from Schisandra chinensis extract using ultra-performance liquid chromatography with tandem mass spectrometry in rat plasma, urine, and gastrointestinal tract samples: application to the pharmacokinetic study of Schisandra chinensis. J Sep Sci. 2014;37:2851–2863. doi: 10.1002/jssc.201400451. PubMed DOI
Kohda H, Ozaki M, Namera A. Production of lignans in calluses of Schisandra chinensis. J Nat Med. 2012;66:373–376. doi: 10.1007/s11418-011-0586-y. PubMed DOI
Lee S, Yeon SW, Turk A, Ryu SH, Seo J, Lee KY, Hwang BY, Shin H, Lee MK. Variation of lignan content and alpha-glucosidase inhibitory activity of Schisandra chinensis fruit at different maturation stages: comparison with stem, leaf and seed. Sci Hortic - Amsterdam. 2022;293:110679. doi: 10.1016/j.scienta.2021.110679. DOI
Leis K, Baska A, Mazur E, Kaczor P, Racinowski M, Galazka P. Schisandrins impact on the efficiency of human body: a review. Sci Sport. 2020;35:271–278. doi: 10.1016/j.scispo.2019.12.009. DOI
Ma Y, Deng YY, Li N, Dong A, Li HD, Chen S, Zhang S, Zhang MZ. Network pharmacology analysis combined with experimental validation to explore the therapeutic mechanism of Schisandra Chinensis Mixture on diabetic nephropathy. J Ethnopharmacol. 2023;302:115768. doi: 10.1016/j.jep.2022.115768. PubMed DOI
Mayorga P, Perez KR, Cruz SM, Caceres A. Comparison of bioassays using the anostracan crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Revista Brasileira De Farmacognosia-Brazilian Journal of Pharmacognosy. 2010;20:897–903. doi: 10.1590/S0102-695X2010005000029. DOI
OECD Guidelines Test No. 202: (n.d.) Daphnia sp. acute immobilisation test 10.1787/9789264069947-en
Oropesa AL, Floro AM, Palma P. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem. Environ Sci Pollut R. 2017;24:16605–16616. doi: 10.1007/s11356-017-9084-4. PubMed DOI
Paixao SM, Mendonca E, Picado A, Anselmo AM. Acute toxicity evaluation of olive oil mill wastewaters: a comparative study of three aquatic organisms. Environ Toxicol. 1999;14:263–269. doi: 10.1002/(SICI)1522-7278(199905)14:2<263::AID-TOX7>3.0.CO;2-D. DOI
Palma P, Palma VL, Fernandes RM, Soares A, Barbosa IR. Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal. B Environ Contamin Tox. 2008;81:485–489. doi: 10.1007/s00128-008-9517-3. PubMed DOI
Panossian A, Wikman G. Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. J Ethnopharmacol. 2008;118:183–212. doi: 10.1016/j.jep.2008.04.020. PubMed DOI
Saavedra J, Stoll S, Slaveykova VI. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ Pollut. 2019;252:715–722. doi: 10.1016/j.envpol.2019.05.135. PubMed DOI
Scavo A, Pandino G, Restuccia A, Lombardo S, Pesce GR, Mauromicale G. Allelopathic potential of leaf aqueous extracts from Cynara cardunculus L. on the seedling growth of two cosmopolitan weed species. Ital J Agron. 2019;14:78–83. doi: 10.4081/ija.2019.1373. DOI
Scavo A, Rial C, Molinillo JMG, Varela RM, Mauromicale G, Macias FA. The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var. altilis) leaf allelochemicals. Ind Crop Prod. 2019;128:479–487. doi: 10.1016/j.indcrop.2018.11.053. DOI
Slanina J, Taborska E, Lojkova L. Lignans in the seeds and fruits of Schisandra chinensis cultured in Europe. Planta Med. 1997;63:277–280. doi: 10.1055/s-2006-957676. PubMed DOI
Smejkal K, Slapetova T, Krmencik P, Babula P, Dall'Acqua S, Innocenti G, Vanco J, Casarin E, Carrara M, Kalvarova K, Dvorska M, Slanina J, Kramarova E, Julinek O, Urbanova M. Evaluation of cytotoxic activity of Schisandra chinensis lignans. Planta Med. 2010;76:1672–1677. doi: 10.1055/s-0030-1249861. PubMed DOI
Szklarek S, Gorecka A, Salabert B, Wojtal-Frankiewicz A. Acute toxicity of seven de-icing salts on four zooplankton species- is there an “eco-friendly” alternative? Ecohydrology & Hydrobiology. 2022;22:589–597. doi: 10.1016/j.ecohyd.2022.08.005. DOI
Szopa A, Ekiert R, Ekiert H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem Rev. 2017;16:195–218. doi: 10.1007/s11101-016-9470-4. PubMed DOI PMC
Teodoridis V. Early Miocene seeds of Schisandra moravica (MAI) GREGOR from the Czech Republic. Neues Jahrbuch Fur Geologie Und Palaontologie-Monatshefte. 2005;11:663–682. doi: 10.1127/njgpm/2005/2005/663. DOI
Tofan L, Nita V, Nenciu M, Coatu V, Lazar L, Damir N, Vasile D, Popoviciu DR, Brotea AG, Curtean-Banaduc AM, Avramescu S, Aonofriesei F. Multiple assays on non-target organisms to determine the risk of acute environmental toxicity in tebuconazole-based fungicides widely used in the black sea coastal area. Toxics. 2023;11:597. doi: 10.3390/toxics11070597. PubMed DOI PMC
Valickova J, Zezulka S, Marsalkova E, Kotlik J, Marsalek B, Opatrilova R. Bioactive compounds from Schisandra chinensis - risk for aquatic plants? Aquat Toxicol. 2023;254:106365. doi: 10.1016/j.aquatox.2022.106365. PubMed DOI
Wang JC, Wang BQ. Antioxidant activity of Schisandra chinensis extract and derivatives. 2nd International Conference on Energy, Environment and Sustainable Development (EESD 2012) Adv Mater Res-Switz. 2013;610-613:3549–3551. doi: 10.4028/www.scientific.net/AMR.610-613.3549. DOI
Wang XT, Yu JH, Li W, Wang CM, Li H, Ju WB, Chen JG, Sun JH. Characteristics and antioxidant activity of lignans in Schisandra chinensis and Schisandra sphenanthera from different locations. Chem Biodivers. 2018;15:e1800030. doi: 10.1002/cbdv.201800030. PubMed DOI